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Abstract—We construct two-message non-malleable com-
mitments with respect to opening in the standard model,
assuming only one-to-one one-way functions. Our protocol
consists of two unidirectional messages by the commit-
ter (with no message from the receiver), and is secure
against all polynomial-time adversaries in the standard
synchronous setting.

Pass (TCC 2013) proved that any commitment scheme
with non-malleability with respect to commitment, using
only 2 rounds of communication, cannot be proved se-
cure via a black-box reduction to any “standard” in-
tractability assumption. We extend this by showing a
similar impossibility result for commitments with non-
malleability with respect to opening, another standard
notion of non-malleability for commitments, for any 2-
message challenge-response protocol, as well.

However, somewhat surprisingly, we show that this
barrier breaks down in the setting of two unidirectional
messages by the committer (with no message from the
receiver), for non-malleability with respect to opening.

◦ Our protocol makes only black-box use of any non-
interactive statistically binding commitment scheme.
Such a scheme can be based on any one-to-one one-
way function.

◦ Our techniques depart significantly from the
commit-challenge-response structure followed by
nearly all prior works on non-malleable protocols in
the standard model. Our methods are combinatorial
in nature.

◦ Our protocol resolves the round complexity of com-
mitments with non-malleability with respect to open-
ing via natural (non-embedding) black-box security
reductions. We show that completely non-interactive
non-malleable commitments w.r.t. opening cannot be
proved secure via most natural black-box reductions.
This result extends to also rule out bi-directional two-
message non-malleable commitments w.r.t. opening in
the synchronous or asynchronous setting.

◦ Our protocol, together with our impossibility result,
also resolves the round complexity of block-wise non-
malleable codes (Chandran et al) w.r.t. natural black-
box reductions.

I. INTRODUCTION

Man-in-the-middle (MIM) adversaries participate in

two or more instantiations of a protocol, and try to use

information obtained in one execution to breach security

in the other protocol execution. Non-malleable commit-

ments were introduced in the seminal work of Dolev,

Dwork and Naor [1] as countermeasures against such at-

tacks. They have proved to be useful and versatile build-

ing blocks in the construction of non-malleable crypto-

graphic protocols such as coin-flipping, non-malleable

proof systems (zero-knowledge, witness indistinguish-

able and even multi-prover interactive proofs), and multi-

party computation protocols.

A commitment scheme is a two-party protocol be-

tween a committer and a receiver. The committer has

a message m as input, while the receiver is inputless.

The two parties engage in a probabilistic interactive

commitment protocol, and we denote the receiver’s view

of this protocol by com(m). Then, later, the committer

sends to the receiver an opening message, that allows the

receiver to confirm that the message m was really the

message committed to during the commitment protocol.

In a statistically binding commitment, the receiver’s view

com(m) should be binding in the sense that with high

probability, there should not exist an opening message

that would convince the receiver that the committer had

used any string m′ �= m. In short, we say that the com-

mitment cannot be later opened to any message m′ �= m.

A commitment should also be computationally hiding;

that is, for any pair of messages (m,m′) the distributions

com(m) and com(m′) should be computationally indis-

tinguishable. Informally speaking, such a scheme is said

to be non-malleable if for every message m, no MIM
adversary, intercepting a commitment protocol com(m)
and modifying every message sent during this protocol

arbitrarily, is able to efficiently generate a commitment

com(m̃) that can be opened to a message m̃ related to

the original message m.

The original construction of non-malleable commit-

ments of [1] was conceptually simple and efficient,

because of its instantiability with highly efficient crypto-

graphic sub-protocols. However, it required logarithmi-

cally many rounds. Subsequently, Barak [2], Pass [3],

and Pass and Rosen [4] constructed constant-round
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protocols relying on highly inefficient non-black box

techniques. Wee [5] gave a constant-round black-box

construction of non-malleable commitments assuming

the sub-exponential hardness of one-way functions.

Goyal [6] and Lin and Pass [7] constructed constant-

round non-malleable commitments under the minimum

assumption that one-way functions exist. Goyal, Lee,

Ostrovsky and Visconti [8] converted the protocol of

Goyal into a fully black-box protocol based on any one-

way function.

The last five years have seen significant progress

in understanding the necessity for interaction in non-

malleable commitments, in terms of the concrete number

of messages required. In particular, Goyal, Richelson,

Rosen and Vald [9] constructed four round non-malleable

commitments in the standard model based on the exis-

tence of one-way functions. Finally, Goyal, Pandey and

Richelson [10] constructed three round non-malleable

commitments via a black-box use of injective one-way

functions, by exploiting properties of non-malleable

codes.

A. The Three Round Barrier

Pass [11] showed an impossibility for non-malleable

commitments using 2 rounds of communication, via

a black-box reduction to any “standard” intractability

assumption. Pass gave this result for the stronger of

two standard notions of non-malleability: This stronger

notion is called non-malleability with respect to com-

mitment, and it requires that the adversary cannot even

create a valid commitment com(m̃) to a related string

m̃. Very roughly, Pass’ impossibility result holds be-

cause at least three rounds are required by a simulator

to perform extraction via a commit-challenge-response
paradigm. Such an extraction is required for proving

non-malleability with respect to commitment.

