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Abstract—We show that in the document exchange
problem, where Alice holds x ∈ {0, 1}n and Bob holds
y ∈ {0, 1}n, Alice can send Bob a message of size
O(K(log2 K + log n)) bits such that Bob can recover x
using the message and his input y if the edit distance
between x and y is no more than K, and output “error”
otherwise. Both the encoding and decoding can be done
in time Õ(n+poly(K)). This result significantly improves
on the previous communication bounds under polynomial
encoding/decoding time. We also show that in the referee
model, where Alice and Bob hold x and y respectively, they
can compute sketches of x and y of sizes poly(K log n)
bits (the encoding), and send to the referee, who can then
compute the edit distance between x and y together with
all the edit operations if the edit distance is no more
than K, and output “error” otherwise (the decoding).
To the best of our knowledge, this is the first result for
sketching edit distance using poly(K log n) bits. Moreover,
the encoding phase of our sketching algorithm can be
performed by scanning the input string in one pass. Thus
our sketching algorithm also implies the first streaming
algorithm for computing edit distance and all the edits
exactly using poly(K log n) bits of space.

Keywords-document exchange; sketching; streaming;
edit distance

I. INTRODUCTION

In this paper we study the problem of edit distance,

where given two strings s, t ∈ {0, 1}n, we want to

compute ed(s, t), which is defined to be the minimum

number of insertions, deletions and substitutions to

convert s to t. We also want to find all the edit

operations. This problem has been studied extensively in

the literature due to its numerous applications in bioin-

formatics (comparing the similarity of DNA sequences),

natural language processing (automatic spelling correc-

tion), information retrieval, etc. In this paper we are

interested in the small distance regime, that is, given a

threshold K, we want to output ed(s, t) together with

* The full version of this paper can be found at [1].
† Supported in part by NSF CCF-1525024, IIS-1633215, and IU’s

Office of the Vice Provost for Research through the FRSP.

all the edit operations if ed(s, t) ≤ K, and output

“error” otherwise. We will explain shortly that this is the

interesting regime for many applications. We consider

three different settings:

• Document Exchange. We have two parties Alice

and Bob, where Alice holds s and Bob holds t.
The task is for Alice to compute a message msg
based on s (the encoding) and send to Bob, and

then Bob needs to recover s using msg and his

input t (the decoding). We want to minimize both

the message size and the encoding/decoding time.

• Sketching. We have Alice and Bob who hold s and

t respectively, and a third party called the referee,

who has no input. The task is for Alice and Bob to

compute sketches sk(s) and sk(t) based on their

inputs s and t respectively (the encoding), and send

them to the referee. The referee then computes

ed(s, t) and all the edits using sk(s) and sk(t)
(the decoding). The goal is to minimize both the

sketch size and the encoding/decoding time.

• Streaming. We are allowed to scan string s from

left to right once, and then string t from left to

right once, using a memory of small size. After

that we need to compute ed(s, t) and all the edits

using the information retained in the memory. The

goal is to minimize the memory space usage and

the processing time.

Motivations. Document exchange is a classical prob-

lem that has been studied for decades. This problem

finds many applications, for example, two versions of

the same file are stored in two different machines and

need to be synchronized, or we want to restore a file

transmitted through a channel with erroneous insertions,

deletions and substitutions. It is useful to focus on the

small distance regime since one would expect that in

the first application the two files will not differ by

much, and in the second application the channel will

not introduce too many errors. Otherwise we can detect
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the exception and ask the sender to transmit the whole

string again, which is a low probability event thus we

can afford.

Sketching the edit distance is harder than document

exchange because in the decoding phase the referee does

not have access to any of the original strings, which,

however, also makes the problem more interesting and

useful. For example, in the string similarity join, which

is a fundamental problem in databases, one needs to

find all pairs of strings (e.g., genome sequences) in a

database that are close (no more than a given threshold

K) with respect to edit distance. This is a computation-

ally expensive task. With efficient sketching algorithms

we can preprocess in parallel each string to a small size

sketch, and then compute the edit distances on those

small sketches without losing any accuracy (all of our

algorithms aim at exact computations).

Our Results. In this paper we push the frontiers further

for all of the three problems. For the convenience of the

presentation we use Õ(f) to denote fpoly(log f), and

further assume that K ≤ n1/c for a sufficiently large

constant c > 0 (thus n absorbs poly(K) factors). We

list our results together with previous results in Table I.

Our contribution includes:

1) We have improved the communication cost of the

document-exchange problem to O(K(log2 K +
log n)) bits while maintaining almost linear run-

ning time. Note that when logK = O(
√
log n),

our communication bound matches the informa-

tion theoretic lower bound Ω(K log n).
2) We have obtained a sketch of size O(K8 log5 n)

bits for edit distance, which, to the best of our

knowledge, is the first result for sketching edit

distance in size poly(K log n). This result answers

an open problem in [2], and is in contrast to

the lower bound result in [3] which states that

any linear sketch for edit distance has to be of

size Ω(n/α) even when we want to distinguish

ed(s, t) ≥ 2α or ed(s, t) ≤ 2.

3) Our sketching algorithm can be implemented in

the standard streaming model. To the best of our

knowledge, this is the first efficient streaming

algorithm for exact edit distance computation. We

also show that if we can scan s and t simultane-

ously in the coordinated fashion, we can compute

the edit distance using only O(K log n) space,

which significantly improves on the result in [4].

