
Strong Fooling Sets for Multi-Player Communication
with Applications to Deterministic Estimation of Stream Statistics

Amit Chakrabarti and Sagar Kale

Department of Computer Science, Dartmouth College
Hanover, NH, USA

Email: {ac,sag} (at) cs.dartmouth.edu

Abstract— We develop a paradigm for studying multi-player
deterministic communication, based on a novel combinatorial
concept that we call a strong fooling set. Our paradigm leads
to optimal lower bounds on the per-player communication
required for solving multi-player EQUALITY problems in a
private-message setting. This in turn gives a very strong—O(1)
versus Ω(n)—separation between private-message and one-way
blackboard communication complexities.

Applying our communication complexity results, we show
that for deterministic data streaming algorithms, even loose
estimations of some basic statistics of an input stream require
large amounts of space. For instance, approximating the
frequency moment Fk within a factor α requires Ω(n/α1/(1−k))
space for k < 1 and roughly Ω(n/αk/(k−1)) space for k > 1.
In particular, approximation within any constant factor α ,
however large, requires linear space, with the trivial exception
of k = 1. This is in sharp contrast to the situation for
randomized streaming algorithms, which can approximate Fk
to within (1± ε) factors using Õ(1) space for k � 2 and o(n)
space for all finite k and all constant ε > 0. Previous linear-
space lower bounds for deterministic estimation were limited
to small factors α , such as α < 2 for approximating F0 or F2.

We also provide certain space/approximation tradeoffs in
a deterministic setting for the problems of estimating the
empirical entropy of a stream as well as the size of the
maximum matching and the edge connectivity of a streamed
graph.

I. INTRODUCTION

This paper introduces a new paradigm for studying multi-

player number-in-hand deterministic communication com-

plexity, uses the paradigm to obtain some new communica-

tion lower bounds centered around the EQUALITY problem,

and applies these results to derive a number of lower bounds

in the data streaming model. These latter results address a

very basic topic in the theory of data stream algorithms.

Data stream algorithms offer a convincing demonstration

of the power of randomization. Many problems that call

for summarization of “big data” admit remarkably efficient

sublinear-space streaming algorithms, provided such algo-

rithms are allowed randomness. Restricted to determin-

ism, such sublinear-space solutions usually do not exist.

This dichotomy between determinism and randomization is

among the first lessons one learns in the study of streaming
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algorithms. Indeed, as shown in the pioneering work of

Alon, Matias, and Szegedy [1], one encounters it in the

most basic problem of estimating the number of distinct

elements in a stream, as well as the more general problem

of estimating the stream’s frequency moments.

Applying our nuanced understanding of the multi-player

EQUALITY problem, we establish very sharp contrasts be-

tween the deterministic and randomized space complexities

of several important problems for data streams. The prob-

lems we study are already known to admit very efficient

and accurate randomized estimations. For most of them, past

work shows that accurate deterministic estimations require

linear space. An important takeaway from our present work

is that even loose deterministic estimations require linear

space: randomization is even more crucial to these problems

than was previously realized.

Returning to the technical level of communication com-

plexity, our lower-bounding paradigm, which drives these

results, should be of independent interest. It sharply sepa-

rates the “blackboard” and “private-message” communica-

tion models, an issue previously highlighted by Gál and

Gopalan [2].

Contributions to Data Streaming: Take the case of

estimating F0, the number of distinct elements, in a stream of

elements from the universe [n] := {1, . . . ,n}. The randomized

algorithm of Kane et al. [3] makes one pass over the stream,

using O(ε−2+ logn) bits of space, and computes an estimate

that lies in [(1− ε)F0,(1+ ε)F0] with probability � 2
3 . In

contrast, Alon et al. [1] show that, for α = 1.1, a deter-

ministic estimator that returns a value in [α−1F0,αF0] using

O(1) passes must use Ω(n) bits of space. One consequence

of our results is that this Ω(n) space bound holds for every
constant α , no matter how large.

We go on to show that for every frequency moment Fk,

apart from k = 1, deterministic constant-pass constant-factor

estimation requires Ω(n) space. Stated in full (Section IV),

our results give detailed tradeoffs between the space usage,

the number of passes, and the quality of estimation for

computing the frequency moments and the empirical entropy

of a stream, and for estimating graph parameters (Section V)

such as the size of a maximum matching and the edge

connectivity, when the input is a stream of undirected edges.
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Contributions to Communication Complexity: Our re-

sults ultimately derive from the phenomenon that, in a

communication complexity setting, determining equality be-

tween strings is very hard deterministically but easy with

randomization. However, this alone does not lead to the

strong streaming lower bounds we are claiming: the standard

two-player EQUALITY (EQ) problem is insufficient. Instead,

we study multi-player EQ problems with certain strong

promises (Section III) that greatly separate YES-instances

from NO-instances. In one version, each of t players is given

an n-bit string: these strings are either all equal or all distinct.

Another variant gives them fixed-sized sets, either all equal

or with large “spread,” i.e., large union size.

To effectively lower-bound the complexities of these

promise versions of EQ, we need to consider discreet pro-
tocols, wherein players can only communicate via private

messages. This is in contrast to the better-studied blackboard
protocols, which allow players to write their messages on

a public blackboard. The latter model makes our promise-

EQ problems too easy. Gál and Gopalan [2] had previ-

ously shown a separation between the discreet and one-

way blackboard models, but for an artificial1 function and

with a bespoke proof for the discreet lower bound. Here,

we separate these models using what may be the natural

separating problem (q.v. the end of Section III). More

importantly, we introduce an abstract paradigm for studying

discreet protocols, based on a novel combinatorial concept

that we call a strong fooling set (Definition II.7) and a key

technical result that we call the “strong fooling set bound”

(Lemma II.8).

Other Contributions: In the process of designing reduc-

tions from our promise-EQUALITY problems to obtain our

data streaming lower bounds, we establish a sharp concentra-

tion result for power sums of a collection of independent bi-

nomial random variables. This result (Lemma IV.4), though

basic-looking and proved via elementary means, appears to

be novel. Indeed, other seemingly basic questions about

moments of the binomial distribution seem to have been

addressed only recently [4].

