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Abstract—Prior work has established that all problems in
NP admit classical zero-knowledge proof systems, and under
reasonable hardness assumptions for quantum computations,
these proof systems can be made secure against quantum
attacks. We prove a result representing a further quantum
generalization of this fact, which is that every problem in
the complexity class QMA has a quantum zero-knowledge
proof system. More specifically, assuming the existence of an
unconditionally binding and quantum computationally con-
cealing commitment scheme, we prove that every problem in
the complexity class QMA has a quantum interactive proof
system that is zero-knowledge with respect to efficient quan-
tum computations. Our QMA proof system is sound against
arbitrary quantum provers, but only requires an honest prover
to perform polynomial-time quantum computations, provided
that it holds a quantum witness for a given instance of the
QMA problem under consideration.

I. INTRODUCTION

Zero-knowledge proof systems, first introduced by Gold-

wasser, Micali and Rackoff [1], are interactive protocols that

allow a prover to convince a verifier of the validity of a state-

ment while revealing no additional information beyond the

statement’s validity. Although this notion may initially have

seemed paradoxical, several problems that are not known to

be efficiently computable, such as the Quadratic Residuosity

and Graph Isomorphism problems (and their complements),

were shown to admit zero-knowledge proof systems [1],

[2]. Under reasonable intractability assumptions, Goldreich,

Micali and Wigderson [2] gave a zero-knowledge protocol

for the Graph 3-Coloring problem and, because of its NP-

completeness, for all NP problems. This line of work was

further extended in [3], which showed that all problems in

IP have zero-knowledge proof systems.

Since the invention of this concept, zero-knowledge proof

systems have become a cornerstone of modern theoretical

cryptography. In addition to the conceptual innovation of for-

mulating a complexity-theoretic notion of knowledge, zero-

knowledge proof systems are essential building blocks in a

host of cryptographic constructions, such as the design of

secure two-party and multi-party computation protocols [4].

The extensive works on zero-knowledge largely reside in a

classical world, but the development of quantum information

science has urged another look at the landscape of zero-

knowledge proof systems in a quantum world. Namely,

both honest users and adversaries may potentially possess

the capability to exchange and process quantum informa-

tion. There are, of course, zero-knowledge protocols that

immediately become insecure in the presence of quantum

attacks due to efficient quantum algorithms that break the

intractability assumptions upon which these protocols rely.

For instance, Shor’s quantum algorithms for factoring and

computing discrete logarithms [5] invalidate the use of these

problems, generally conjectured to be classically hard, as a

basis for the security of zero-knowledge protocols against

quantum attacks. Even with computational assumptions

against quantum adversaries, however, it is still highly non-

trivial to establish the security of classical zero-knowledge

proof systems in the presence of malicious quantum verifiers

because of a technical reason that we now briefly explain.

The zero-knowledge property of a proof system is con-

cerned with the computations that may be realized through

an interaction between a (possibly malicious) verifier and the

prover. That is, the malicious verifier may take an arbitrary

input (usually called the auxiliary input to distinguish it from

the input string to the proof system under consideration),

interact with the prover in any way it sees fit, and produce

an output that is representative of what it has learned through

the interaction. Roughly speaking, the prover is said to be

zero-knowledge on a particular set of input strings if any

computation of the sort just described can be efficiently

approximated by a simulator operating entirely on its own—
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meaning that it does not interact with the prover, and in the

case of an NP problem it does not possess a witness for the

fixed problem instance being considered. The proof system

is then said to be zero-knowledge when this zero-knowledge

property holds for the set of all yes-instances of the problem

under consideration.

Classically speaking, the zero-knowledge property is most

typically established through the rewinding technique. In

essence, the simulator can store a copy of its auxiliary

input, and it can make guesses and store intermediate states

representing a hypothetical prover/verifier interaction—and

if it makes a bad guess or otherwise experiences bad

luck when simulating this hypothetical interaction, it simply

reverts to an earlier stage (or possibly back to the beginning)

of the simulation and tries again. Indeed, it is generally the

simulator’s freedom to disregard the temporal restrictions of

the actual prover/verifier interaction in a way such as this

that makes it possible to succeed.

However, rewinding a quantum simulation is more prob-

lematic; the no-cloning theorem [6] forbids one from copy-

ing quantum information, making it impossible to store

copies of intermediate states, and measurements generally

have an irreversible effect [7] that may partially destroy

quantum information. Such difficulties were first observed

by van de Graaf [8] and further studied in [9], [10].

Later, a quantum rewinding technique was found [11] to

establish that several interactive proof systems, including

the Goldreich-Micali-Wigderson Graph 3-Coloring proof

system [2], remain zero-knowledge against malicious quan-

tum verifiers (under appropriate quantum intractability as-

sumptions in some cases). It follows that all NP problems

have zero-knowledge proof systems even against quantum

malicious verifiers, provided that a quantum analogue of the

intractability assumption required by the Goldreich-Micali-

Wigderson Graph 3-Coloring proof system are in place.