Due to the space constraints, we refer readers to [1]

for all the omitted proofs in this extended abstract, and

the algorithms for standard streaming and simultaneous

streaming.

problem comm. / size / space time ref.

doc- O(K logn) nO(K) [5]

exchange O(K log(n/K) logn) Õ(n) [6]

O(K log2 n log∗ n) Õ(n) [2]

O(K2 +K log2 n) Õ(n) [7]

O(K2 logn) Õ(n) [4]

O(K(log2 K + logn)) Õ(n) new
sketching O(K8 log5 n) Õ(K2n) new

(enc.),
poly(K logn)

(dec.)

streaming O(K8 log5 n) Õ(K2n) new
simul- O(K6 logn) Õ(n) [4]

streaming O(K logn) O(n) new

Table I
Our results for computing edit distance in different models. n is the

input size and K is a given upper bound of the edit distance. We
have assumed that K ≤ n1/c for a sufficiently large constant

c > 0, and thus n absorbs poly(K) factors. All the algorithms are
randomized except those in [5], [7], and our new simultaneous

streaming algorithm, which are deterministic.

Related Work. We list a few closely related works. We

refer readers to the full version of the paper for more

related work.

Document Exchange. The first algorithm for document

exchange was proposed by Orlitsky [5], who gave a

communication optimal algorithm but with decoding

time exponential in K. Since then, the running time has

been improved [8], [6], [2]. Irmak et al. [6] proposed a

randomized protocol using an erasure-correcting-code,

achieving O(K log(n/K) log n) bits of communication

and Õ(n) encoding/decoding time, and (independently)

Jowhari [2] gave a randomized protocol using the

ESP-tree [9] that achieves O(K log2 n log∗ n) bits of

communication and Õ(n) encoding/decoding time. Very

recently Chakraborty et al. [4] obtained a protocol

with O(K2 log n) bits of communication and Õ(n)
encoding/decoding time, by first embedding strings in

the edit space to the Hamming space using random

walks, and then performing the document exchange in

the Hamming space. We note that random walk has

also been used for computing the Dyck language edit

distance in an earlier paper by Saha [10].

Sketching. While the approximate version has been

studied extensively in the literature, little work has been

done for sketching edit distance without losing any

accuracy. Jowhari [2] gave a sketch of size Õ(K log2 n)
bits for a special case of edit distance called the Ulam

distance, where the alphabet size is n and each string
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has no character repetitions.1 Andoni et al. [3] showed

that if we require the sketch for edit distance to be linear,

then its size must be Ω(n/α) even when we want to

distinguish whether the distance is at least 2α or no

more than 2.

Streaming. To the best of our knowledge, computing

exact edit distance has not been studied in the streaming

model. Chakraborty et al. [4] studied this problem in a

variant of the streaming model where we can scan the

two strings x and y simultaneously in a coordinated

fashion, and showed that O(K6 log n) bits of space is

enough to computing ed(x, y).

Techniques Overview. We now summarize the high

level ideas of our algorithms. The parameters used in

this overview are just for illustration purposes.

Document Exchange. As mentioned, the document ex-

change problem can be solved by the algorithm of Irmak

et al. [6] (call it the IMS algorithm) using O(K log2 n)
bits of communication. Intuitively speaking, IMS first

converts strings s and t to two binary parse trees Ts and

Tt respectively, where the root of the tree corresponds

to the hash signature of the whole string, the left child

of the root corresponds to the hash signature of the first

half of the string, and the right child corresponds to

that of the second half, and so on. IMS then tries to

synchronize the two parse trees and for the receiver to

identify on Ts at most K root-leaf paths which lead to

the at most K edits. The synchronization is done using

error-correcting codes at each level of the tree.

The main idea of our new algorithm is that if we can

identify those large common blocks in some optimal

alignment between s and t, then we can skip those

common blocks and effectively reduce s, t to two strings

s′, t′ of much smaller sizes, say, each consisting of at

most K substrings each of size at most K99. Now if

we apply the IMS algorithm on s′ and t′ we only need

O(K log2 K99) = O(K log2 K) bits of communica-

tion. The question now is how to identify those large

common blocks, which turns out to be quite non-trivial.

Note that Alice has to do this step independently in the

one-way communication model, and she does not even

have a good alignment between s and t.
Our main tool is the embedding result by Chakraborty

et al. [4] (denoted by the CGK embedding): we can

embed binary strings s and t of size n to binary

strings s′ and t′ of size 3n independently, such that if

1In this paper when considering edit distance we always assume
binary alphabet, but our results can be easily carried to non-binary
alphabets as long as the alphabet size is no more than poly(n). We
note that the embedding result by Chakraborty et al. can be applied
to strings with non-binary alphabets (see [4] for details).

ed(s, t) = k (≤ K), then with probability 0.99 we have

Ω(k) ≤ ham(x, y) ≤ O(k2), where ham(·, ·) denotes

the Hamming distance. In the (good) case that after the

embedding, the O(k2) mismatches in s′ and t′ (in the

Hamming space) are distributed into at most K pairs of

trunks each of length at most K99, then we can identify

those mismatched trunks as follows: We partition s′ and

t′ into blocks of size 100
√
n, and then map those blocks

back to substrings in s and t (the edit space). We next

use an error-correcting code to identify those (up to K)

pairs of substrings of s and t that differ, and recurse on

those mismatching pairs. By doing this we will have

effectively reduced s and t to at most K substrings

each of length 100
√
n after the first round. Then after

O(log logn) recursion rounds we can reduce the length

of each of the (at most) K substrings to K99, at which

moment we apply the IMS algorithm.

The subtlety comes from the fact that if the strings

s and t contain long common periodic substrings of

sufficiently short periods, then the O(k2) mismatches

will possibly be distributed into O(k2) remote loca-

tions in s′ and t′ (note that we cannot recurse on k2

substrings since that will introduce a factor of k2 in

the message size). More precisely, the random walk

used in the CGK embedding may get “stuck” in the

common periodic substrings in s′ and t′, and conse-

quently spread the mismatches to remote locations. We

thus need to first carefully remove those long common

periodic substrings in s and t (again Alice has to do

this independently), and then apply the above scheme

to reduce the problem size.