Other Related Work: The general topic of the commu-

nication complexity of EQUALITY problems, in their many

variants, has occupied researchers for decades, beginning

with Yao’s seminal work [5]. Some key results for 2-player

EQ address its amortized complexity [6], simultaneous-

message complexity [7], [8], [9], direct sum properties [10],

[11], round complexity [12], and information complex-

ity [13]. Multi-player versions of EQ, which are interesting

only in a number-in-hand setting, have been receiving atten-

tion recently, as has the discreet model of communication.

Liang and Vaidya [14] consider the basic version of dis-

1The Gál–Gopalan function is arguably artificial as a communication
problem. It was used in aid of space lower bounds for the (natural)
data-streaming problem of estimating the length of the longest increasing
subsequence of an input stream.

tinguishing all-equal inputs from not-all-equal ones. This is

easily shown to require nt/2 bits of deterministic commu-

nication in total; they show a nontrivial upper bound of cnt
for a specific constant c< 1. A combinatorial construction of

Alon, Moitra, and Sudakov [15] improves this to c= 1/2+ε .

Chattopadhyay, Radhakrishnan, and Rudra [16] consider an-

other (also non-promise) variant: ELEMENT-DISTINCTNESS,

where the players must distinguish all-distinct inputs from

not-all-distinct ones. They study the effect of the communi-

cation topology—who may send messages to whom—on the

complexities of this, and other, problems. Our lower bounds

in this work hold regardless of topology.
In the topology-restricted setting, the coordinator model

has attracted a lot of study [17], [18], [19]. Building on tech-

niques developed for this model, Woodruff and Zhang [20],

[21] gave near-optimal lower bounds for estimating stream

statistics and graph parameters in a randomized distributed

setting. Separately, they gave strong lower bounds for ran-

domized exact computation of such statistics under general

topology [22]. This complements our streaming results,

which concern deterministic weakly-approximate computa-

tion.
Our results on estimation of graph parameters contribute

to a fast-developing body of literature on streaming and

sketching algorithms for graphs. We discuss the relevant

background in Section V.

II. DEFINITIONS AND PRELIMINARIES:

COMMUNICATION COMPLEXITY

All our logarithms are to the base 2. The notation f : A�
B denotes a partial function f with domain A and codomain

B; formally this is a function f : A→ B∪{�}, where � /∈ B
is a special do-not-care value. We say that f is constant on

A′ ⊆ A if | f (A′)\{�}|� 1.
Let X1, . . . ,Xt be finite sets. Put X :=X1×·· ·×Xt . Con-

sider a communication game between players PLR1, . . . , PLRt
given by a partial function f : X � Z . An input for this

game is a tuple x=(x1, . . . ,xt). At the start of the game, PLRi
receives the input fragment xi ∈ Xi, for each i; the players

then communicate according to a deterministic protocol Π
that ends with an output Πo(x)∈Z . We say that Π computes

f if

∀x ∈X : f (x) �= � =⇒ Πo(x) = f (x) .

In the above context, a discreet protocol is a sequence

(s1,r1,M1), . . . ,(sL,rL,ML), where the jth tuple describes the

action during the jth step of the protocol: the sender, PLRs j ,

sends a private message to the receiver, PLRr j , using the

message function Mj : {0,1}∗ ×Xs j → {0,1}∗. Specifically,

if h j is the concatenation of the messages received by PLRs j

during the first j−1 steps, then Mj(h j,xs j) is the message

she sends in the jth step. We require that the range of each

Mj be a prefix code; this makes such concatenations self-

punctuating. Notice that our discreet protocols are “oblivi-

ous” in the sense that the communication pattern (including

414242



L, the number of steps) is input-independent. The final (Lth)

message is defined to be the output of the protocol, using

some canonical map from {0,1}∗ to Z; the “receiver” rL is

a dummy value.
Let Π be a discreet protocol formalized as above. For

an input x and a player PLRi, the local transcript Πi(x) is

defined to be concatenation (in order of occurrence) of the

messages received and sent by PLRi when Π is run on x.

The protocol Π is B-bounded if, for all i and x, |Πi(x)|� B,

i.e., each player sends and receives a total of at most B bits.

We define

cost(Π) := maxi,x |Πi(x)|= min{B : Π is B-bounded} ;

DD( f ) := min{cost(Π) : Π computes f} .
Another, better-studied, kind of protocol for such multi-

player communication games is a blackboard protocol. Here,

players communicate by writing messages on a blackboard

visible to all players. The communication history determines

which player will write the next bit on the blackboard, and

the bit written is a function of this history and the writer’s

input fragment. Let Πw
i (x) denote the concatenation of all

messages written by PLRi when a blackboard protocol Π
is run on an input x. We define cost(Π) := maxi,x |Πw

i (x)|,
costtot(Π) := maxx

(|Πw
1 (x)|+ · · ·+ |Πw

t (x)|
)
, and

BB( f ) := min{cost(Π) :blackboard protocol Π
computes f} ,

BBtot( f ) := min{costtot(Π) :blackboard protocol Π
computes f} .

Notice that discreet protocols can be thought of as special

cases of blackboard protocols: ones that are oblivious and

wherein each message is ignored by all players except

its receiver. This translates a B-bounded t-player discreet

protocol Π into a blackboard protocol Π′ with cost(Π′)� B
and costtot(Π′)� tB/2.

We recall the well-known concepts of rectangles and

fooling sets used in the analysis of deterministic two-player

protocols [23] and, by an easy extension [2], [24], to

deterministic t-player blackboard protocols. A (combinato-

rial) rectangle in X is a set Y1 × ·· · × Yt , where each

Yi ⊆ Xi. The span of a set F ⊆ X , denoted span(F), is

the minimal rectangle that includes F . Let Π be some t-
player blackboard protocol on input space X . The transcript
of Π on input x ∈ X is defined to be (Πw

1 (x), . . . ,Π
w
t (x)).

Two inputs that generate the same transcript are equivalent:
this relation partitions X into equivalence classes.