This work studies the quantum analogue of NP, known

as QMA, in the context of zero-knowledge. These are

problems with a succinct quantum witness satisfying similar

completeness and soundness conditions to NP (or its ran-

domized variant MA). Quantum witnesses and verifications

are conjectured to be more powerful than their classical

counterparts: there are problems that admit short quantum

witnesses, whereas there is no known method for verification

using a polynomial-sized classical witness. In other words,

NP ⊆ QMA holds trivially, and the containment is typically

conjectured to be proper. The question we address in this pa-

per is: Does every problem in QMA have a zero-knowledge
quantum interactive proof system? That is, can one always

devise a proof system that reveals nothing about a quantum

witness beyond its validity?

We answer this question positively by constructing a

quantum interactive proof system, for any problem in QMA,

that is zero-knowledge against polynomial-time quantum

adversaries, under a reasonable intractability assumption.

Theorem 1. Assuming the existence of an unconditionally
binding and quantum computationally concealing bit com-
mitment scheme, every problem in QMA has a quantum
computational zero-knowledge proof system.

A few of the desirable features of our proof system are as

follows:

1. Our proof system has a simple structure, similar to the

classical Goldreich-Micali-Wigderson Graph 3-Coloring

proof system. It can be viewed as a three-phase pro-

cess: the prover commits to a quantum witness, the

verifier makes a random challenge, and finally the prover

responds to the challenge by partial opening of the

committed information that suffices to certify the validity.

2. All communications in our proof system are classical

except for the first commitment message, and the verifier

can measure the quantum message immediately upon its

arrival (which has a strong technological appeal).

3. Our protocol is based on mild computational assump-

tions. The sort of bit commitment scheme it requires

can be implemented, for instance, under the existence

of injective one-way functions that are hard to invert in

quantum polynomial time.

4. Our protocol is prover-efficient. It is sound against gen-

eral quantum provers, but given a valid quantum witness,

an honest prover only needs to perform efficient quantum

computations. As has already been suggested, aside from

the preparation of the first quantum message, all of the

remaining computations performed by the honest prover

are classical polynomial-time computations.

As a key ingredient of our zero-knowledge proof system,

we introduce a new variant of the well-known k-local Hamil-
tonian problem. The k-local Hamiltonian problem asks if

the minimum eigenvalue (or ground state energy, in physics

parlance) of an n-qubit Hamiltonian H =
∑

j Hj , where

each Hj is k-local (i.e., acts trivially on all but k of the n
qubits), is below a particular threshold value. This problem

was introduced and proved to be QMA-complete (for the

case k = 5) by Kitaev [12]. We show that each Hj can be

restricted to be realized by a Clifford operation, followed by

a standard basis measurement, and the QMA-completeness

is preserved. (As is explained in more detail in the full ver-

sion of this paper, Clifford operations are a discrete subset of

unitary quantum operations whose algebraic properties make

them both useful and easy to analyze, albeit not universal for

quantum computation on their own.) For an arbitrary prob-

lem A ∈ QMA, we can reduce an instance of A efficiently

to an instance of the k-local Clifford Hamiltonian problem,

and a valid witness for A can also be transformed into a

witness for the corresponding k-local Clifford Hamiltonian

problem instance by an efficient quantum procedure. As a

result, A has a zero-knowledge proof system by composing

this reduction with our zero-knowledge proof system for the
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k-local Clifford Hamiltonian problem.

Our proof system also employs a new encoding scheme

for quantum states, which we construct by extending the

trap scheme proposed in [13]. While our new scheme can

be seen as a quantum authentication scheme (cf. [14]–[16]),

it in addition allows performing arbitrary constant-qubit

Clifford circuits and measuring in the computational basis

directly on authenticated data without the need for auxiliary

states. The only previously known scheme supporting this

feature requires high-dimensional quantum systems (i.e.,

qudits rather than qubits) [15], which makes it inconvenient

in our setting where all quantum operations are on qubits.

II. OVERVIEW AND COMPARISONS WITH PRIOR WORK

We will now give an overview of our protocol and the

techniques upon which it relies, and discuss its relationships

to existing work. As this is only an extended abstract, and not

a full paper, the formal analysis has been omitted—readers

interested in this analysis are referred to the full paper [17].

A. Our protocol and techniques

A natural approach to constructing zero-knowledge proof

systems for QMA is to consider a quantum analogue of

the Goldreich-Micali-Wigderson proof system for Graph

3-Coloring (which we will hereafter refer to as the GMW

3-Coloring proof system). Let us focus in particular on the

local Hamiltonian problem, and consider a proof system

in which the prover holds a quantum witness state for

an instance of this problem, commits to this witness, and

receives the challenge from the verifier (which, let us say, is

a random term of the local Hamiltonian). The prover might

then open the commitments of the set of qubits on which the

term acts non-trivially so that the verifier can measure the

local energy for this term and accept or reject accordingly.