Sketching. We can view an alignment A between s and

t as a bipartite matching, where nodes are characters in s
and t, and edges correspond to those aligned pairs (i, j)
in A. The matching can naturally be viewed as a group

of clusters each consisting of a set of consecutive edges

{(i, j), (i+1, j+1), . . .}, plus some singleton nodes in

between. Now let sk(A) be a sketch of A containing

the first and last edges of each cluster in A plus all the

singleton nodes. Intuitively, if ed(s, t) ≤ K then for

a good alignment A, the size of sk(A) can be much

smaller than that of A.

Given a collection of matchings {A1, . . . ,Aρ}, let-

ting I =
⋂

j∈[ρ]Aj be the set of common edges of

A1, . . . ,Aρ, our main idea is the following: if there

exists an optimal alignment that goes through all edges

in I, then we can produce an optimal alignment for

strings s and t using {sk(A1), . . . , sk(Aρ)}.
We now again make use of the CGK embedding,

which can be thought of as a random walk running

on two strings s and t of size n in the edit space,
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and producing two strings s′ and t′ of size 3n in the

Hamming space such that ham(s′, t′) = poly(K log n)
with high probability. Each random walk consists of

a set of states {(p1, q1), . . . , (pm, qm)} (pj , qj ∈ [n]),
which naturally corresponds to an alignment between

s and t. We say a random walk passes a pair (u, v) if

there exists some j ∈ [m] such that (pj , qj) = (u, v).
Our key observation is that given ρ = K2 log n random

walks according to the CGK embedding, for any pair

(u, v) with s[u] = t[v], if all the ρ random walks pass

(u, v), then (u, v) must be part of a particular optimal

alignment (see Lemma 13). We thus only need to

compute the sketches of the alignments corresponding

to those random walks, each of which corresponds

to the differences between s′ and t′ in the Hamming

space, for which efficient sketching algorithms have

already been obtained. Moreover, the size of each sketch

can be bounded by poly(K log n) using the fact that

ham(s′, t′) = poly(K log n). The last step is to map

these differences in the Hamming space back to the

edit space for computing an optimal alignment, which

requires us to add to the sketches some position-aware

structures to assist the reverse mapping. The whole

sketch consists of ρ = K2 log n sub-sketches each of

size poly(K log n), and is thus of size poly(K log n).

Streaming. Our algorithm for the standard streaming

model follows directly from our sketching algorithm,

since the encoding phase of our sketching algorithm

can be performed using a one-pass scan on the input

string. Our result in the simultaneous streaming model

is obtained by implementing the classic dynamic pro-

gramming algorithm for edit distance in a space and

time efficient way, more precisely, by only trying to

compute those must-know cells in the alignment matrix.

Notations. We use n as the input size, and K as the

threshold under which we can compute ed(s, t) and the

edit operations successfully.

Denote [i..j] = {i, i + 1, . . . , j} and [n] = [1..n].
When we write x[i..j] for a string x we mean the

substring (x[i], . . . , x[j]). We use “◦” for string con-

catenation. All logs are base-2 unless noted otherwise.

II. PRELIMINARIES

In this section we present some tools and previous

results that we need in our algorithms.

The CGK Embedding. A basic procedure in our al-

gorithms is the embedding from edit space to Hamming

space introduced in [4]. The embedding is parameter-

ized with a random string r ∈ {0, 1}6n, and maps

s ∈ {0, 1}n to s′ ∈ {0, 1}3n. We use two counters i
and j both initialized to 1. Counter i points to s and

counter j points to s′. The algorithm proceeds in steps

j = 1, 2, . . .. At step j it does:

1) s′[j]← s[i].
2) If r[(2j − 1) + s[i]] = 1, then i ← i + 1. Stop

when i = n+ 1.

3) j ← j + 1.

At the end, if j < 3n, then we append (3n − j) ‘0’s

to s to make it a string of length 3n. In words, at each

step j the algorithm reads a bit from s indexed by i
and copies it to the output string s′ at position j. We

then decide whether to increment the index i using the

((2j − 1) + s[i])-th bit of string r.

We are interested in comparing the Hamming distance

between strings s′ and t′ produced by the embeddings

on s ∈ {0, 1}n and t ∈ {0, 1}n respectively. Let i0 be a

counter for s, i1 be a counter for t, and j be a counter

denoting the current time step. At time step j, the bit

s[i0] is copied to s′[j], and the bit t[i1] is copied to t′[j].
Then one of the following four cases will happen: (1)

neither i0 nor i1 increments; (2) only i0 increments; (3)

only i1 increments; (4) both i0 and i1 increment. Note

that if s[i0] = t[i1], then only first and last cases can

happen, and the bits copied into s′ and t′ are the same.

Otherwise if s[i0] �= t[i1], then the bits copied into s′

and t′ are different. Each of the four cases happens with

probability 1/4 depending on the random string r. We

have the following definitions.

Definition 1 (State and Progress Step). We call the
sequence of (i0, i1) the states of the random walk. We
say that we have a progress step if s[i0] �= t[i1] and at
least one of i0 and i1 increments.

We can model the evolution of the “shift” d = (i0 −
i1) as (a different) random walk on the integer line,

where at each time step, if s[i0] �= t[i1] then d stays

the same with probability 1/2, decrements by 1 with

probability 1/4, and increments by 1 with probability

1/4, otherwise if s[i0] = t[i1] then d always stays the

same. We can focus on the cases when one of i0 and

i1 increments, and view the change of d as a simple
random walk on the integer line, where at each step the

shift d increments or decrements with equal probability.