The other standard notion is called non-malleability

with respect to opening [12], [13], [4]. This notion

requires that no matter what commitment com the ad-

versary creates, the adversary will not be able to open

it to a string m̃ related to the string committed by the

honest party.

In fact, we are able to generalize the result of Pass to

rule out 2-round challenge-response commitment pro-

tocols also for non-malleability with respect to opening,

whose security is to be based on natural (so-called “non-

embedding”) black-box reductions. Therefore, going be-

low three rounds seems like a natural barrier for non-

malleable commitments with security proven via black-

box reductions. In this paper, we ask whether it is
possible to circumvent this barrier.

Surprisingly, we show that it is possible to circumvent

this barrier for non-malleability with respect to open-

ing, by considering uni-directional commitment proto-

cols where the committer sends two messages, and the

receiver sends no message at all. The uni-directional

message model can be seen as a relaxation of the non-

interactive message model where the protocol proceeds

in phases and in each phase, the first party sends a

message to the second party. In the context of 2-round

non-malleable commitments, the man-in-the-middle sees

the committer message on the left in the first phase, and

can then decide its own first message in an arbitrary

manner. Next, the man-in-the-middle sees the second

committer message on the left and then decides its own

second message. This marks a significant departure from

all previous non-malleable commitment protocols in the

plain model, which generally engaged in at least one

round of challenge-response in order to establish non-

malleability.

To illustrate our uni-directional message model, con-

sider the setting of sealed-bid auctions. After obtaining

a commitment to some bid b, we would like to ensure

that the adversary is unable to generate and open a valid

commitment to the related bid (b + 1). In our setting,

the commitment phase of the auction would proceed

in two stages. In the first stage (say on day 1), all

the committers would be required to submit their first

message (of the non-malleable commitment scheme),

and, in the second stage (on day 2), the committers must

submit their second message. Then assume that on each

day, a (rushing) adversary Bob gets to see an honest

bidder Alice’s messages (committing to b) and decides

its own. Our protocol would ensure that the Bob cannot

open his bid to be (b+1), or to any other message related

to Alice’s bid b. Furthermore in applications like secure

multi-party computation (where the round complexity is

determined by the round complexity of non-malleable

commitments), such a model is a natural fit since we

assume that all the parties send their i-th round message

before seeing the (i+1)-th round message of any party.

B. Our Results

Our main result establishes the existence of a two

message commitment scheme that is non-malleable with

respect to opening, based only on the assumption that

injective one-way functions exist. We now elaborate:

◦ As discussed above, our protocol is uni-directional
– that is, both messages are sent from the committer

to the receiver. We prove security in the standard

synchronous setting for non-malleability, where the

adversary can modify each successive message of

the protocol arbitrarily (we also discuss the asyn-

chronous setting in our impossibility results below).

We have already discussed above that the uni-

directionality of our protocol is motivated by the

impossibility of constructing such a protocol in the

more traditional two-message challenge-response
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setting. But in fact, uni-directional protocols like

ours enjoy other notable features:

– Our construction provides security even in cases

where the honest receiver in the right execution is

partially corrupted. For example, if an adversary

could somehow corrupt the randomness of the

honest receiver (or learn it in advance before

the protocol starts), the security of existing non-

malleable commitment protocols such as [10]

would completely fall apart. However, in our

protocol, the receiver literally does nothing until

receiving the final opening message of the com-

mitter. Thus, there is no randomness to corrupt,

and security would hold even against such a

strengthened adversary. This also means we get

a form of resettable security, where the adversary

can reset the receiver, for free.

– Furthermore, an interesting theoretical feature

of uni-directional protocols like ours is in the

scenarios where the receiver may not wish to

be online. For instance, in the context of the

sealed-bid auction example, our protocol would

allow a committer Alice to send her bid by post

(sending the first message on the first day and

the second message on the second), whereas the

receiver would only have to collect all incoming

bids and then declare the winner on day 3, when

the opening messages are received. In particular,

the receiver would not have to send any messages

until all the bids are collected and the winner

is declared. Similarly, uni-directional protocols

are interesting in situations where it may not be

feasible to wait for the receiver to respond. This

situation could arise when long distances are in-

volved in the communication, or in settings where

non-digital means are used for communication.

Apart from non-malleable commitments, we believe

it would be interesting to study the round complex-

ity of various other cryptographic tasks in the uni-

directional message model.

◦ Our protocol makes only black-box use of any

non-interactive statistically binding commitment

scheme. In the standard model, such a scheme can

be realized based on any injective one-way function.

Furthermore, our protocol itself is quite simple and

intuitive, and most of the complexity of our paper

lies in the analysis of this protocol.

◦ Our scheme can also be viewed as a three block

block-wise non-malleable code [14] requiring only

injective one-way functions, used in a black-

box manner. The only previously known feasibil-

ity result for such non-malleable codes required

O(poly(n)) blocks, where n is the security pa-

rameter, and relied on sub-exponential hardness

assumptions. Thus, we significantly improve simul-

taneously on the hardness assumptions as well as

the number of blocks.

◦ Finally, we extend the impossibility result of

Pass [11] to the bi-directional two message commit-

ments with non-malleability with respect to open-

ing.