Lemma II.1 (Rectangle Property (folklore)). Each equiva-
lence class of Π is a rectangle in X . In particular, if F ⊆X
lies within an equivalence class, then so does span(F).
Consequently, if Π computes a partial function f , then f
is constant on span(F).

Let f : X � Z specify a communication game and let

F ⊆X . We say that F is a K-weak-fooling set for f if, for

all F ′ ⊆ F with |F ′| > K, f is nonconstant on span(F ′).
The standard notion of “fooling set” used in a number of

two-player communication complexity lower bounds would

be a 1-weak-fooling set under this terminology.

It follows, using Lemma II.1, that if f and F are as above,

and Π is a blackboard protocol that computes f , then no

subset of F of size > K can lie within an equivalence class

of Π. So Π must have at least |F |/K equivalence classes.

This gives us the following basic lower bounds, which (we

emphasize) we are stating for contrast with what is to follow.

Lemma II.2 (Weak fooling set bound). Suppose that
f : X � Z specifies a t-player communication game and
that f has a K-weak-fooling set F . Then BBtot( f ) �
log(|F |/K), and so, DD( f )� (2/t) log(|F |/K).

A. The Strong Fooling Set Bound for Discreet Protocols

Having set the stage, we now focus on discreet protocols.

We shall analyze such protocols by using more nuanced

notions of equivalence of inputs, and then strengthening the

above notion of weak fooling sets.

Let Π be a t-player discreet protocol on input space

X . Inputs x and y are i-equivalent if Πi(x) = Πi(y); they

are equivalent if they are i-equivalent for all i ∈ [t]. These

relations partition the input space X into the i-equivalence
classes and the equivalence classes of Π, respectively.

Clearly, Πo(x) = Πo(y) whenever x and y are equivalent.

Let G ⊆X be nonempty. A neighborhood within G is a

t-tuple N = (H1, . . . ,Ht) where each Hi ⊆ G and its core,

defined by core(N ) :=H1 ∩ ·· · ∩Ht , is nonempty. For an

input x = (x1, . . . ,xt), we put proji x := xi. We extend this

notation to sets, defining projiG := {proji x : x ∈ G}. We

define the width and the span of the neighborhood N as

follows:

wid(N ) := min{|H1|, . . . , |Ht |} ,
span(N ) := proj1H1×·· ·×projt Ht .

The definitions immediately imply that core(N ) ⊆
span(N )⊆X and that core(N )⊆ G.

We say that a protocol Π is smooth on N if, for each

i ∈ [t], Hi lies within an i-equivalence class of Π. This

notion allows us to generalize the rectangle property from

Lemma II.1.

Lemma II.3 (Generalized Rectangle Property). Let Π be a
discreet protocol on input space X . Let N be a neighbor-
hood within X such that Π is smooth on N . Then span(N )
lies within an equivalence class of Π. Consequently, if
Π computes a partial function f , then f is constant on
span(N ).

To see that the above is a generalization, consider the

neighborhood (G, . . . ,G), where G lies within an equiva-

lence class of some blackboard protocol.

The following helper lemma will help us prove the

generalized rectangle property.
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Lemma II.4. With respect to a protocol Π, suppose that
inputs x := (x1, . . . ,xt) and y := (y1, . . . ,yt) are i-equivalent,
for some i∈ [t]. Then x and x′ := (x1, . . . ,xi−1,yi,xi+1, . . . ,xt)
are equivalent.

Proof: Think of Π as a “virtual” two-player protocol

between PLRi and the rest of the players, combined into

a single entity. The local transcript Πi(x) is the transcript

of this virtual protocol on input x. Since Πi(x) = Πi(y),
Lemma II.1 (the usual rectangle property) applied to this

virtual protocol tells us that Πi(x) = Πi(x′).
Consider a switch of input from x to x′, and consider an

arbitrary j ∈ [t] with j �= i. Since Πi(x) = Πi(x′), the switch

affects neither the input fragment nor any messages received

by PLR j. Therefore Π j(x) = Π j(x′). We conclude that x and

x′ are equivalent.

Proof of Lemma II.3: Fix an input x := (x1, . . . ,xt) ∈
core(N ). We shall prove that every input in span(N ) is

equivalent to x. Let y = (y1, . . . ,yt) ∈ span(N ). Put

xi := (y1, . . . ,yi−1,xi, . . . ,xt) , for i ∈ [t +1] .

Since Π is smooth onN , for i∈ [t], the set {Πi(x′) : x′ ∈Hi}
is a singleton; let πi be its lone element.

We shall prove by induction on i that x and xi are

equivalent. This will imply that x1 = x and xt+1 = y are

equivalent, as required. The base case, i = 1, is trivial.

Since y ∈ span(N ), we have yi ∈ projiHi and there is

some z := (z1, . . . ,zi−1,yi,zi+1, . . . ,zt) ∈Hi. So Πi(z) = πi.

Also, x ∈ core(N ) ⊆ Hi, so Πi(x) = πi. Thus, z and x
are i-equivalent. Using Lemma II.4, we get that x and

(x1, . . . ,xi−1,yi,xi+1, . . . ,xt) =: x′ are equivalent (paste the

ith coordinate of z, which is yi, into that of x). By the

inductive hypothesis, x and xi are equivalent. So x′ and xi

are equivalent, and hence, i-equivalent. Using Lemma II.4

again, we get that xi and (y1, . . . ,yi,xi+1, . . . ,xt) = xi+1 are

equivalent. This completes the inductive step.

By a pigeonhole argument, a low-cost blackboard protocol

entails a large rectangle lying within an equivalence class

(a.k.a. “monochromatic”). We prove the following stronger

result for discreet protocols.

Lemma II.5. Let Π be a B-bounded t-player discreet
protocol on input space X . Let G ⊆X . Then there exists a
neighborhood N within G such that Π is smooth on N and
wid(N )� |G|/(t2B).

Proof: We use the probabilistic method. We begin with

an observation, readily proved by counting.

Observation II.6. Suppose the finite set S is partitioned into
L blocks and s∈R S is picked uniformly at random. For every
real A > 0, Pr[s lies in a block of size < |S|/(AL)]< 1/A.