The following lemma has been shown in [4] by using

the properties of simple random walks.

Lemma 1. Let (p0, q0) be a state of a random walk
W according to the CGK embedding in which d =
ed(s[p0..n], t[q0..n]) ≥ 1, then with probability 1 −
O(1/

√
�), W reaches within � progress steps a state

(p1, q1) with ed(s[p1..n], t[q1..n]) ≤ d− 1.

The IMS Algorithm. As mentioned, we will use the
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IMS algorithm proposed in [6]. In fact, we can slightly

improve the original IMS algorithm in [6] to get the

following result.

Theorem 2. There exists an algorithm for document
exchange having communication cost O(K(logK +
log log n) log n)), running time Õ(n), and success prob-
ability 1 − 1/poly(K log n), where n is the input size
and K is the distance upper bound.

Periods and Random Walk. When performing the

CGK embedding, common periods in the strings may

“slow down” the random walk, and consequently dis-

tribute the mismatches into remote locations (which is

undesirable for our algorithm for document exchange;

see the techniques overview in the introduction). On the

other hand, if two strings do not share long periodic

substrings of small periods, then the random walk

induced by the embedding will make steady progress.

Lemma 3. Suppose that we have w = s[i..i + m] =
t[j..j+m] and that the substring w has no substring of
length � < m with period at most θ. Then, the random
walk induced by the CGK embeddings of s and t will
have the following property: suppose at a given step the
random walk is in the state (p, q) such that |(p − i) −
(q−j)| ∈ [1..θ], p ∈ [i..i+m−�] and q ∈ [j..j+m−�],
then there will be a progress step for some pair (u0, u1)
with u0 ∈ [p, p+ �− 1] and u1 = u0 + (q − p).

Error-Correcting. We consider the following problem:

Alice holds a vector a and Bob holds a vector b, where

a and b are of length u over an alphabet of size σ. Let

k be a given threshold. Bob knows that the differences

between a and b fall into a set S of λ ≥ k coordinates,

but Alice does not know the set S. The task is for

Alice to send a message msg to Bob so that Bob can

recover a exactly based on msg and his input string b
if ham(a, b) ≤ k, and output “error” otherwise.

Lemma 4. There exists an algorithm for the above
problem having communication cost O(log log u +
k(log σ + log λ + log(1/p)), running time Õ(u + kλ),
and success probability 1− p.

Sketching Hamming Distance. We will use the result

for sketching Hamming distance as a building block in

our sketching algorithm. In particular we will use the

one in [11], and state it for a general alphabet.

Lemma 5 ([11]). There exists a sketching algorithm
which, given a vector of length n over an alphabet of
size σ = O(poly(n)) and a threshold k, outputs a vector
of length O(k log n), such that given the sketches of
two vectors a and b, one can recover with probability

(1 − 1/poly(n)) the coordinates (indices and values)
where they differ in time O(k log n) if ham(a, b) ≤ k,
and outputs “error” otherwise. The sketching process
can be done in the one-pass streaming fashion and runs
in O(log n) time per element.

III. DOCUMENT EXCHANGE

In this section we prove the following theorem.

Theorem 6. There exists an algorithm for document
exchange having communication cost O(K(log2 K +
log n)), running time Õ(n), and success probability 1−
1/poly(K log n), where n is the input size and K is the
distance upper bound.

A. The Algorithm

Let k = ed(s, t) be the edit distance between s and t
that we want to compute. Our algorithm for document

exchange consists of two stages. After the first stage we

effectively reduce the problem to a much smaller size,

more precisely, to that on two strings each consisting

of at most k ≤ K substrings each of size at most

(K2
√
logn)O(1), while preserving the edit distance. We

will then in the second stage run the IMS algorithm on

the reduced problem to compute the distance and all

the edits. We thus only describe the first stage of the

algorithm.

The first stage consists of L = O(log log n) levels,

each of which consists of two phases. These levels and

phases are executed in synchrony between Alice and

Bob, but the whole communication is still one-way. We

now describe the two phases at each level � ∈ [L]. We

will use the following parameters, which are known to

both parties before running the algorithm. Let c1, c2 be

two sufficiently large constants.

• b� =
√
n�2

c1(logK+
√
logn): block size in the first

phase.

• b′� =
√
n�2

(c1+c2)(logK+
√
logn): block size in the

second phase.

• θ� = b�/2: upper bound of period length.

Let n� be an upper bound of the effective size of the

problem at the beginning of the �-th level. n1 = n =
|s| = |t|, and n� = Kb′�−1 (� ≥ 2).

Phase I: Alice partitions her string x into blocks of size

b�, except that the first block is of a uniformly random

size Δ� ∈ [b�/2, b�], and the last block is of size in

the range [1..b�]. Denote these blocks by B1, . . . , Bm.

Alice sends Δ� to Bob.

Next, Alice creates a vector U� = (e1, . . . , em) where

ej = (χj , wj) contains the following information of the

j-th block Bj : If Bj is part of a periodic substring with

period length at most θ�, then she sets χj = 1 and
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wj to the period length;2 otherwise she sets χj = 0
and wj = 0. Alice then sends to Bob a redundancy

of U� (denoted as sk(U�)) that allows to recover up

to 2K errors using the scheme in Lemma 4 (setting

p = 1/poly(K log n)).
Bob maintains a vector x̃ based on his decoding of

Alice’s string x in the previous (� − 1) levels such

that with high probability x̃ only differs from x at

no more than n� coordinates (those that Bob hasn’t

recovered), for which Bob marks ‘⊥’. (x̃ is initialized

to an all-‘⊥’ vector of length n at the beginning of the

algorithm.) After receiving the offset Δ� he does the

same partitioning on both x̃ and y, getting (P1, . . . , Pm)
and (Q1, . . . , Qm) respectively. He then examines each