– We show that no natural1 (so-called “non-

embedding”) black-box reduction can be used

to prove one-sided security of bi-directional two

message non-malleable commitments with re-

spect to opening, based on any standard poly-

nomial intractability assumption.

– We show also that no such natural black-box

reduction can be used to prove two-sided secu-

rity of bi-directional two message non-malleable

commitments with respect to opening, based on

any standard sub-exponential intractability as-

sumption.

– This also shows that no such natural black-box

reduction can be used to build a block-wise non-

malleable code with fewer than three blocks.

– We note that in the asynchronous setting, any

uni-directional protocol can be treated as a one-

message (non-interactive) protocol for the pur-

pose of proving non-malleability, and therefore

our impossibility result applies. This shows that

no two-message commitment protocol of any

kind can be non-malleable with respect to open-

ing in the asynchronous adversarial model; i.e. in

the asynchronous setting, the three-round barrier

is insurmountable with respect to protocols with

natural black-box proofs of security. However, we

stress that the synchronous setting is the more

common one for typical applications of non-

malleable commitments within other protocols,

such as the secure computation protocols dis-

cussed above.

II. OVERVIEW OF OUR TECHNIQUES

Before describing the main ideas behind our construc-

tion, we recall the essence of techniques used in recent

prior works on constant-round non-malleable commit-

ments [6], [9], [10]. Note that our protocol, like all

these recent protocols, assume that parties have “tags”

(or id’s), denoted tag, and we require non-malleability

to hold whenever the adversary is trying to commit on

behalf of a t̃ag that is different from the tag used by

the honest committer. Thus, even copying every message

sent by the honest party does not yield a successful

1To the best of our knowledge, all reductions in the literature for
non-malleable commitments fall into this class and are therefore ruled
out.
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attack, since this would be a valid commitment only

with respect to the tag of the honest party, and not with

respect to the adversary’s distinct t̃ag.

All recent protocols use “slots” (or non-malleable

codes [10]) to create imbalances between protocols

corresponding to different tags. They also use a

commit-challenge-response structure so that a simulator

can, while simulating the honest execution (without

access to the honest receiver’s input), extract the value

committed by the man-in-the-middle.

Goyal, Pandey and Richelson [10] constructed a three

round non-malleable commitment scheme with respect

to commitment, matching the lower bound of Pass [11].

Indeed, black-box extraction requires at least three mes-

sages – and therefore, it would seem that this is perhaps

the end of the story on optimizing the round complexity

of non-malleable commitments. Surprisingly, we demon-

strate that this is not the case.

Indeed, in the case of non-malleable commitments

with respect to opening, we show how it is possible to

use the opening phase itself for extraction. Crucially,

our opening message does not merely consist of all

randomness used by the committer during commitment;

instead we craft it carefully to enable our proof strategy

to work. We highlight the core ideas behind our two

round non-malleable commitments with respect to open-

ing, in Section II-A. We then show how to extend and

polish these ideas to obtain a full-fledged non-malleable

commitment scheme w.r.t. opening, in Section II-B,

Section II-C and Section II-D.

A. One-Sided Non-Malleable Commitment Scheme for
Small Tags, Against Perfectly Copying Adversaries

a) A Very Simple Scheme for Two Tags.: At the

intuitive heart of our paper is the following idea: let’s

make “the level of commitment” provided by the first

message of the protocol depend on the tag of the user

making the commitment. This initial idea will only

take us so far, but we will find a way to extend the

combinatorics upon which this idea rests to obtain our

final result.

To explain this intuition more precisely, we begin by

constructing a simple commitment scheme, such that any

adversary trying to copy a commitment constructed with

tag = 1 to a commitment with tag = 0, fails with

at least a constant probability2. We call such a scheme

“one-sided” because we only guarantee security if the

adversary uses a t̃ag that is smaller than the tag used

by the honest party.

Let com(·) denote a non-interactive statistically bind-

ing commitment scheme. When tag = 1, in order to

2Our final commitment scheme allows string commitment, for tags
in [2n], and is secure with overwhelming probability, whenever the
left tag tag is not equal to the right tag ˜tag.

commit to a message m ∈ {0, 1}n, the committer

must pick a random string s
$← {0, 1}n, randomness

r1, r2
$←{0, 1}2n, and compute com(m; r1), com(s; r2).

It picks a position p
$← {1, 2}. If p = 1, the committer

sends com(m; r1), com(s; r2) to the receiver. If p = 2,

the committer sends com(s; r2), com(m; r1) to the re-

ceiver. In the second round, the committer sends p to

the receiver. It is easy to see that this commitment is

statistically binding (by the end of the second round)

and computationally hiding based on the properties of

the underlying commitment scheme com(·). In order to

open the commitment, the committer simply decommits

to the commitment at the pth position. On the other

hand, when tag = 0, in order to commit to a message

m̃ ∈ {0, 1}n, the committer picks a random string

r
$←{0, 1}n and sends com(m̃; r) to the receiver. In the

second round, the committer sends position p = 1 to the

receiver (since there is only one first round commitment

when tag = 0). In order to open the commitment, the

committer decommits to the only commitment he sent.