For each i∈ [t], the i-equivalence classes of Π partition X ,

and hence G, into at most 2B blocks. Pick x∈R G uniformly

at random. Put �x�i := {y∈G : y is i-equivalent to x}. Then

Nx := (�x�1, . . . ,�x�t) is a neighborhood within G (its core

is nonempty because it contains x) on which Π is smooth.

By the above observation and a union bound, we have

Pr

[
wid(Nx)�

|G|
t2B

]
= 1−Pr

[
∃ i :

∣∣�x�i
∣∣< |G|

t2B

]

� 1−
t

∑
i=1

Pr

[∣∣�x�i
∣∣< |G|

t2B

]

> 1−
t

∑
i=1

1

t
= 0 .

We now strengthen our earlier notion of weak fooling sets

and prove our main technical lemma, a stronger communi-

cation lower bound in terms of these “strong” fooling sets.

Definition II.7. Let f : X � Z specify a communication

game and let F ⊆X . We say that F is a K-fooling set for

f if, for every neighborhood N within F , wid(N )> K =⇒
f is nonconstant onspan(N ).

Lemma II.8 (Strong fooling set bound). Suppose that
f : X � Z specifies a t-player communication game and
that f has a K-fooling set F . Then

DD( f )� log
|F |
tK

.

Proof: Let Π be a B-bounded discreet protocol for f .

By Lemma II.5, there exists a neighborhood N within F
with wid(N ) � |F |/(t2B) such that Π is smooth on N .

By Lemma II.3, f is constant on span(N ). In view of

Definition II.7, we must have wid(N ) � K, which implies

|F |/(t2B)� K.

The lemma follows by rearranging the latter inequality.

III. THREE LOWER BOUNDS FOR MULTI-PLAYER

EQUALITY

We shall now use our strong fooling set bound to analyze

two promise versions of the EQUALITY problem, as alluded

to in Section I. Each is given by a partial function of the

form f : X t � {0,1}, where X = {0,1}n. In the Equal-vs-

Distinct problem, the goal is to distinguish the case when

all players hold the same n-bit string from the case when

they hold distinct strings. This is formalized by the following

partial function:

EQ-DISTn,t(x1, . . . ,xt) =

⎧⎪⎨
⎪⎩

1 , if x1 = · · ·= xt ,

0 , if xi �= x j

whenever 1� i < j � t .

In the Equal-vs-Spread problem, each player receives a


βn�-subset of [n] and they must distinguish the case when

all of these subsets are equal from the case when these

subsets are sufficiently spread out. Formally, we interpret X

434444



as the power set 2[n] and use the following partial function:

EQ-SPRD
β ,γ
n,t (x1, . . . ,xt) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 , if for i ∈ [t], |xi|= 
βn�
and x1 = · · ·= xt ,

0 , if for i ∈ [t], |xi|= 
βn�
and |x1∪·· ·∪ xt |� γn.

This problem is nontrivial when the parameters satisfy 0 <
β < γ � 1 and γn > 
βn�.

We now give strong, essentially optimal, communication

lower bounds for discreet deterministic protocols that solve

these problems. In each case, when the problem’s input

space is X t and x ∈ X is an input fragment, we denote the

input (x,x, . . . ,x) ∈ X t by x⊗t .
The following observation will aid some of our estima-

tions.

Observation III.1. For all integral values 0 � k � � � n,(
n
k

)/(
�

k

)
=

n
�
· n−1

�−1
· · · · · n− k+1

�− k+1
�

(n
�

)k
.

Theorem III.2 (Lower bound for Equal-vs-Distinct).
DD(EQ-DISTn,t)� n−2log t.

Proof: Put f := EQ-DISTn,t . We claim that the set

F := {x⊗t : x∈ {0,1}n} is a (t−1)-fooling set for f . Indeed,

let N = (H1, . . . ,Ht) be a neighborhood within F such that

wid(N )> t−1. Since f (x) = 1 for all x∈F , our earlier ob-

servations that ∅ �= core(N ) ⊆F and core(N ) ⊆ span(N )
imply that f takes the value 1 at some point in span(N ). On

the other hand, consider the point y=(y1, . . . ,yt) constructed

by the following procedure:

• Having chosen y1, . . . ,yi−1, where 1� i� t, choose an

arbitrary fragment yi such that

y⊗t
i ∈Hi \ {y⊗t

1 , . . . ,y⊗t
i−1}. This choice is possible be-

cause |Hi|� wid(N )> t−1� i−1.

This ensures that y ∈ span(N ) and f (y) = 0. Therefore f is

nonconstant on span(N ), proving the claim.

Applying Lemma II.8, we get DD( f ) � log
|F |

t(t−1)
�

log
2n

t2
= n−2log t.

Theorem III.3 (Lower bound for Equal-vs-Spread). For all
values 0 < β < γ � 1 and sufficiently large n, if t � γn, then
DD(EQ-SPRD

β ,γ
n,t )� (β log(1/γ))n− log t.

Proof: Put f := EQ-SPRD
β ,γ
n,t and w = 
βn�. We claim

that the set F := {x⊗t : x ∈ {0,1}n, |x| = w} is a
(�γn�

w

)
-

fooling set for f . Indeed, let N = (H1, . . . ,Ht) be a

neighborhood within F such that wid(N ) >
(�γn�

w

)
. Since

f (x) = 1 for all x ∈F , as in the proof of Theorem III.2, f
takes the value 1 at some point in span(N ). On the other

hand, consider the point y = (y1, . . . ,yt) constructed by the

following procedure:

• Having chosen y1, . . . ,yi−1, where 1� i� t, let Ui−1 :=
y1∪ ·· ·∪ yi−1. If |Ui−1| � γn, then choose an arbitrary

fragment yi such that y⊗t
i ∈Hi.

• Otherwise, let Bi := {x ∈ {0,1}n : x ⊆ Ui−1, |x| = w}.
Choose an arbitrary fragment yi /∈Bi such that y⊗t

i ∈Hi.

This choice is possible because

|Bi|=
(|Ui−1|

w

)
�

(�γn�
w

)
< wid(N )� |Hi| .