block Pj . If Pj or the θ� positions in x̃ preceding Pj

contain a ‘⊥’, then he builds e′j = (χ′j , w
′
j) in the same

way as ej = (χj , wj) by looking at Qj’s context in

y; otherwise he builds e′j = (χ′j , w
′
j) in the same way

as ej = (χj , wj) by looking at Pj’s context in x̃. Let

U ′� = (e′1, . . . , e
′
m). We will show in the analysis that

Bob can recover Alice’s vector U� using sk(U�) and his

vector U ′� with high probability.
Finally, for each maximal sequence of consecutive

blocks contained in the same periodic substring str of

x, and denoted by B1◦B2 · · ·◦Bz−1◦Bz , Alice removes

the longest prefix pre of B2◦· · ·◦Bz−1 (i.e., excluding

the first block B1 and the last block Bz) such that |pre|
is a multiple of w where w is the length of the period

of str3. Bob, after decoding Alice’s vector U�, does

the same thing, that is, he removes in his input string

y and the maintained string x̃ those characters of the

same indices that Alice removes.

Phase II: Alice maps her string x into the Hamming

space using the CGK embedding (see Section II), get-

ting a string x′, and then partitions x′ into blocks of size

b′�, except that the first block is of a uniformly random

size Δ′� ∈ [b′�/2, b
′
�], and the last block is of size in the

range [1..b′�]. She then maps these blocks back to the

edit space, getting a partition of the original string x.

Denote these blocks by A1, . . . , Ad. Alice sends Δ′� to

Bob, and Bob does the same partitioning to his string

y, getting A′1, . . . , A
′
d.

Next, Alice creates a vector V� = (g1, . . . , gd) where

gj = (h(Aj), rj , Ej) contains the following information

on the j-th block Aj : h : {0, 1}∗ →
[
(Kni)

Θ(1)
]

is a

Karp-Rabin hash signature of Aj ; rj is the length of Aj ;

and Ej = 1 if the first character of Aj is shared with

2We say that substring s[i..j] is part of periodic substring of s with
period wj > 0 iff s[i..j] = s[i−wj ..j−wj ] and wj is the smallest
number with this property.

3Formally two consecutive blocks Bj and Bj+1 are contained in
the same periodic substring iff wj = wj+1.

the last character of Aj−1 (this could happen due to the

copy operations in the CGK embedding; Ej is needed

for Bob to identify the boundaries of the unmatched

substrings in x accurately), and Ej = 0 otherwise.

Alice then sends to Bob a redundancy of V� (denoted

as sk(V�)) that allows to recover up to K errors using

the scheme in Lemma 4 (setting p = 1/poly(K log n)).
Bob does the same for (A′1, . . . , A

′
d), getting a vector

V ′� = (g′1, . . . , g
′
d). We will show in the analysis that

Bob can recover Alice’s vector V� using sk(V�) and

his vector V ′� with high probability. Bob then updates

the string x̃ by replacing the ‘⊥’s with actual contents

for those matched blocks, and at the next level he will

do the decoding recursively on those unmatched blocks

(i.e., those still marked with ‘⊥’) whose sizes sum up

to no more than n�+1 = Kb′�.
The first stage concludes when the length of blocks

in the second phase becomes b′� ≤ (K2
√
logn)10(c1+c2),

from where Alice and Bob apply IMS directly to

compute the edit distance and all the edits. The mes-

sage Alice sends to Bob in the first stage includes

the offsets {Δ�,Δ
′
� | � ∈ [L]} and the redundancies

{sk(U�), sk(V�) | � ∈ [L]}. Note that Alice can compute

these independently using parameters b�, b
′
� and θ� at

each level � ∈ [L]. In the second stage, Alice sends

Bob the IMS sketch on her string x, but omits all the

top-levels in the IMS sketch at which the block sizes

are larger than b′L, since Bob does not need to do the

recovery at those levels given the first stage. At the end,

Bob can recover Alice’s input string s by adding back

the removed periods at all levels.

B. The Analysis

Correctness. We focus on the case k = ed(s, t) ≤ K;

otherwise if k > K then Bob can detect it during

the decoding (in particular, various recoveries using

Lemma 4 will report “error”) and output “error” with

probability 1− 1/poly(K log n).
The following lemma (whose proof is deffered to the

full version) shows that the period-removal step in Phase

I at each level preserves the edit distance.

Lemma 7. Given two strings s = ppp and t of the
same length, letting π = |p| ≤ ed(s, t) be the length of
the period of s, the edit distance between s′ = pp and
t′ = t[1..π] ◦ t[2π + 1..3π] is at most ed(s, t).

The following two lemmas show that the redundan-

cies sent by Alice in the two phases are sufficient for

Bob to recover Alice’s vectors U� and V�.

Lemma 8. At each level � in Phase I, let x and
y be the strings held by Alice and Bob respectively.
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Suppose that ed(x, y) ≤ K, then with probability
1 − 1/poly(K log n), Bob can recover Alice’s vector
U� using his vector U ′� and Alice’s message sk(U�).
Moreover, after the period-removal step the edit dis-
tance between the two resulting strings x′ and y′ does
not increase, that is, ed(x′, y′) ≤ ed(x, y).

Proof: For the first part of the lemma, we just need

to show that U� and U ′� differ in at most 2K pairs

(ej , e
′
j). Note that we only need to look at those e′j

built from Qj in y, since otherwise if e′j is built from

Pj in x̃ then we always have ej = e′j . We thus only

need to consider at most n�/θ� = 2n�/b� pairs (ej , e
′
j).