Now, consider a man-in-the-middle(MIM) adversary

that obtains the first message of the commitment from

an honest committer in a left execution, with tag = 1,

and then outputs his first message corresponding to

tag = 0 in the right execution. Intuitively, any such

MIM adversary is already committed to his message even
before he knows whether the honest committer placed his

message at (and will be opening) position 1 or 2. In this

case, it is possibly to formally show that an MIM will

not succeed at copying the value of the honest committer

with probability greater than 1/2 (which is the probability

with which the MIM guesses the position that the honest

committer will open, and only mauls the commitment at

this position).
b) A Simple Scheme for Small Tags.: We develop

the above idea further and extend the setting in two ways:

First, we will allow parties to use somewhat larger tags,

namely tag ∈ [n]. Second, we will consider arbitrary
polynomial-time mauling strategies of the adversary –

the adversary doesn’t just have to copy a commitment

entirely, as we considered above. Nevertheless, we are

still considering the one-sided setting, and we are only

going to rule out an adversary that tries to always
succeed in copying the value committed to by the honest

(left) committer. The protocol is in Figure 1. This scheme

is computationally hiding and statistically binding (by

the second round) because of the hiding and binding

properties of the underlying commitment scheme.

An interesting property of our scheme is that – unlike

most other non-malleable w.r.t. commitment schemes in

the literature – the decommitment phase does not include

revealing all the coins of the committer. This is actually

crucial for our proofs to work.

Despite the fact that the adversary can now perform
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Let com(·) denote a non-interactive statistically bind-

ing commitment scheme.

Tag: Let the tag for the interaction be tag ∈ [n].
Input: Committer C has private input message

m ∈ {0, 1}n.

1) Commit Stage:
◦ First Message.
C picks random position v ∈ [tag]. It sets

cv = com(m; r) for randomly chosen r.

It samples (si; ri)
$← {0, 1}2n and generates

ci = com(si; ri) for i ∈ [tag] \ {v}. C sends

c1, c2, . . . ctag to R.

◦ Second Message. C sends v to R.

2) Reveal Stage: C outputs m and decommits to

the vth commitment cv .

R verifies that the decommitment is correct and

equal to m.

Fig. 1: One-Sided Non-Malleable Commitment for tag ∈
[n], Secure Against Perfect Copying Adversaries

arbitrary mauling, for example by algebraically combin-

ing all the commitments on the left to produce a single

commitment on the right, we still want to appeal to the

pigeonhole principle in our proof. However, this will now

be more technical to capture.

Let the tag used in the right execution be t̃ag and the

tag used in the left execution be tag, such that tag >
t̃ag. Recall that the simplified MIM adversary that we

consider is not allowed to abort and must successfully

copy always. Thus, if we fix the first messages of both

the honest committer and the adversary, by the pigeon-

hole principle, there exist at least two positions v1, v2 ∈
[tag] output by the honest committer on the left in the

second message, that correspond to the same position

ṽ ∈ [t̃ag] output by the MIM adversary on the right. We

want to obtain a contradiction by exploiting this.

To do so, we design a sequence of hybrids that can

aid us in carrying out our combinatorial argument. The

present scenario that we consider offers a simplified

setting for our hybrid argument, and the intuition

developed here will be useful later. We assume the

existence of a successful adversary, and then consider the

following sequence of hybrids between the case when

the left execution consists of an honest commitment to

m versus an honest commitment to m′ �= m, in order

to reach a contradiction.

Hybrid0 : This is similar to the real world experiment,

with one abort condition added. Just as in the real

world, challenger carries out the entire left execution

committing to m, outputting v as its second message,

and then decommitting to message m. It records the tran-

script generated by the MIM along with the decommitted

value (which should be m since our MIM always copies

successfully). Let the second message of the MIM in this

execution be ṽ.

The challenger then picks a random position v′ $←
[tag], v′ �= v, intuitively hoping that this choice of v′

will be the one guaranteed by the pigeonhole principle.

Keeping the first messages of the transcript on both left

and right fixed, it rewinds the protocol execution to the

beginning of the second round and sends v′. If the MIM
outputs the same value ṽ, as we hoped he would, the

challenger outputs the original view (using v) and the

value opened by the MIM, otherwise it aborts.

Note that in this hybrid, our random choice of v′

is going to work with probability at least 1/n by the

pigeonhole principle, and thus our copying MIM opens

his commitment to message m with probability at least

1/n and aborts otherwise.

Hybrid1 : This experiment is identical to Hybrid0 except

that the challenger picks the random position v′ ∈
[tag], v′ �= v at the beginning of this experiment, and

generates a commitment to m′ at position v′ (instead

of committing to a random string sv′ ). Then, just like

Hybrid0, the challenger carries out the entire left ex-

ecution committing to m, outputting v as its second

message and then decommitting to message m. It records

the transcript generated by the MIM along with the

decommitted value (which is m since our MIM copies

always). Let the second message of the MIM in this

execution be ṽ.

Keeping the first message of the transcript fixed,

just as in Hybrid0, the challenger rewinds the protocol

execution to the second round and sends v′. If the MIM
outputs ṽ, the challenger outputs the original view and

the value opened by the MIM, otherwise it aborts.