There is a major difficulty when one attempts to carry

out such an approach. The zero-knowledge property of

the GMW 3-Coloring proof system depends crucially on a

structural property of the problem: the honest prover is free

to randomize the three colors used in its coloring, and when

the commitments to the colors of two neighboring vertices

are revealed, the verifier will see just a uniform mixture over

all pairs of different colors. This uniformity of the coloring

marginals is important in achieving the zero-knowledge

property of the proof system. Unlike the case of 3-Coloring,

however, none of the known QMA-complete problems under

Karp reductions has such desirable properties. For example,

if we use local Hamiltonian problems directly in a GMW-

type proof system, of the sort suggested above, information

about the reduced state of the quantum witness will be

leaked to the verifier, possibly violating the zero-knowledge

requirement.

To overcome this difficulty, we employ several ideas that

enable the prover to “partially” open the commitments, re-

vealing only the fact that the committed state lives in certain

subspaces, and nothing further. Our first technique simplifies

the verification circuit for QMA-complete problems through

the introduction of the local Clifford-Hamiltonian problem

that was already described. Somewhat more specifically, our

formulation of this problem requires every Hamiltonian term

to take the form C∗|0k〉〈0k|C for some Clifford operation C.

Because the local Clifford-Hamiltonian problem remains

QMA-complete, it implies a random Clifford verification

procedure for problems in QMA: intuitively, the verification

of a quantum witness has been simplified to a Clifford

measurement followed by a classical verification.

The Clifford verification procedure works in harmony

with the encryption of quantum data via the quantum one-

time pad [18] and other derived hybrid schemes that are

used by our proof system. This has the important effect

of transforming statements about quantum states into those

about the classical keys of the quantum one-time pad, which

naturally leads to our second main idea: the use of zero-

knowledge proofs for NP against quantum attacks to sim-

plify the construction of zero-knowledge proofs for QMA.

In our protocol, the verifier measures the encrypted quantum

data and asks the prover to prove, using a zero-knowledge

protocol for NP, that the decryption of this classical data is

consistent with the verifier’s accepting condition.

In fact, if the verifier measures the quantum data accord-

ing to the specifications of the protocol, the combination

of the Clifford verification and the use of zero-knowledge

proofs for NP suffices. A problem arises, however, if the

verifier does not perform the honest measurement. Our third

technique, inspired by work on quantum authentication [13],

[15], [16], [19], employs a new scheme for encoding

quantum states. Roughly speaking, if the prover encodes a

witness state under our encoding scheme, then the verifier

is essentially forced to perform the measurement honestly—

any attempt to fake a “logically different” measurement

result will succeed with negligible probability. In our proof

system, we adapt the trap scheme proposed in [13] so

that we can perform any constant-sized Clifford operations

on authenticated quantum data followed by computational

basis measurements, benefiting along the way from ideas

concerning quantum computation on authenticated quantum

data.

The resulting zero-knowledge proof system for QMA has

a similar overall structure to the GMW 3-Coloring protocol:

the prover encodes the quantum witness state using a quan-

tum authentication scheme, and sends the encoded quantum

data together with a commitment to the secret keys of the

authentication to the verifier. The verifier randomly samples

a term C∗|0k〉〈0k|C in the local Clifford-Hamiltonian prob-

lem, applies the operation C transversally on the encoded

quantum data and measures all qubits corresponding to the

k qubits of the selected term in the computational basis,

and sends the measurement outcomes to the prover. The

prover and verifier then invoke a quantum-secure zero-
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knowledge proof for the NP statement that the commitment

correctly encodes an authentication key and, under this key,

the verifier’s measurement outcomes do not decode to 0k.

B. Comparisons to related work

There has been other work on quantum complexity and

theoretical cryptography, some of which is discussed below,

that allows one to conclude statements having some similar-

ity to our results. We will argue, however, that with respect to

the problem of devising zero-knowledge quantum interactive

proof systems for QMA, our main result is stronger in

almost all respects. In addition, we believe that our proof

system is appealing both because it is conceptually simple

and represents a natural extension of well-known classical

methods.

1. Zero-knowledge proof systems for all of IP. Hallgren,

Kolla, Sen, and Zhang [20] proved that classical zero-

knowledge proof systems for IP [3] can be made se-

cure against malicious quantum verifiers under a certain

technical condition. It appears that this condition holds

assuming the existence of a quantum computationally

hiding commitment scheme. Because QMA is contained

in IP, this would imply a classical zero-knowledge pro-

tocol for QMA. However, this generic protocol would

require a computationally unbounded prover to carry

out the honest protocol, and it is unlikely that one can

reduce the round complexity without causing unexpected

consequences in complexity theory [21]–[23].