We call a pair of block (Bj , Qj) good if there is no

edit in both Bj and Qj as well as their preceding θ�
characters in x and y respectively; we call the pair bad
otherwise. Since ed(x, y) ≤ K, there are at most 2K
bad pairs. We call a pair j periodic if χj = 1 or χ′j = 1
(i.e., at least one of Bj or Qj is part of a periodic

subtring in s or t with period length at most θ�), and

non-periodic otherwise. Clearly for a good and non-

periodic pair j we have (χj , wj) = (χ′j , w
′
j) = (0, 0).

We now show that for a good pair j, if χj = 1 or

χ′j = 1, then with probability 1 − O(K/b�) we have

ej = e′j . We prove only for the case when χj = 1; the

proof for the other case is similar. The observation is

that we have a random shift Δ� ∈ [b�/2, b�] in the block

partition, and in any optimal alignment the indices of

two matching characters in x and y can differ by at

most ed(x, y) ≤ K, thus for a good block Bj that is

part of a periodic substring of x of period length at

most θ� = b�/2, with probability 1 − O(K/b�), Qj is

also part of a substring with the same period. By a union

bound on at most 2n�/b� pairs (ej , e
′
j), we have with

probability 1−(2n�/b�)·(K/b�) ≥ 1−1/poly(K log n),
that for all good and periodic pairs (ej , e

′
j), ej = e′j .

The first part of the lemma follows.

The second part of the lemma follows directly from

Lemma 7. Note that when removing periods in each

periodic substring str we have kept the first and the

last blocks that are contained in str, and thus Bob can

recover those periods that have been removed.

Lemma 9. At each level � in Phase II, let x and
y be the strings held by Alice and Bob respectively.
Suppose that ed(x, y) ≤ K, then with probability
1 − 1/poly(K log n), Bob can recover Alice’s vector
V� using his vector V ′� and Alice’s message sk(V�).

Proof: We again just need to show that V� and V ′�
differ on at most K pairs (gj , g

′
j).

Let x′ and y′ be two strings obtained by performing

the CGK embedding on x and y respectively. LetW be

the random walk corresponding to the embedding. Re-

call that starting from a state (p0, q0) where a progress

step happens, by Lemma 1 we have that with probability

1 − O(1/
√
γ), after at most γ progress steps W will

reach a state (p1, q1) such that ed(x[p1..n], y[q1..n]) ≤
ed(x[p0..n], y[q0..n]) − 1. We call such a sequence of

walk steps a progress phase. Since ed(x, y) ≤ K, the

total number of progress phases is upper bounded by K.

By a union bound, with probability 1−O(K/
√
γ), each

of the at most K progress phases “consumes” at most γ
progress steps. Note that for all indices j between two

progress phases, we have x′[j] = y′[j], that is, the two

substrings of x′ and y′ are perfectly matched.

The key observation is that after the period-removal

process in Phase I, by Lemma 3 we will have a

“break” after passing at most two blocks (less than 4b�
characters when counting the periods crossing the two

block boundaries) allowing for at least one progress

step to execute. Therefore the total number of pairs

of coordinates in x′ and y′ that are involved in one

of the at most K progress phases can be bounded by

K · γ · 4b� with probability 1 − O(K/
√
γ). Setting

γ = (K log n)c2/2. By our choices of parameters,

b′� ≥ 2c2(logK+
√
logn)b� ≥ (K · γ · 4b�) · (K log n)Θ(1).

Also recall that there is a random shift Δ′� ∈
[b′�/2, b

′
�] at the beginning of the block partition in

Phase II. We thus have with probability at least 1 −(
O(K/(K log n)c2/4) + (K · γ · 4b�)/(b′�/2)

)
≥ 1 −

1/poly(K log n) that at most K pairs (Aj , A
′
j) differ,

where (A1, . . . , Ad) is the block partition of x in Phase

II, and (A′1, . . . , A
′
d) is that of y. The lemma follows.

The correctness of the algorithm follows from

Lemma 8 and Lemma 9. Note that the first

stage will finish in at most O(log log n) levels

since log n� decreases at each level by a fac-

tor of log n�/log n�+1 = log n�/log(Kb′�) ≥
log n�

/(
log

(√
n�2

(c1+c2)(logK+
√
logn)

))
≥ 1.5,

where in the last inequality we used the fact that

n� ≥ (K2
√
logn)10(c1+c2) (otherwise we go to

the second stage and apply the IMS algorithm).

The overall success probability is at least 1 −
(1/poly(K log n) + 1/poly(K log n)) · O(log logn) −
1/poly(K log n) ≥ 1− 1/poly(K log n), where the last

term on the left hand side counts the error probability

of the IMS algorithm (Theorem 2).

Complexities. We now analyze the communication cost

of our algorithm; the running time of the algorithm is

pretty traightforward, and we leave it to the full version

of this paper.
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In the first stage, at each level �, the communication

cost is dominated by the size of sk(U�) and sk(V�), both

of which can be bounded by O(K log n�) by Lemma 4

(where λ ≤ n�). Since log n� decreases by a constant

factor at each level, the total size of the message in

the first stage is bounded by O(K log n). In the second

stage, the total number of levels in the IMS sketch is

bounded by log b′L = O(logK+
√
log n), and the sketch

size per level is O(K(logK+log logn)) (these are the

same as Theorem 2 except that the number of levels has

been reduced from log n to log b′L). Thus the total size

of the IMS sketch is bounded by O(logK +
√
log n) ·

O(K(logK + log logn)) = O(K(log2 K + log n)).
Summing up, the total communication is bounded by

O(K(log2 K + log n)).

IV. SKETCHING

In this section we show the following theorem.

Theorem 10. There exists a sketching algorithm for
computing edit distance and all the edit operations hav-
ing sketch size O(K8 log5 n), encoding time Õ(K2n),
decoding time poly(K log n), and success probability
0.9, where n is the input size and K is the distance
upper bound. When the distance is above the upper
bound K, the decoding algorithm outputs “error” with
probability 1− 1/poly(n).