Crucially, the only difference between Hybrid1 and

Hybrid0 is that one of the commitments that is never

opened by the challenger is either a commitment to m′,
in Hybrid1, or a commitment to sv′ , in Hybrid0. Thus,

these two hybrids are computationally indistinguishable

by the hiding property of com. Thus, our copying

MIM still opens his commitment to message m with

probability at least roughly 1/n and aborts otherwise.

Analysis of Hybrid1: Looking at Hybrid1, observe that

v and v′ play completely symmetrical roles: The same

first message of the left commitment, if we view v as

being chosen first, is a commitment to m. However, if

we view v′ as being chosen first, then it is a commitment

to m′.
Furthermore, in fact, we know that with probability

at least 1/n, when we view the commitment as being a

commitment to m′, when we send the value v′ as the
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second message, the adversary chooses a value ṽ such

that the adversary’s commitment in his first message at

position ṽ is a statistically binding commitment to m.

Thus, we know that with probability at least 1/n, even

if the original commitment had been a commitment to

m′, the adversary will have no choice but to open to m.

This contradicts our assumption that the adversary

always succeeds in copying the message committed to

by the honest committer on the left, and shows that

such an adversary cannot exist. The hybrid argument

above illustrates the simplest case where we combine

cryptographic computational indistinguishability argu-

ments with combinatorial arguments (here, just a simple

application of the pigeonhole principle). Later on, espe-

cially as we remove the unrealistic assumption that the

adversary always succeeds, these “combinatorial hybrid

arguments” become more subtle and complex.

B. One-Sided Non-Malleable Commitment Scheme for
Small Tags, Against General Synchronous Adversaries

The protocol we described in the previous section,

provides only partial non-malleability against adversaries

that do not abort. In particular, it does not guarantee full

security against general (possibly aborting) adversaries.

Indeed, with probability 1
n , the MIM can directly guess

the position that the honest committer plans to decommit,

and copy the commitment at that position. In this case,

the MIM succeeds in copying the value committed in the

left execution.

In order to handle general adversaries, the protocol in

Figure 1 is modified as follows: The committer computes

an N -out-of-N additive secret sharing of the message m,

for N = n3 (where n denotes the security parameter).

Then, the same basic protocol of Figure 1 is repeated

in parallel N times with fresh randomness each time, to

commit to each of the N shares of the message m. An

MIM adversary can no longer “guess” all these positions

correctly. Indeed, we show that if an adversary tries to

maul in all possible positions, w.h.p. he will fail and

abort the protocol.

For tag > t̃ag (where tag is the honest/left execution

tag and t̃ag is the MIM’s tag), we note that the honest

committer generates a total of tag · N commitments in

the first message, and the MIM generates much fewer –

i.e., a total of t̃ag·N commitments – in his first message.

The space of possible positions chosen to be opened on

the left, is (tag)N , and that on the right is only (t̃ag)N .

Then on an average, there are an exponential number

of position tuples on the left mapping to each position

tuple on the right. However, unlike the hybrids in the

previous protocol, it is no longer possible to efficiently

“find” such collisions.

We overcome this issue using ideas inspired from

those used by Goyal [6], i.e. by extracting the “commit-

ment dependency graph” created by the adversary. How-

ever, our proofs depart significantly from [6] because

our setting is inherently uni-directional. In particular,

unlike [6], the receiver on the right (or the challenger)

no longer has the power to choose which positions the

MIM will open.

Informally, given the first message of the protocol: we

say that a right commitment Y of the adversary depends

on a left commitment X of the honest committer, if

Y is chosen to be opened by the MIM with noticeable

probability conditioned on a random choice of position

tuple on left, but is chosen to be opened by the MIM with

close to “negligible” probability if X is not chosen to

be opened on the left. Please refer to the full version for

a formal definition of dependency. Then, it is possible

to show using combinatorial arguments, that for “most

transcripts”, there exists at least one position I that is

chosen to be opened on the left, such that none of the

positions that are chosen to be opened on the right, lie

in the dependent set of the commitment at position I .

Given this lemma, it is possible to replace the com-

mitment at position I , with an externally generated

commitment. Since none of the positions that are chosen

to be opened on the right (let these be denoted by the

set �̃), lie in the dependent set of the commitment at

position I , by the definition of dependency, it is possible

to rewind and provide various other openings on the

left to “extract” the values committed to by the MIM
for each of the commitments at positions in �̃. Note

that because the message is shared using an N -out-of-

N additive secret sharing scheme, in order to change

the left commitment from m to m′, it suffices to just

change the committed value on the left corresponding to

the single position I .

Finally, we note that in our actual protocol (Refer to

the full version), we do not actually use tag commit-

ments in each parallel repetition but rather use n + tag
commitments. This is done for technical reasons, to

ensure that none of the sets is too “small” in size.

Also, in the actual protocol, all commitments are to

random values, but in the second message, together with

the indices to be opened, a correction factor is sent.

This is done for technical reasons as well, to make the

dependency graph well-defined for the purpose of our

combinatorial analysis.