2. Secure two-party computations. Another approach to

constructing zero-knowledge proofs for QMA is to apply

the general tool of secure two-party quantum compu-

tation [15], [19], [24]. In particular, we may imagine

two parties, a prover and a verifier, jointly evaluating the

verification circuit of a QMA problem, with the prover

holding a quantum witness as his/her private input. In

principle, one can design a two-party computation pro-

tocol so that the verifier learns the validity of the state-

ment but nothing more about the prover’s private input.

While we believe that a careful analysis could make this

approach work, it comes at a steep cost. First, we need to

make significantly stronger computational assumptions,

as secure quantum two-party computation relies on (at

least) secure computations of classical functions against

quantum adversaries. The best-known quantum-secure

protocols for classical two-party computation assume

quantum-secure dense public-key encryption [25] or sim-

ilar primitives [26], in contrast to the existence of a

quantum computationally hiding commitment scheme.

(Roughly speaking, this distinction is analogous to “cryp-

tomania” versus “minicrypt,” according to Impagliazzo’s

five-world paradigm [27].) Secondly, the protocol ob-

tained this way is only an argument system. That is, the

protocol is only sound against computationally bounded

dishonest provers. Moreover, the generic quantum two-

party computation protocol evaluates the verification

circuit gate by gate, and in particular interactions are

unavoidable for some (non-Clifford) gates. This causes

the round complexity to grow in proportion to the size of

the verification circuit. In addition, the communications

are inherently quantum, which makes the protocol much

more demanding from a technological viewpoint.

On the positive side, through this approach, it is possible

to achieve negligible soundness error using just one copy

of witness state. In contrast, our proof system directly

inherits the soundness error of the most natural and direct

verification for the local Clifford-Hamiltonian problem

(i.e., randomly select a Hamiltonian term and measure).

If one reduces an arbitrary QMA-verification procedure

to an instance of this problem, the resulting soundness

guarantee could be significantly worse.

3. Zero-knowledge proofs for Density Matrix Consistency. It

was pointed out by Liu [28] that the Density Matrix Con-

sistency problem, which asks if there exists a global state

of n qubits that is consistent with a collection of k-qubit

density matrix marginals, should admit a simple zero-

knowledge proof system following the GMW 3-Coloring

approach. This fact was one of the inspirations for our

work. While it approaches our main result, it does not

necessarily admit a zero-knowledge proof system for all

problems in QMA, as the Density Matrix Consistency

problem is only known to be hard for QMA with respect

to Cook reductions.

4. Other results on Clifford verifications for QMA. Clifford

verification with classical post-processing of QMA was

considered in [29] using so-called magic states as an

ancillary resource. Our construction is arguably simpler,

uses only constant-size Clifford operations, and most

importantly does not require any resource states. This

helps to avoid checking the correctness of resource states

in the final zero-knowledge protocol. One byproduct of

our Clifford-Hamiltonian reduction proof is an alterna-

tive proof of the single-qubit measurement verification

for QMA proposed by [30].

III. THE LOCAL CLIFFORD-HAMILTONIAN PROBLEM

The k-local Hamiltonian problem (k-LH) is a well-known

example of a complete promise problem for QMA, provided

that certain assumptions are in place regarding the gap

between the ground state energy (i.e., the smallest eigen-

value) of input Hamiltonians for yes- and no-inputs [12].

We introduce a restricted version of the local Hamiltonian

in which each Hamiltonian term Hj must be given by

a rank 1 projection operator of the form C∗j |0k〉〈0k|Cj ,

for some choice of a k-qubit Clifford operation Cj . For

brevity, we will refer to any such operator as a k-local
Clifford-Hamiltonian projection. The precise statement of
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our problem variant is as follows.

The k-local Clifford-Hamiltonian problem (k-LCH)

Input: A collection H1, . . . , Hm of k-local Clifford-

Hamiltonian projections, along with positive in-

tegers p and q expressed in unary notation (i.e.,

as strings 1p and 1q) and satisfying 2p > q.

Yes: It holds that 〈ρ,H1 + · · ·+Hm〉 ≤ 2−p for some

choice of an n-qubit state ρ.

No: It holds that 〈ρ,H1 + · · ·+Hm〉 ≥ 1/q for every

n-qubit state ρ.

Theorem 2. The 5-local Clifford-Hamiltonian problem is
QMA-complete with respect to Karp reductions. Moreover,
for any promise problem A = (Ayes, Ano) ∈ QMA and
a polynomially bounded function p, there exists a Karp
reduction f from A to 5-LCH having the form

f(x) =
〈
H1, . . . , Hm, 1p(|x|), 1q

〉
(1)

for every x ∈ Ayes ∪Ano.

The proof is omitted in this extended abstract, and can be

found in the complete version of the paper.

Remark 1. If one is given a witness to a given QMA

problem A, it is possible to efficiently compute a witness

to the corresponding k-local Hamiltonian problem instance

through Kitaev’s reduction. Our reduction also inherits this

property.