Then y ∈ span(N ). Notice that |Ui| > |Ui−1| whenever the

second case occurs while choosing yi. We make t � γn
choices in total, which ensures that |Ut |� γn, implying that

f (y) = 0. Therefore f is nonconstant on span(N ), proving

the claim.

Applying Lemma II.8 and Observation III.1,

DD( f )� log
|F |

t
(
�γn�

w

)
= log

( n
w

)
t
(
�γn�

w

)

� log

(
n
�γn�

)w

t

� w log
1

γ
− log t .

Theorem III.3 gives a lower bound for “large” t. In

particular, if the spread threshold γn is to be Ω(n), then

we have to take t = Ω(n) in order to apply the theorem. We

now give an alternate lower bound for EQ-SPRD that holds

in a different parameter regime, where t could be “small.”

Theorem III.4. For all values t � 2, β > 0, γ = β t(1−
eβ t) > β , and sufficiently large integral n, we have
DD(EQ-SPRD

β ,γ
n,t )� 2eβ 2n−2log t−Θ(1).

We prove this by reducing from EQ-DIST, using a coding-

style argument. Define an (r,s,n)-packing to be set system

C ⊆ 2[n] such that (i) for all A ∈ C, |A| = s, and (ii) for all

A,B∈ C with A �= B, |A∩B|� r. We shall need the following

bound, which can be inferred from Proposition 2.1 in Erdös,

Frankl, and Füredi [25].

Lemma III.5. For all values 0� r � s� n, there exists an
(r,s,n)-packing C with |C|� (n

r

)/(s
r

)2 .

Proof of Theorem III.4: Let C be a maximum-

sized (r,s,n)-packing, with s = 
βn� and r = 2
eβ s�. By

Lemma III.5, Observation III.1, and the estimation
(s

r

)
�

(es/r)r, we have |C|� (n
r

)/(s
r

)2 �
( n

s

)r ( r
es

)r
=

(
nr
es2

)r
.

By our choice of parameters,

r log
nr
es2
� r log

2eβ sn
es2

= r log
2βn

βn�

= r
(

1−Θ
(

1

n

))
= 2eβ 2n−Θ(1) .
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Therefore, we can find an injection from {0,1}N to C
provided N � 2eβ 2n−Θ(1). We choose the largest possible

N satisfying this bound and fix such an injection.

To solve EQ-DISTN,t , the players encode their respec-

tive input fragments using this injection and then solve

EQ-SPRD
β ,γ
n,t on the encoded input. Recall that γ = β t(1−

eβ t). We now argue that this reduction is correct. A 1-input

for EQ-DISTN,t is, rather obviously, mapped to a 1-input

for EQ-SPRD
β ,γ
n,t . Suppose a 0-input for EQ-DISTN,t maps

to (x1, . . . ,xt). Then x1, . . . ,xt are distinct sets in C. By the

packing property,

|x1∪·· ·∪ xt |� ts− (t
2

)
r

= ts− t(t−1)
eβ s�
� ts− t2eβ s

= 
βn�t(1− eβ t)

� γn ,

where the second inequality holds once n (and hence, s) is

sufficiently large. So EQ-SPRD
β ,γ
n,t (x1, . . . ,xt) = 0.

Theorem III.2 gives DD(EQ-SPRD
β ,γ
n,t ) �

DD(EQ-DISTN,t)� N−2log t � 2eβ 2n−2log t−Θ(1).
We conclude this section with some commentary on the

lower bounds that we have just shown.

Optimality: Suppose that t = poly(n). The trivial pro-

tocol, where PLR1 sends his input to PLR2, shows that

DD(EQ-DISTn,t) � n + 1. This shows that Theorem III.2

is tight up to lower order terms. Another trivial protocol,

where players efficiently encode 
βn�-subsets of [n] and

each sends his input to the “next” player, shows that

DD(EQ-SPRD
β ,γ
n,t ) � 2log

( n

βn�

)
� 2H(β )n, for β < 1/2.

Thus, Theorem III.3 and Theorem III.4 are both asymp-

totically tight in their dependence on n. Moreover, when

γ/β = O(1), Theorem III.3 is also tight in its dependence

on β .

Separation Between Models: Our lower bounds also

demonstrate a separation between one-way blackboard pro-

tocols and discreet protocols, an issue highlighted by Gál

and Gopalan [2]. Consider the following blackboard protocol

for EQ-DISTn,t . Partition [n] into t− 1 blocks, each of size

at most 
n/(t−1)�. For each j ∈ [t − 1], PLR j announces

his input fragment restricted to the jth block, provided all

blocks from 1 to j− 1 of his input fragment agree with

previously announced blocks (if not, PLR j ends the protocol

with output 0). If this protocol reaches PLRt , he knows the

entirety of PLRt−1’s input fragment. He outputs 1 if his own

fragment agrees with this, and outputs 0 otherwise. Based on

the promise, this is a correct protocol for EQ-DISTn,t . This

protocol has max-cost O(n/t), which is O(1) when t =Θ(n).
Yet, DD(EQ-DISTn,Θ(n)) = n−Θ(logn).

IV. STREAM STATISTICS

In the data stream model, an input consists of m elements

of [n] arriving in the form of a stream σ that may be read in

one or more passes by a streaming algorithm. Formally, σ is

a sequence (a1,a2, . . . ,am), where each a j ∈ [n]. The stream

σ defines a frequency vector f = f(σ) = ( f1, . . . , fn), where

fi = |{ j ∈ [m] : a j = i}| for each i ∈ [n]. Stream statistics

problems involve computing some function of f, e.g., fre-

quency moments and empirical entropy, which we consider

in this section. The kth frequency moment and the empirical

entropy are defined, respectively, as Fk(f) := ∑i∈[n] f k
i and

ENT(f) = m−1 ∑i∈[n] fi log(m/ fi). Note that F1(f) = m and

F0(f) is the number of distinct elements in σ .