C. Two-Sided Non-Malleable Commitment Scheme for
All Tags, Against General Synchronous Adversaries

The scheme described in the previous section is non-

malleable only if the tag t̃ag ∈ [n] of the right execution,

is smaller than the tag tag ∈ [n] of the left execution. We

show how to extend the ideas developed in the previous

section to obtain a commitment scheme that is non-

malleable whenever t̃ag �= tag.
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We first consider the case of a perfectly copying

adversary. The basic protocol (Figure 1) is modified as

follows: The committer computes a 2-out-of-2 secret

sharing of the message m, and let the shares be denoted

by m1 and m2. Then the protocol from Figure 1 is used

to commit to the shares m1 and m2 in parallel, using

tags (tag) and (2n − tag) respectively. The modified

basic protocol, in simplified form for the purpose of this

technical overview, is described in Figure 2.

Let com(·) denote a non-interactive statistically bind-

ing commitment scheme.

Tag: Let the tag for the interaction be tag ∈ [n].
Input: Committer C has private input message

m ∈ {0, 1}n.

1) Commit Stage:
◦ First Message.
C picks random position v ∈ [tag] and sets

cv = com(m1; r) for random r. C also picks

random position v̄ ∈ [2n − tag] and sets

cv̄ = com(m2; r̄) for random r̄.

It samples (si, ri)
$← {0, 1}2n and generates

ci = com(si; ri) for i ∈ [tag] \ {v}. It

samples (s̄i, r̄i)
$← {0, 1}2n and generates

c̄i = com(s̄i; r̄i) for ī ∈ [2n − tag] \ {v̄}. C
sends c1, c2, . . . ctag, c̄1, c̄2, . . . c̄2n−tag to R.

◦ Second Message. C sends v, v̄ to R.

2) Reveal Stage: C outputs m and decommits to

the vth commitment cv and the v̄th commitment

cv̄ . R verifies that the decommitments are cor-

rect and XORs to m.

Fig. 2: Simplified Two-Sided Commitment for tag ∈ [n],
secure against Non-Aborting Adversaries

The hiding and binding properties of this scheme

follow directly from the hiding and binding properties of

the underlying statistically binding commitment scheme.

Interestingly, in this protocol, the total number of

commitments generated is exactly 2n, irrespective of the

tag. This is reminiscent of the approach of [9]: who set

up challenge spaces of identical length for all tags (while

nearly all prior works used imbalanced spaces to obtain

non-malleability). However, they use more algebraic

structure on the challenge spaces whereas our techniques

are purely combinatorial while still maintaining just two

rounds in the scheme.

Now, the honest committer in the left execution, opens

1 out of (tag) commitments to m1, and 1 out of (2n−
tag) commitments to m2. On the other hand, the MIM
must open 1 out of (t̃ag) commitments to m̃1, and 1
out of (2n − t̃ag) commitments to m̃2. For simplicity,

here we consider the case where MIM creates a one-

to-one mapping of the 2n commitments (although our

proof rules out other arbitrary strategies of any MIM).

We also observe that the sets of commitments in our

protocol satisfy a specific property: when tag �= t̃ag,
there is no perfect embedding of the left sets ([tag], [2n−
tag]) into the right sets ([t̃ag], [2n− t̃ag]). In particular,

when tag > t̃ag, then t̃ag < (2n − tag) also (since

tag, t̃ag ∈ [n]). Therefore, for any mapping f : [2n] →
[2n] of the MIM, there is significant probability (at least
1
n ), that f−1(i) is not opened on the left for any element

i of the set [t̃ag]. In other words, no matter how the

adversary maps commitments in the sets ([tag], [2n −
tag]) to commitments in [t̃ag], there is a chance that

none of the left commitments that were mapped to the

set [t̃ag] are opened. In this case, the adversary must

either abort, or open a right commitment that depends

on no left commitment.

Again, when tag < t̃ag, then (2n−tag) > (2n− t̃ag).
Then, for any mapping f : [2n] → [2n] of the MIM,

there is significant probability (at least 1
n ), that f−1(i)

is not opened on the left for any element i of the either

the set [t̃ag] or the set [2n− t̃ag]. If the adversary only

maps commitments in the set [2n−tag] to commitments

in [2n − t̃ag], then it is easy to see that this statement

is true because the size of the set [2n − t̃ag] is smaller

than the size of [2n− tag]. The only case in which the

inverse on the left is always opened for all elements in

the set [2n − t̃ag], is when all commitments in the set

[tag] on the left are mapped to commitments within the

set [2n − t̃ag] on the right. But in this case, no matter

how the adversary maps the remaining commitments in

the set [2n− tag] to commitments in ([tag], [2n− t̃ag]),
there exists a significant probability that none of the left

commitments that were mapped to the set [t̃ag] will be

opened. Again, in this case, the adversary must either

abort, or open a right commitment that depends on no

left commitment.

a) Moving to General Synchronous Adversaries.:
Like in Section II-A, the protocol in Figure 2 is only par-

tially non-malleable. But the protocol can be modified,

via N -out-of-N secret sharing, to obtain security against

general synchronous adversaries. Again, the proof runs

into issues because of the exponential possibilities for the

position tuple in the second round. These are handled

in the same way as the one-sided setting, with one

additional key idea: In most sets of [t̃ag] or [2n − t̃ag]
commitments on the right, there must exist at least one

“reserve commitment”, which does not depend on any

left commitment. We just showed that for any set of

([t̃ag], [2n − t̃ag]) right commitments which all depend

on left commitments, none of the left commitments on

which such a set depends, are opened with probability at

least 1
n . Therefore, if there are too many such sets that

depend on distinct left commitments and have no “re-
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serve commitments”, the adversary will end up aborting

in the real execution with overwhelming probability.