Remark 2. States of the form C|0k〉, for a Clifford operation

C, are stabilizer states of k qubits. Theorem 2 therefore

implies that there exists a QMA verification procedure in

which the verifier randomly chooses a k-qubit stabilizer state

and checks whether the quantum witness state is orthogonal

to it.

IV. DESCRIPTION OF THE PROOF SYSTEM

In this section we describe our zero-knowledge proof sys-

tem for the local Clifford-Hamiltonian problem. The analysis

of the proof system is discussed in the section following

this one. As suggested previously, our proof system makes

use of a bit commitment scheme, and in the interest of

simplicity in explaining and analyzing the proof system we

shall assume that this scheme is non-interactive. One could,

however, replace this non-interactive commitment scheme by

a different scheme (such as Naor’s scheme with a 1-round

commitment phase [31]).

Throughout this section it is to be assumed that an

instance of the k-local Clifford-Hamiltonian problem has

been selected. The instance describes Clifford-Hamiltonian

projections H1, . . . , Hm, each given by Hj = C∗j |0k〉〈0k|Cj

for k-qubit Clifford operations C1, . . . , Cm, along with a

specification of which of the n qubits these projections act

upon. The proof system does not refer to the parameters p

and q in the description of the k-local Clifford Hamiltonian

problem, as these parameters are only relevant to the per-

formance of the proof system and not its implementation. It

must be assumed, however, that the completeness parameter

2−p is a negligible function of the entire problem instance

size in order for the proof system to be zero-knowledge.

A. Prover’s witness encoding

Suppose X = (X1, . . . ,Xn) is an n-tuple of single-qubit

registers. These qubits are assumed to initially be in the

prover’s possession, and store an n-qubit quantum state ρ
representing a possible witness for the instance of the k-

LCH problem under consideration.

The first step of the proof system requires the prover

to encode the state of X, using a scheme that consists of

four steps. Throughout the description of these steps it is to

be assumed that N is a polynomially bounded function of

the input size and is an even positive integer power of 7.

In effect, N acts as a security parameter (for the zero-

knowledge property of the proof system), and we take it

to be an even power of 7 so that it may be viewed as

a number of qubits that could arise from a concatenated

Steane code allowing for a transversal application of Clifford

operations (as is described in greater detail in the full version

of the paper [17]). In particular, through an appropriate

choice of N , one may guarantee that this code has any

desired polynomial lower-bound for the minimum non-zero

Hamming weight of its underlying classical code.

1. For each i = 1, . . . , n, the qubit Xi is encoded into N
qubits by means of the concatenated Steane code. This

results in the N -tuples
(
Y1
1, . . . ,Y

1
N

)
, . . . ,

(
Yn
1 , . . . ,Y

n
N

)
. (2)

2. To each of the N -tuples in (2), the prover concatenates

an additional N trap qubits, with each trap qubit being

initialized to one of the single qubit pure states |0〉,
|+〉 = (|0〉+|1〉)/√2, or |�〉 = (|0〉−i|1〉)/√2, selected

independently and uniformly at random. This results in

a collection of qubit tuples

Y =
((

Y1
1, . . . ,Y

1
2N

)
, . . . ,

(
Yn
1 , . . . ,Y

n
2N

))
. (3)

The prover stores the string t = t1 · · · tn, for t1, . . . , tn ∈
{0,+,�}N representing the randomly chosen states of

the trap qubits.

3. A random permutation π ∈ S2N is selected, and the

qubits in each of the 2N -tuples (3) are permuted ac-

cording to π. (Note that it is a single permutation π
that is selected and applied to all of the 2N -tuples

simultaneously.)

4. The quantum one-time pad is applied independently to

each qubit in (3) (after they are permuted in step 3).

That is, for ai, bi ∈ {0, 1}2N chosen independently and

uniformly at random, the unitary transformation XaiZbi

343535



is applied to (Yi
1, . . . ,Y

i
2N ), and the strings ai and bi are

stored by the prover, for each i = 1, . . . , n.

The randomness required by these encoding steps may

be described by a tuple (t, π, a, b), where t is the string

representing the states of the trap qubits described in step 2,

π ∈ S2N is the permutation applied in step 3, and a =
a1 · · · an and b = b1 · · · bn are binary strings representing

the Pauli operators applied in the one-time pad in step 4.

After performing the above encoding steps, the prover sends

the resulting qubit tuples (3) along with a commitment

z = commit((π, a, b), s) (4)

to the tuple
(
π, a, b

)
, to the verifier. Here we assume that s

is a random string chosen by the prover that allows for this

commitment. (It is not necessary for the prover to commit to

the selection of the trap qubit states indicated by t, although

it would not affect the properties of the proof system if it

were modified so that the prover also committed to the trap

qubit state selections.)