Our focus is on deterministic streaming algorithms. An s-

space p-pass streaming algorithm is one that uses s= s(m,n)
bits of space to process its input, which it reads in p =
p(m,n) passes. Consider such an algorithm A. We denote its

output, on input σ , by A(σ). By splitting σ into t = t(m,n)
sub-streams, we obtain a communication problem for which

A naturally gives rise to a 2ps-bounded discreet protocol,

for every t. For a real quantity α = α(m,n)� 1, we say that

A is an α-estimator for a quantity Q(σ) if

∃κ,λ � 1 (κλ �α and ∀σ (κ−1Q(σ)�A(σ)� λQ(σ)) ) .

The main results in this section are lower bounds that trade

off α against the product ps, for algorithms estimating

frequency moments and empirical entropy. For Fk (k �= 1),

when α = O(1), we obtain the strongest possible bound:

ps = Ω(n). We can also give simple estimators (upper

bounds) for Fk and ENT (Section IV-C); for moments of

“lower” order (0� k < 1) these simple estimators show that

our lower bounds are tight even in their dependence on α .

Throughout this section, asymptotic expressions may hide

constants depending on k. For readability, we ignore floors

and ceilings. This does not affect our (asymptotic) bounds.

A. Warm-Up: Distinct Elements and Basic Lower Bounds
for Other Moments

We shall first obtain lower bounds for estimating Fk (k �=
1) by reduction from EQ-SPRD

β ,γ
n,t , for certain values of

t,β ,γ and invoking Theorems III.3 and III.4 to lower-bound

DD(EQ-SPRD
β ,γ
n,t ). The bound we obtain is tight for F0 (the

distinct elements problem). Our bounds here are also tight

for all k when α = O(1). In the next section, we use a more

complicated analysis to obtain a tighter tradeoff between ps
and α .

Theorem IV.1. For each k ∈ [0,1), every determinis-
tic s-space p-pass α-estimator for Fk satisfies ps =
Ω(max{n1−k/α,n/α2/(1−k)}). In particular, at k = 0 we
have ps = Ω(n/α).

Proof: Let x = (x1, . . . ,xt) be an input for EQ-SPRD
β ,γ
n,t .

For each j ∈ [t], PLR j turns his input fragment x j ∈ {0,1}n

into the stream of indices j where x j = 1. The concatenations

of the t such streams has frequency vector f = x1 + · · ·+ xt .
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Note that

EQ-SPRD
β ,γ
n,t (x) = 1 =⇒ Fk(f) = β tkn ; (1)

EQ-SPRD
β ,γ
n,t (x) = 0 =⇒ F0(f)� γn . (2)

Also, Fk(f)�F0(f). Thus, an α-estimator for Fk can separate

these two cases provided γ/(β tk)> α . If such an estimator

uses s bits of space and p passes then, as argued at the start

of Section IV, we have 2ps� DD(EQ-SPRD
β ,γ
n,t ). It remains

to invoke a suitable communication lower bound.

Set γ = 1/e, t = γn, and β = γ/(αtk)− 1/n. This en-

sures that γ/(β tk) > α and optimizes the lower bound

from Theorem III.3, giving ps � 1
2 ((n/e)1−k(loge)/α −

logn) = Ω(n1−k/α).
We could instead apply Theorem III.4 to estimate

DD(EQ-SPRD
β ,γ
n,t ). We set t = (2α)1/(1−k) and β < 1/(2et);

the theorem then requires γ = β t(1 − eβ t). Note that

γ/(β tk)> α , as required. Applying the theorem gives ps�
eβ 2n− log t−Θ(1) = Ω(n/t2) = Ω(n/α2/(1−k)).

For frequency moments Fk of “higher” order (k > 1), we

can follow a similar proof template, but it takes more work

to analyze the effect of the “spread” case in the Equal-vs-

Spread problem. In particular, we use the following technical

lemma whose proof (given in the full version of this paper)

is based on convexity and Karamata’s inequality.

Lemma IV.2. Let g : R→ R be a nondecreasing convex
function with g(0) = 0 and let f ∈ {0,1, . . . , t}n where t � 2.
Suppose that F1(f) = m, F0(f)� r, and rt � m. Then

n

∑
i=1

g( fi)� �g(t)+(r− �)g(1) ,

where �= 
(m− r)/(t−1)�.
Theorem IV.3. For each k > 1, every deterministic s-space
p-pass α-estimator for Fk has ps = Ω(n/α2k/(k−1)).

Proof sketch: We use Theorem III.4, setting t =
(2α)1/(k−1) and β < 1/(3tk). When EQ-SPRD

β ,γ
n,t (x) = 1, by

eq. (1), Fk(f) = β tkn. When EQ-SPRD
β ,γ
n,t (x) = 0, eq. (2) tells

us that F0(f) is “large,” at least γn. Meanwhile, F1(f) = β tn.

By Lemma IV.2, these facts imply that Fk(f)< 2β tn, which

shows a gap of (β tkn)/(2β tn) = α .

B. Stronger Lower Bounds for Frequency Moments and
Empirical Entropy

We shall now improve the lower bounds in Theorems IV.1

and IV.3, obtaining a tighter dependence on α . From a data-

streaming perspective, the two new lower bounds for Fk
estimation given in this section—one for k > 1 and one for

k < 1—are the main theorems of this paper.

The improvements ultimately stem from sufficiently sharp

concentration bounds for power sums of binomial random

variables. Let Y1, . . . ,Yn be independent random variables,

each with binomial distribution B(t,q). Let Z = Z(n, t,q,k)=
Y k

1 + · · ·+Y k
n be the kth power sum of this collection. In the

full version of this paper [26], we prove the following upper

tail bound for Z.

Lemma IV.4. For each k > 1, there exist b,c > 0 such that
the following holds. For each q ∈ (0,1/(2e2)), there exist
integers n0 and t0 such that, for all n� n0 and t � t0,

Pr[Z > bqktkn]� exp

(
− cqktn
(log log(1/q))2

)
.

This tail bound does not follow from Chernoff-Hoeffding

and Azuma-Hoeffding inequalities [27]; those give a much

weaker upper bound of the form exp(−Θ(n)). Indeed, even

a bound of exp(−Θ(tn)) would not be strong enough for

our purposes. We need to understand how the coefficient in

front of tn depends on q, and this seems to require a delicate

partitioning of the large deviation event.