We first introduce a concept called effective align-
ment, and then show that a set of effective alignments

satisfying a certain property can be used to construct an

optimal alignment between the two strings.

Definition 2 (Effective Alignment). Given two strings
s, t ∈ {0, 1}n, we define an effective alignment between
s and t as a triplet (G, gs, gt), where

• G = (Vs, Vt, E) is a bipartite graph where nodes
Vs = {1, . . . , n} and Vt = {1, . . . , n} correspond
to indices of characters in s and t respectively, and
if (i, j) ∈ E then s[i] = t[j]. Moreover, edges in E
are non-crossing, that is, for every pair of edges
(i, j) and (i′, j′), we have i < i′ iff j < j′.

• gs is a partial function defined on the set of
singletons (unmatched nodes) Us ⊆ Vs; for each
i ∈ Us, define gs(i) = s[i]. Similarly, gt is a partial
function defined on the set of singletons Ut ⊆ Vt;
for each j ∈ Ut, define gt(i) = t[i].

Intuitively, an effective alignment can be seen as a

summary of an alignment after removing the informa-

tion of those matched nodes. The following lemma gives

the main idea of our sketching algorithm.

Lemma 11. We can compute an optimal alignment for
s and t using a set of effective alignments under the
promise that there exists an optimal alignment going
through all edges that are common to all effective
alignments.

Proof: Let I be the set of edges that are common

to all effective alignments. We will show that we can

reconstruct using these effective alignments all charac-

ters s[i]’s and t[j]’s for which i, j are not adjacent to

any edges in I.

For convenience we add two dummy edges

(0, 0), (n + 1, n + 1) to all the effective alignments to

form the boundaries. We can view the edges in I as

a group of clusters C1, . . . , Cκ (counting from left to

right) each of which consists of a set of consecutive

matching edges {(i, j), (i + 1, j + 1), . . .}, plus some

singleton nodes between these clusters. Now consider

a particular effective alignment A and an � ∈ [κ − 1].
Let (a1, b1), . . . , (az, bz) be the set of edges in A that

lie between C� and C�+1. By the definition of the

effective alignment we can learn directly from A all

the singletons in A that lie between C� and C�+1. It

remains to show that we can recover the characters in

s and t that correspond to the nodes a1, . . . , az and

b1, . . . , bz . For convenience we will identify nodes and

their corresponding characters in the strings.

Let us consider edges (a1, b1), . . . , (az, bz) one by

one from left to right. Note that for each x ∈ [z], we

just need to recover one of s[ax] and t[bx] because they

are equal. Since (ax, bx) is not in I, we know that there

exists another effective alignment A′ which does not

contain (ax, bx). We have the following cases:

1) ax is a singleton in A′. In this case we can recover

s[ax] directly from A′.
2) ax is connected to a node u in A′ such that

u < bx. This case is again easy since t[u] has

already been recovered, and thus we just need to

set s[ax] = t[u].
3) ax is connected to a node u in A′ such that

u > bx. In this case bx is either a singleton or is

connected to a node v < ax in A′. In the former

case we can recover t[bx] directly from A′, and

in the latter case since we have already recovered

s[v], we can just set t[bx] = s[v].

We thus have shown that we can recover all nodes that

are not adjacent to any edges in I. Since by the promise

that there exists an optimal alignment containing the

edges that are common to all effective alignments (i.e.,

I), we can construct such an optimal alignment by

aligning characters in s and t in the gaps between

clusters C1, . . . , Cκ ⊆ I in the optimal way.
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The rest of our task is to design sketches sk(s)
and sk(t) for s and t respectively so that using sk(s)
and sk(t) we can extract a set of effective alignments

satisfying the promise in Lemma 11. Intuitively, the size

of sk(s) and sk(t) can be small if (1) the information

contained in each effective alignment is small, and (2)

the number of effective alignments needed is small.

Our plan is to construct ρ = poly(K log n) effective

alignments A1, . . . ,Aρ, each of which only contains

poly(K log n) singletons, such that there is an optimal

alignment going through all edges in I =
⋂

j∈[ρ]Aj .

Note that we can compress the information of consecu-

tive edges in each Aj by just writing down the first and

the last edges, whose total number is at most twice the

number of singletons. We thus can bound the sketch size

by poly(K log n). In the rest of this section we show

how to carry out this plan.

We again make use of the random walk in the

CGK embedding. Recall that a random walk on the

two strings s and t can be represented as W =
((p1, q1), . . . , (pm, qm)) where (pj , qj) (pj , qj ∈ [n])
are states of W . W naturally corresponds an align-

ment (not necessarily optimal) between s and t. More

precisely, W corresponds to the alignment A con-

structed greedily by adding states (pm, qm), . . . , (p1, q1)
as edges one by one whenever s[pj ] = t[qj ].

Set ρ = cρK
2 log n for a large enough constant cρ,

and N = c4ρK
6 log2 n. We say that a random walk

passes a pair (u, v) if there exists some j ∈ [m] such

that (pj , qj) = (u, v). We call a random walk W good
if the total number of progress steps in W is at most

N (recall that we have a progress step at state (pj , qj)
only if s[pj ] �= t[qj ]). We can show the following (proof

in the full version).

Claim 12. The probability that all the ρ random walks
are good is at least 0.99.

Definition 3 (Anchor). Given ρ random walks gener-
ated according to the CGK embedding, we say that a
pair (u, v) (u, v ∈ [n]) is an anchor if s[u] = t[v], and
all the ρ random walks pass (u, v).