B. Verifier’s random challenge

Upon receiving the prover’s encoded witness and commit-

ment, the verifier issues a challenge: for a randomly selected

index j ∈ {1, . . . ,m}, the verifier will check that the j-th

Hamiltonian term

Hj = C∗j |0k〉〈0k|Cj (5)

is not violated. Generally speaking, the verifier’s actions in

issuing this challenge are as follows: for a certain collection

of qubits, the verifier applies the Clifford operation Cj

transversally to those qubits, performs a measurement with

respect to the standard basis, sends the outcomes to the

prover, and then expects the prover to demonstrate that the

obtained outcomes are valid (in the sense to be described

later).

The randomly selected Hamiltonian term is to be deter-

mined by a binary string r, of a fixed length 
logm�, that

should be viewed as being chosen uniformly at random. (In

a moment we will discuss the random choice of r, which

will be given by the output of a coin flipping protocol that

happens to be uniform for honest participants.) It is not

important exactly how the binary strings of length 
logm�
are mapped to the indices {1, . . . ,m}, so long as every index

is represented by at least one string—so that for a uniformly

chosen string r, each Hamiltonian term j is selected with a

nonnegligible probability. We will write Hr and Cr in place

of Hj and Cj , and refer to the Hamiltonian term determined

by r, when it is convenient to do this.

It would be natural to allow the verifier to randomly

determine which Hamiltonian term is to be tested—but,

as suggested above, we will assume that the challenge is

determined through a coin flipping protocol rather than

leaving the choice to the verifier. More specifically, it

should be assumed that the random choice of the string r
that determines which challenge is issued is the result of

independent iterations of Blum’s coin-flipping protocol [32]

(i.e., the honest prover commits to a random yi ∈ {0, 1},
the honest verifier selects zi ∈ {0, 1} at random, the prover

reveals yi, and the two participants agree that the i-th random

bit of r is ri = yi ⊕ zi). This guarantees (assuming the

security of the commitment protocol) that the choices are

truly random, and greatly simplifies the analysis of the

zero-knowledge property of the proof system. Damgård and

Lunemann [33] proved that Blum’s coin-flipping protocol

is quantum-secure, assuming a quantum-secure commitment

scheme. The same analysis actually implies that we can

run the basic Blum protocol in parallel to simultaneously

generate logarithmically many coins, which we use in our

proof system. The use of such a subroutine might not

actually be necessary for the security of the proof system,

but we leave the investigation of whether it is necessary to

future work.

Now, let (i1, . . . , ik) denote the indices of the qubits

upon which the Hamiltonian term determined by the random

string r acts nontrivially. The verifier applies the Clifford

operation Cr independently to each of the k-qubit tuples
(
Yi1
1 , . . . ,Yik

1

)
, . . . ,

(
Yi1
2N , . . . ,Yik

2N

)
, (6)

which is equivalent to saying that Cr is applied transversally

to the tuples
(
Yi1
1 , . . . ,Yi1

2N

)
, . . . ,

(
Yik
1 , . . . ,Yik

2N

)
(7)

that encode the qubits on which the Hamiltonian term Hr

acts nontrivially. The qubits (7) are then measured with

respect to the standard basis, and the results are sent to the

prover. We will let ui1 , . . . , uik denote the binary strings rep-

resenting the verifier’s standard basis measurement outcomes

(or claimed outcomes) corresponding to the measurements

of the tuples (7).

C. Prover’s check and response

Upon receiving the verifier’s claimed measurement out-

comes corresponding to the randomly selected Hamiltonian

term, the prover first checks to see that these outcomes could

indeed have come from the measurements specified above,

and then tries to convince the verifier that these measurement

outcomes are consistent with the selected term.

In more detail, suppose that the Hamiltonian term deter-

mined by r has been challenged. As above, we assume that

this term acts nontrivially on the k qubits indexed by the

k-tuple (i1, . . . , ik), and we will write

u = ui1 · · ·uik ∈ {0, 1}2kN (8)

to denote the verifier’s claimed standard basis measurement

outcomes.

To define the prover’s check for this string, it will be

helpful to first define a predicate Rr, which is a function
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of t, π, and u, and essentially represents the prover’s check

after it has made an adjustment to the verifier’s response

to account for the one-time pad. For each i ∈ {i1, . . . , ik},
define strings yi, zi ∈ {0, 1}N so that π(yizi) = ui. The

predicate Rr takes the value 1 if and only if these two

conditions are met:

1. For each i ∈ {i1, . . . , ik}, the string yi is a valid code

word, with respect to the Hamming codes upon which

concatenated Steane codes are based, with at least one

of these code words corresponding to a nonzero binary

value.

2. No trap qubit measurement outcomes contradict their

settings:
〈
zi1 · · · zik

∣∣C⊗N
r

∣∣ ti1 · · · tik
〉 
= 0.