Our improved lower bounds for Fk estimation are obtained

by reducing from EQ-DISTN,t , using what we shall call

an Fk-separating mapping, defined as follows. A function

R : {0,1}N → {0,1}n is said to be Fk-separating with pa-

rameters (t,α) if

min{Fk(t ·R(x)) : x ∈ {0,1}N}
max

{
Fk

(
∑i∈[t] R(xi)

)
: EQ-DISTN,t(x1, . . . ,xt) = 0

} > α ,

when k > 1 , (3)

and

min
{

Fk
(
∑i∈[t] R(xi)

)
: EQ-DISTN,t(x1, . . . ,xt) = 0

}
max{Fk(t ·R(x)) : x ∈ {0,1}N} > α ,

when k < 1 . (4)

Suppose that such a mapping exists and that we have

an s-space p-pass α-estimator for Fk over the universe

[n]. Then, following the template from Section IV-A, a

team of t players can solve EQ-DISTN,t by mapping their

inputs to {0,1}n via R and converting the mapped inputs

to streams over [n]. Applying Theorem III.2, we obtain

2ps� DD(EQ-DISTN,t) = N−2log t.

Theorem IV.5. For each k > 1 and α � 1, every deter-
ministic s-space p-pass α-estimator for Fk satisfies ps =
Ω(n/(αk/(k−1)(log logα)2)).

Proof: We follow the outline above. It remains to prove

the existence of an Fk-separating mapping for a large enough

N = N(n, t,α) and a not-too-large t.
We construct the mapping R at random, as follows. Gen-

erate a random 2N×n matrix whose entries are independent

Bernoulli random variables, each equal to 1 with probability

q. We shall fix q later. Then, for each x∈{0,1}N , define R(x)
to be the xth row of this matrix. We claim that with positive

probability both of the following events occur:

E1 :=
{

min{Fk(t ·R(x)) : x ∈ {0,1}N}� qtkn/2
}
,

E2 :=
{

max{Fk(R(x1)+ · · ·+R(xt)) :

EQ-DISTN,t(x1, . . . ,xt) = 0}� bqktkn
}
.
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Noting that E|R(x)|= qn for each x ∈ {0,1}N , a standard

Chernoff bound followed by a union bound gives Pr[¬E1] =
Pr

[∃x ∈ {0,1}N : |R(x)|< qn/2
]
� 2N exp(−qn/8). On the

other hand, for each choice of distinct x1, . . . ,xt ∈ {0,1}N ,

the quantity Fk(R(x1)+ · · ·+R(xt)) is the kth power sum of

n independent binomial random variables. By Lemma IV.4

and a union bound,

Pr[¬E2]�
(

2N

t

)
exp

(
− cqktn
(log log(1/q))2

)

� 2Nt exp

(
− cqktn
(log log(1/q))2

)
,

for all large enough n and t. Therefore, setting N =
c′qkn/(log log(1/q))2 for an appropriate constant c′ ensures

Pr[¬E1∨¬E2]< 1.

Thus, there exists a specific R at which both E1 and E2

occur. For this R, the left-hand side of eq. (3) is at least

(qtkn/2)/(bqktkn) = 1/(2bqk−1). We set q = O(1/α1/(k−1))
so that this ratio exceeds α . Then eq. (3) is satisfied and R
is Fk-separating.

Taking t = n (say) gives us the bound ps = Ω(N− log t) =
Ω(n/(αk/(k−1)(log logα)2)).

Analogous proofs, given in the full version of this pa-

per [26] handle the estimation of frequency moments of

“lower” order and empirical entropy.

Theorem IV.6. For each k ∈ [0,1) and α � 1, α-estimating
Fk requires ps = Ω(n/α1/(1−k)).

Theorem IV.7. For each ε > 0 and α ∈ [1,o(logn)], α-
estimating ENT(f) requires ps = Ω(n1/((1+ε)α)).

C. Some Simple Upper Bounds

On the algorithmic side, we can achieve a tradeoff be-

tween space and approximation for Fk, in one deterministic

pass. The algorithms are straightforward: the main idea is

to coarsen the universe [n] by bucketing (details appear in

the full version of this paper [26]). Additionally, we have

the following theorem giving an upper bound for estimating

ENT(f).

Theorem IV.8. There is a deterministic O(logm)-space 2-
pass (1 + logn)-estimator for the empirical entropy of a
stream.

Theorem IV.9. For integers p � 1, and reals k � 0 and
α � 1, there is a family of deterministic p-pass α-estimators
for Fk, with the following guarantees on their space usage,
s.

• When k = 0, we have ps = 
n/α�+O(logn).
• When 0 < k < 1, we have ps = O(n logm/α1/(1−k)).
• When k = 1, at p = 1 we have s� 
logm�, trivially.
• When k > 1, we have ps = O(n logm/α1/(k−1)).

V. GRAPH STREAMS

A number of important data stream problems are graph-

theoretic. The input graph Gn = (V,E), where |V | = n, is

described as a stream of edges (the edge-arrival model, our

default). It is usually interesting, and nontrivial, to achieve

space Õ(n) for most standard graph computations [28]. We

focus on two particular graph problems: maximum matching

size estimation (MMSE), described next, and a variant of

edge connectivity, described in Section V-A.
The MMSE problem asks for an estimate of the number

of edges in a maximum cardinality matching (MCM). For

this problem, it is also natural to consider the vertex-arrival

model, where the input is a bipartite graph Gn = (V1,V2,E),
with |V2| = n and |V1| = O(n), and the stream lists each

vertex u ∈ V1 with all its neighbors in V2. This potentially

makes an algorithm’s task easier, so lower bounds proven

in this model are stronger. We prove lower bounds in the

vertex-arrival model for s-space p-pass α-estimators for

MMSE; our bounds trade off α against the product ps.
Previous Work: The MCM problem asks to output (the

edges of) a large matching. Outputting a maximal matching

gives a 2-approximation for MCM in Õ(n) space; nothing

better using o(n2) space is known. Kapralov [29] showed

that a one-pass randomized MCM algorithm achieving ap-

proximation better than e/(e− 1) must use n1+Ω(1/ log logn)

space, even in the vertex-arrival model. On the other hand, a

(1+ε)-approximation is possible using O(npolylogn) space

and Oε(1) passes, for every constant ε [28], [30]. Turning

to MMSE, Kapralov et al. [31] gave a O(polylogn)-space

O(polylogn)-estimator for randomly-ordered edge streams.