The existence of these reserve commitments helps us

establish, for any adversary that does not abort nearly

all the time, a “gap” between the number of possible

positions that can be opened in the left execution (i.e.

2nN ) and the number of possible positions that can

depend on them in the right execution (which is less than

2nN because of the presence of “reserve commitments”

that depend on nothing). This gap can then be exploited,

just like in the basic protocol, to prove non-malleability.

Finally, we note that, as before, in our actual protocol

(Refer to the full version), we do not actually set the

size of these sets to (tag, 2n− tag), but set it to (2n+
tag, 4n − tag). This is done for technical reasons, to

ensure that none of the sets is too “small” in size. Also

as before, in the actual protocol, all commitments are to

random values, but in the second message, together with

the indices to be opened, a correction factor is sent.

D. Full-Fledged Non-Malleability Against All Syn-
chronous Adversaries

Our full-fledged non-malleable commitment scheme

(for tag = (t1||t2|| . . . ||tn) ∈ [2n]), is obtained by

computing an n-out-of-n additive secret sharing of the

message m to be committed to, and using the two-

sided non-malleable commitment scheme discussed in

the last subsection, to commit in parallel to each of

the n shares, using tags (1||t1, 2||t2, . . .n||tn). The

protocol resembles the classic DDN [1] tag amplifica-

tion construction – however, its analysis is significantly

different. In particular, Dolev, Dwork and Naor [1] rely

on a one-many non-malleable commitment scheme in

order to achieve such amplification. However, our two-

sided non-malleable scheme is only one-one secure, and

therefore we cannot hope to use the [1] proof strategy

in our setting. Interestingly, in this scheme (just as in

the two-sided scheme) the total number of commitments

generated remains fixed and independent of the tag.

Furthermore, we can show that our construction is secure

by using the set-embedding argument from the previous

section.

Suppose the left tag is (t1||t2|| . . . tn) and the right tag

is (t̃1|||t̃2|| . . . t̃n). Note that there exists an index i, such

that t̃i �= ti; equivalently, i||t̃i �= j||tj for all j ∈ [n]. In

this case, none of the left sets corresponding to indices

(j||tj) for j ∈ [n] would possibly completely embed in

the set corresponding to (i||t̃i). We set our parameters

to ensure that there do not exist any combinations of left

sets that embed in the set corresponding to the differing

index (i||t̃i). The core of the argument is to show that

such embeddings cannot exist in this setting.

Then, a similar argument as in the previous section

can be used to show that the adversary must maintain

“reserve commitments”, thereby creating a gap between

the number of possible commitments that can be opened

in the left execution (i.e. 2nN ) and the number of

commitments positions that can depend on them in the

right execution. The gap can then be exploited, just like

in the one-sided protocol, to prove non-malleability for

all tags.

Once we obtain a non-malleable commitment scheme

for all tags, it is possible to use standard techniques

from the literature to obtain a full-fledged non-malleable

commitment scheme (without tags) by relying on one-

way functions. This is done by generating the tag as

the verification key of a signature scheme, and using the

corresponding signing key to sign each message in the

protocol.

E. Impossibility of Non-Interactive/Two-Round Asyn-
chronous Non-Malleable Commitments w.r.t. Opening

In this section, we illustrate the key ideas behind our

impossibility result. Assume that Π is a non-interactive

non-malleable commitment scheme with respect to open-

ing3.

Suppose there exists a reduction R such that RA

breaks some underlying assumption C, whenever the

MIM adversary A breaks non-malleability of Π. We

will assume that any possible open queries of R for

a particular session appear immediately after commit

queries for the same session (we call such a reduction

non-embedding). We will describe the ideas in our im-

possibility only for non-embedding reductions, but they

also easily extend to reductions that nest O(log n) ses-

sions within each other by relying on standard repeated

rewinding techniques.

First consider a computationally unbounded copying

A that picks identity 0 on the left and 1 on the right,

and upon receiving a left commitment to some value v,

recovers v using brute force (we assume the commitment

is statistically binding so there exists such a unique v).

Then, A commits to v using tag 1. When R decommits

to v on the left, A decommits to v on the right. Since A
breaks non-malleability of Π, RA must also break the

underlying commitment C.

Implementing such an A requires super-polynomial

time by the hiding property of Π – however, we construct

another algorithm Ã that can efficiently emulate A.

Roughly, Ã proceeds as follows:

◦ Ã picks the same identities, but simply commits

to 0n in the right interaction (irrespective of the

messages it received on the left).