Here we have written |ti1 · · · tik〉 to denote the pure state of

kN qubits obtained by tensoring the states |0〉, |+〉, and |�〉
in this most natural way.

Next, we will define a predicate Qr, which is a function of

the variables t, π, a, b, and u, where t, π, and u are as above

and a, b ∈ {0, 1}2nN refer to the strings used for the one-

time pad. The predicate Qr represents the prover’s actual

check, in the case that the Hamiltonian term determined by

r has been selected, including an adjustment to account for

the one-time pad. Let c1, . . . , cn, d1, . . . , dn ∈ {0, 1}2N be

the unique strings for which the equation

C⊗2N
r

(
Xa1Zb1 ⊗ · · · ⊗XanZbn

)
= α

(
Xc1Zd1 ⊗ · · · ⊗XcnZdn

)
C⊗2N

r

(9)

holds for some choice of α ∈ {1, i,−1,−i}. The Clifford

operation Cr acts trivially on those qubits indexed by strings

outside of the set {i1, . . . , ik}, so it must be the case that

ci = ai and di = bi for i 
∈ {i1, . . . , ik}, but for those

indices i ∈ {i1, . . . , ik} it may be the case that ci 
= ai
and di 
= bi. We will also write c = c1 · · · cn and d =
d1 · · · dn for the sake of convenience. Given a description of

the Clifford operation Cr it is possible to efficiently compute

c and d from a and b. Having defined c and d, we may now

express the predicate Qr as follows:

Qr(t, π, u, a, b) = Rr

(
t, π, u⊕ ci1 · · · cik

)
. (10)

In essence, the predicate Qr checks the validity of the

verifier’s claimed measurement results by first adjusting for

the one-time pad, then referring to Rr.

The prover evaluates the predicate Qr, and aborts the

proof system if the predicate evaluates to 0 (as this is

indicative of a dishonest verifier). Otherwise, the prover

aims to convince the verifier that the measurement outcomes

u are consistent with the prover’s encoding, and also that

they are not in violation of the Hamiltonian term Hr.

It does this specifically by engaging in a classical zero-

knowledge proof system for the following NP statement:

there exists a random string s and an encoding key (t, π, a, b)
such that (i) commit((π, a, b), s) matches the prover’s initial

commitment z, and (ii) Qr(t, π, u, a, b) = 1.

V. ANALYSIS OF THE PROOF SYSTEM

As was stated previously, the analysis of the protocol

described in the previous section is not included in this

extended abstract, but can be found in the full version of

the paper [17]. We will, however, discuss some aspects of

the analysis in intuitive terms.

First, it is evident that the proof system described in the

previous section is complete. For a given instance of the

local Clifford Hamiltonian problem, if the prover and verifier

both behave honestly, as suggested in the description of the

proof system, the verifier will accept with precisely the same

probability that would be obtained by randomly selecting a

Hamiltonian term, measuring the original n-qubit witness

state against the corresponding projection, and accepting or

rejecting accordingly. For a positive problem instance, this

acceptance probability is at least 1− 2−p (for every choice

of a random string r).

The soundness of the proof system requires more work,

and makes use of specific properties of concatenated Steane

codes. One of the main sources of difficulty is that the prover

is, of course, not required to follow the encoding scheme

described in the protocol. Intuitively speaking, our sound-

ness proof demonstrates that, for an arbitrary state sent by a

malicious prover in its message, one can essentially decode

from that state (with respect to a highly simplified variant

of the encoding scheme, after peeling off the quantum one-

time pad and discarding the trap qubits) a state that passes

the Hamiltonian term test with at least the same probability

as the verifier’s acceptance probability in the proof system.

Because this probability must be bounded away from 1 on

average for any no-instance of the problem, we obtain a

soundness guarantee for the proof system.

The most involved part of the analysis concerns the zero-

knowledge property of the proof system. Figure 1 illustrates

an arbitrary cheating verifier interacting with the honest

prover. Observe that a cheating verifier may take a quantum

register as input, store quantum information in between its

actions, and output a quantum register. The goal of the proof

is to demonstrate that, for any such cheating verifier, there

exists an efficient simulator that implements a channel from

Z0 to Z3 that is computationally indistinguishable from the

channel implemented by the cheating verifier and prover

interaction. In particular, the simulator does not have access

to the witness state ρ. This is done through multiple steps.

Step 1: simulating the coin flipping protocol. By the

results of [33], there must exist an efficient simulator S1

for the interaction of V ′1 with P1. To be more precise, for

S1 being given an input of the same form as V ′1 , along with

a uniformly chosen random string r of the length required

by our proof system, the resulting action is quantum com-

putationally indistinguishable from V ′1 interacting with P1.