Esfandiari et al. [32] gave o(n)-space estimators for graphs

with bounded arboricity. They also give Ω(n) space lower

bound for deterministic one-pass (3/2− ε)-estimators for

MMSE; this bound should be compared with that in The-

orem V.2. For constant α , no o(n) space α-estimator is

known.
Dobzinski, Nisan, and Oren [33] consider the bipartite

MCM problem in the simultaneous message (SM) model;

each player gets the neighbor set for a vertex in V1 and

they send a message of size at most � to the coordinator

who has to output a large matching. They show that for

deterministic α-approximation protocols, �= Ω(n/α). Our

communication lower-bound techniques for discreet proto-

cols also extend to SM protocols with essentially no change.

So the lower bound obtained in Theorem V.2 below also

applies to SM protocols and discreet protocols for MMSE

defined appropriately as a communication problem. Thus it

generalizes the deterministic lower bound by Dobzinski et

al. from a star communication topology (for SM protocols)

to arbitrary topology. This, in particular, yields data stream-

ing lower bounds.
Our Results: First, we define a variant of the

Equal-vs-Spread problem that we call Equal-vs-Distinct-

Representatives. There are t = �γn� players. Each player
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receives a 
βn�-subset of [n] (where β < γ) and they must

distinguish the case when all of these subsets are equal from

the case when each player can pick a representative element

from her subset so that these representatives are distinct.

Formally, we use the following partial function:

EQ-DR
β
n,t(x1, . . . ,xt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 , if for i ∈ [t], |xi|= 
βn�
and x1 = · · ·= xt ,

0 , if for i ∈ [t], |xi|= 
βn�
and ∃g : [t]→⋃

i∈[t] xi

such that g is injective

and g(i) ∈ xi for i ∈ [t] .

It is not hard to see that the proof of Theorem III.3 applies

to an analysis of this problem as well, after the substitution

γ = t/n, due to the way in which y∈ span(N ) is constructed

in that proof. This leads to the following lower bound.

Theorem V.1. For all values 0 < β < 1, ε > 0, and
sufficiently large n, if (β + ε)n � t < n, then we have
DD(EQ-DR

β
n,t)� (β log(n/t))n− log t.

Though the following theorem is stated for streaming

algorithms for MMSE, it is a special case of a more general

communication result as noted earlier.

Theorem V.2. For a deterministic s-space p-pass α-
estimator for MMSE, ps� ((n/eα)(loge)− logn)/2.

Proof: We reduce from EQ-DR
β
n,t setting t and β later.

The theorem can be proved in the vertex arrival model

with V1 = {u1, . . . ,ut} and V2 = [n]. Note that the lower

bounds for vertex-arrival model also apply for the edge-

arrival model. For i ∈ [t], PLRi adds edges {{ui, j} : j ∈ xi}.
Call the resulting graph Gn. When EQ-DR

β
n,t(x1, . . . ,xt) = 1,

an MCM in Gn has size βn. When EQ-DR
β
n,t(x1, . . . ,xt) =

0, an MCM in Gn has size t, because the definition of

EQ-DR
β
n,t guarantees existence of an injective mapping g

from [t] to [n]. So, if β and t are such that t/βn > α , then a

deterministic s-space p-pass α-estimator for MMSE can be

used to give a 2ps-bounded discreet protocol EQ-DR
β
n,t . To

get the desired bound, we set t = n/e and β = 1/(αe)−1/n,

and use Theorem V.1.

A. Edge Connectivity

We divert from multi party to two party communication

complexity in this section. The dynamic graph connectivity

problem XCONN is as follows. There are two players, Alice

and Bob, who get inputs EA and EB which are sets of edges

on the vertex set [n]. For two sets S and T , denote by S⊕T
the set (S ∪ T ) \ (S ∩ T ). Alice and Bob communicate to

determine whether the graph EA⊕EB is connected.

We reduce EQn2/4 to XCONN, where EQ is the well-

known two-party equality problem. Alice adds a complete

graph on [n/2], Bob adds a complete graph on [n] \ [n/2],
and they encode the inputs for EQn2/4 within the edges in

[n/2]×([n]\ [n/2]). In case of equality, XCONN will evaluate

to false, otherwise XCONN will evaluate to true; hence,

communication complexity of XCONN is at least n2/4.

There is a randomized protocol for XCONN. Alice can

send Bob the sketch for connectivity given by Ahn, Guha,

and McGregor [34] of size O(n log3 n). Bob can solve

XCONN using this sketch. This separates the randomized and

deterministic communication complexity of XCONN.

By using error correcting codes (ECC), we can show

that even the following version of XCONN with a strong

promise is hard. Alice and Bob get inputs EA and EB with the

promise that the graph (EA∪EB)\(EA∩EB) is disconnected

or (n/2−1)-connected, i.e., at least n/2−1 edges need to

be removed to disconnect it. We reduce from EQN2 where

N = Ω(n). We use a binary ECC of size 2N2
, block length

n2/4, and distance n/2−1. By Shannon’s construction, we

can construct such an ECC with N = Ω(n). Then we use

the same construction as in the reduction from EQn2/4 to

XCONN to get EA and EB. In case of equality, EA ⊕ EB
will be disconnected (no edge from [n/2] to [n]\ [n/2]). In

case of inequality, there will be at least n/2−1 edges from

[n/2] to [n] \ [n/2]. Since EA ⊕ EB has a complete graph

within [n/2] and within [n] \ [n/2], it is at least (n/2− 1)-
connected. Hence, the communication complexity of strong-

promise version of XCONN is at least N2 = Ω(n2).
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