The following lemma indicates that the alignments

corresponding to a set of ρ random walks can be used

(after compression) as a set of effective alignments

satisfying the promise in Lemma 11. The proof of the

lemma is technical and we leave it to the full version.

We have included the high level idea of the proof below.

Lemma 13. With probability 1 − 1/n2, there is an
optimal alignment going through all anchors.

Proof idea: We say an alignment O passes (or goes

through) a pair (u, v) if (u, v) is an edge in O. We

choose a particular optimal alignment O we call the

greedy alignment, and show that O passes all anchors

with high probability. The high level idea is that suppose

on the contrary that O does not pass an anchor (u, v),
then we can find a matchingM in the left neighborhood

of (u, v) which may “mislead” a random walk; that

is, with a non-trivial probability the random walk will

“follow”M and consequently miss (u, v). We then have

that with high probability at least one of the ρ walks will

miss (u, v), which means that (u, v) is not an anchor, a

contradiction.

We now give some ideas on how to construct M
and then show that it will mislead a random walk.

Define the left neighborhood of (u, v) in which we

are interested to be (s[u − z..u], t[v − z..v]) such that

s[u] = t[v], . . . , s[u− z] = t[v − z] but s[u− z − 1] �=
t[v − z − 1]. By exploring the properties of the greedy

alignment O, we can find a matchingM⊆ O in the left

neighborhood of (u, v) consisting of a set of clusters

(consecutive edges), each of which is periodic4 with

a small period. Moreover, there are a small number

of singleton nodes between those clusters. Our key

observation is that once a random walk W enters a

cluster, its shift (i.e., |p− q| for a walk state (p, q))
will be changed by at most the length of the period of

that cluster. We thus can show that the maximum shift

change of W after entering the left neighborhood of

(u, v) can be bounded by roughly k2 (k = ed(s, t)).
Now if O does not pass (u, v), then we can show

that with a constant probability the first state (p, q)
of W after entering the neighborhood does not align

with (u, v) (i.e. |p− q| �= |u− v|). We next show that

with probability at least (roughly) 1/(100k2), during

the whole walk in the neighborhood, the shift of W
will not be equal to |u− v|, and consequently W will

miss (u, v).

The Sketch. We now show how to design sketches

for s and t from which we can extract the ρ effective

alignments corresponding to the ρ random walks. For re-

covering each of the ρ effective alignments, we prepare

a pair of structures we call the hierarchical structure

and the content structure, as follows. Let B = 4 log n
be a parameter denoting a basic block size.

The hierarchical structure P . Let s′ ∈ {0, 1}3n be

the image of s ∈ {0, 1}n after the CGK embedding.

W.l.o.g. assume 3n/B is a power of 2 (otherwise we

can pad 0s to the image s′). We build a binary tree

of depth L = log(3n/B) on top of s′, whose leaves

4That is, the two substrings of the cluster in s and t are both
periodic, and of the same period length.
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(at level 1) correspond to a partition of s′ into blocks

of size B, and internal nodes at level � correspond to

substrings of s′ of size 2�B (i.e., the concatenation of

the blocks corresponding to all the leaves in its subtree).

For each level � ∈ [L], setting d� = 3n/(2�B), we

create a vector V� = ((h1, η1), . . . , (hd�
, ηd�

)) where

hj is a hash signature of the pre-image (in s) of the

substring in s′ corresponding to the j-th node at level

�, and ηj is the length of the pre-image. We then build

a sketch P� of V� that allows to recover up to N errors

using the scheme in Lemma 5. Let P = (P1, . . . , PL).
The size of P is O(L ·N log n) = O(N log2 n) bits by

Lemma 5.
The content structure Q. Again let s and s′ be

repsectively the original string and the string after the

embedding. We partition s′ into blocks of size B, and

create a vector U = (x1, . . . , x3n/B) where xj is the

pre-image (in s) of the j-th block of s′. We then

build a sketch Q of U that allows to recover up to N
errors using the scheme in Lemma 5. The size of Q is

O(N(B + log n)) = O(N log n) bits by Lemma 5.
The final sketch sk(s) for s consists of ρ independent

copies of (P,Q). Clearly the size of sk(s) is bounded by

ρ · O(N log2 n) = O(K8 log5 n). Similarly, the sketch

sk(t) for t consists of ρ independent copies (P ′, Q′),
each of which is constructed in the same way as (P,Q)
(but for string t). The time for computing the sketch is

bounded by Õ(ρ · n) = Õ(K2n).
Now we show that we can extract an effective

alignment for s and t from (P,Q) and (P ′, Q′). We

again focus on the case when k = ed(s, t) ≤ K.

Otherwise if k > K then various recoveries using

Lemma 5 in the decoding will report error with proba-

bility 1−1/poly(n). The proof of the following lemma

can be found in the full version.

Lemma 14. Given (P,Q) and (P ′, Q′), with probabil-
ity at least 0.98, we can extract an effective alignment
A for s and t corresponding to a random walk W
according to the CGK embedding such that for any edge
(u, v) ∈ A there exists some state (p, q) ∈ W such that
(p, q) = (u, v).

Lemma 13 and Lemma 14 give the following.

Corollary 15. With probability 0.97, we can extract
ρ effective alignments from sk(s) and sk(t) such that
there is an optimal alignment between s and t going
through all edges that are common to all of the ρ
alignments.

The next lemma (proof in the full version) finishes

the proof of Theorem 10. We comment that the fact

that the decoding time can be reduced to poly(K log n)

is very useful in the distributed/parallel computation

models where the decoding phase is performed in a

central server which collects sketches produced from

a number of machines.

Lemma 16. With probability 0.97, we can extract ρ
effective alignments from sk(s) and sk(t) and use them
to construct an optimal alignment between s and t. The
running time of the construction is poly(K log n).
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