Step 2: simulating the classical zero-knowledge proto-
col. The interaction between a cheating verifier V ′3 and
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ρ P0

P1

P3

V ′1 V ′2 V ′3

Z0

X

(Y, z)

((t, π, a, b), s)

r

Z1

u

Z2 Z3

Figure 1. The interaction between the prover and an arbitrary verifier. The prover’s quantum witness ρ is encoded into Y together with the
encoding key (t, π, a, b) by the prover’s action P0. The string z represents the prover’s commitment to (π, a, b) and the string s represents
random bits used by the prover to implement this commitment. The string r represents the random bits generated by the coin flipping
protocol, which is depicted within the dotted rectangle on the left. The string u represents the verifier’s standard basis measurements for
a subset of the qubits of Y determined by the challenge corresponding to the random string r. The classical zero-knowledge protocol is
depicted within the dotted rectangle on the right. A potentially dishonest verifier takes an auxiliary quantum register Z0 as input, may store
quantum information (represented by registers Z1 and Z2), and outputs quantum information stored in register Z3.

the prover P3 in the classical zero-knowledge protocol is

replaced by an efficient simulation.

Step 3: eliminating the commitment. Using the assumption

that the commitment scheme is quantum computationally

concealing, it may be argued that the entire process is

computationally indistinguishable from one in which the

commitment is made to a fixed choice of a tuple (π0, a0, b0),
independent of the prover’s encoding key. One may then

consider the commitment to this fixed tuple (π0, a0, b0),
together with the simulator S1 and the cheating verifier

action V ′2 , to form a single, efficiently implementable action

V ′. The interaction between this new action V ′ and the

prover’s encoding, the random string generator, and the

predicate Q, is then considered.

Step 4: simulating an attack on the encoding scheme.
The final step is to consider a simulation of an arbitrary

efficiently implementable action V ′ of the form described

in the previous step (where, of course, the simulator is not

provided with a valid witness ρ). Such an action can, in fact,

be efficiently simulated with statistical accuracy, not just

in a computationally indistinguishable sense. This analysis

makes use of specific properties of the encoding scheme and

its connection to Clifford operations.

VI. CONCLUSION

We have described a zero-knowledge proof system for

any problem in QMA, assuming the existence of a quan-

tum computationally concealing and unconditionally binding

commitment scheme. Such a commitment scheme can be ob-

tained assuming quantum-secure one-way permutations [34]

(or injections more generally) or a quantum-secure pseudo-

random generator [31] that could potentially be based on

one-way functions that are hard to invert for any quantum

polynomial time algorithm [35]–[37]. We conclude with a

few open questions and directions for future work.

1. Our proof system inherits the soundness error of the

most straightforward verification procedure for the local

Clifford-Hamiltonian problem, which is to randomly

select a Hamiltonian term and perform a measurement

corresponding to it. When an arbitrary QMA problem is

reduced to the local Hamiltonian problem, the resulting

soundness error may potentially be large (polynomi-

ally bounded away from 1). Can one obtain a zero-

knowledge proof system for any QMA problem with

small soundness error while remaining constant round

(and maintaining the other features of our proof system)?

We note that if a prover has polynomially many copies of

a valid quantum witness, then one can essentially repeat

our proof system in parallel to get a constant round zero-

knowledge proof system having small soundness error

for any QMA problem, assuming there is a constant-

round zero-knowledge proofs for NP with negligibly

small soundness error against quantum adversaries. How-

ever, existing constant-round zero-knowledge proofs for

NP (e.g., [38] and [39]) involve sophisticated rewinding

arguments, and it is unclear if they remain secure against

quantum malicious verifiers.

2. Are there natural formalizations of proofs of quantum
knowledge? Roughly speaking, one would expect such

a notion to require that whenever a prover is able to

prove the validity of a statement, one could construct a

knowledge extractor that can extract a quantum witness

given access to such a prover. It seems plausible that our

proof system could be adapted to such a notion, although

we have not investigated this notion in depth.
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3. We have considered an encoding scheme for quantum

states that ensures the secrecy of the state and allows

for the transversal application of constant-size Clifford

operations and measurement in the computational basis.

It is an interesting open question to extend our encoding

scheme, or to design a new one, so that it can support

transversally applying a larger family of quantum oper-

ations.

4. Finally, we make one further remark on an abstract

view of our proof system. Classically speaking, one can

imagine a “commit-and-open” primitive where a sender

commits to a message m, and later opens sufficient

information so that a receiver can test a property P(·)
on m, and nothing more. For example, P can be an

NP-relation R(x, ·) that checks if message m is a valid

witness. This can be implemented easily by a standard

commitment scheme and during the opening phase, the

sender and receiver run a zero-knowledge proof of

R(x,m) = 1 instead of the standard opening. Our

proof system, which combines a commitment scheme

and classical zero-knowledge proofs for NP, can be

viewed as a quantum analogue. Namely, we commit to a

witness state and open just enough information to verify

that some reduced density of the witness state falls into

a specific subspace. We can only deal with properties of

a very special form, and it is an interesting direction for

future work to generalize and find applications of this

sort of primitive.
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