◦ If R does not send an opening and starts a fresh

commitment phase – Ã continues the game by

3In this overview, for simplicity, we only consider a non-interactive
scheme. It will be easy to see that the same result will extend to a
two-round scheme where each party sends a single message.
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committing to 0n each time each time R generates

some commitment. Because of the hiding property

of the commitment scheme, R cannot distinguish

A’s commitments to v from Ã’s commitments to

0n, without asking Ã to open its commitment. Since

a non-embedding R does not nest sessions, once R
starts a new commit phase, it will never ask for

an opening for any previous session. Now, if R
does not require an opening to break the underlying

assumption, this roughly means that the scheme

is non-malleable w.r.t. commitment and the same

ideas as Pass’ [11] impossibility apply.

◦ The more interesting situation is when R does ask

Ã to give an opening on the left. In this situation,

Ã emulates A as follows: it observes the opening

(to value v) given by R, and then rewinds R to just

after the corresponding commit stage message (to v)

on the left (observe that R sends a single message

in the commit stage). It then commits to value v
that it extracted before rewinding. It generates this

commitment honestly using randomness r, and then

waits for R to decommit to v on the left. When R
does decommit to v, Ã opens his commitment to v
as well.

Such an adversary Ã successfully emulates A against

any black-box reductions to underlying hardness as-

sumptions, that nest upto log(n) commit and open

queries (which we call log(n)-embedding reductions and

define in detail in the full version). Thus, any black-box

reduction R must succeed in breaking the underlying

assumption, when interacting with Ã. Since Ã can be

efficiently emulated by R itself, this gives a polynomial-

time algorithm to break the underlying assumption.

We note that to the best of our knowledge, all known

reductions in literature are non-embedding, and therefore

our impossibility rules out all such reductions.

III. OUR PROTOCOLS

In this section, we describe our protocols. Our one-

sided non-malleable commitment scheme w.r.t. open-

ing against synchronizing adversaries, for small tags

is described in Figure 3. Our two-sided non-malleable

commitment scheme w.r.t. opening against synchronizing

adversaries, for small tags, is described in Figure 4.

In Figure 5, we describe our full-fledged non-

malleable commitment scheme with respect to large tags

(i.e., all tags in [2n]). While the scheme is based on

the DDN encoding [1], our analysis is entirely different

because we do not rely on one-many non-malleability of

the underlying scheme for small tags (tag ∈ [n]).
The binding and hiding properties of these schemes

follow in a straightforward manner from the statistical

binding and computational hiding of the underlying

commitment scheme. Our proofs proceed in two phases:

Let com(·) denote a non-interactive statistically bind-

ing commitment. Let n denote the security parameter

and set N = n5.

Tag: Let the tag be tag ∈ [n]. Set t = n+ tag.

Input: Committer C has private input m ∈ {0, 1}n.

1) Commit Stage: First Message.
◦ For i ∈ [N ], v ∈ [t], C samples bi,v

$←{0, 1}n
and ri,v

$←{0, 1}n.

◦ For i ∈ [N ], v ∈ [t], C computes ci,1
= com(bi,1, ri,1), ci,2 = com(bi,2, ri,2), . . .
ci,t = com(bi,t, ri,t); sends ci,1, ci,2, . . . ci,t.

Second Message. C picks vi
$← [t] for each

i ∈ [N ], and sets correction factor cf =
(
⊕

i∈[N ] bi,vi) ⊕ m. C sends cf along with vi
for each i ∈ [N ].

2) Reveal Stage: For each i ∈ [N ], C decommits

to the vthi commitment ci,vi .
R verifies that the decommitment is correct, and

for each i ∈ [N ], the decommitments obtained

together with the correction factor are XOR

shares of message m.

Fig. 3: One-Sided Non-Malleable Protocol for tag ∈ [n]

in the first phase, we argue that for most honest (left)

transcripts, there exists an index (or a secret share) that

is chosen to be opened in the second message of the left

execution, such that it is possible to “extract” the MIM’s

opening in the right execution without having to open

this share at all in the left execution. In the second phase,

we show that this property can be leveraged to replace

the commitment (or the share) at such an index on the

left, with an external challenge commitment, such that

if the MIM’s opening changes based on the externally

obtained challenge, then this MIM can be used to break

hiding of the challenge commitment. Please refer to the

full version for complete proofs.
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Let com(·) denote a non-interactive statistically bind-

ing commitment, set N = n5.

Tag: Let the tag be tag ∈ [n]. Let t = tag + 2n.

Input: Committer C has private input m ∈ {0, 1}n.

1) Commit Stage: First Message.
◦ For each (i ∈ [N ], v ∈ [t]) and each (i ∈
[N + 1, 2N ], v ∈ [6n− t]), C samples bi,v

$←
{0, 1}n and ri,v

$←{0, 1}n. Then, C computes

ci,v = com(bi,v, ri,v).

Second Message. For each i ∈ [N ], C picks

and sends vi
$← [t]. For each i ∈ [N + 1, 2N ],

C picks and sends vi
$← [6n− t]. Finally, C also

sends (
⊕

i∈[2N ] cfi,vi)⊕m.

2) Reveal Stage: For each i ∈ [2N ], C decommits

to the vthi commitment ci,vi .
R verifies that the decommitment is correct, and

for each i ∈ [2N ], the decommitments obtained,

together with the correction factor, are XOR

shares of message m.

Fig. 4: Two-Sided Non-Malleable Protocol for tag ∈ [n]

Let com(·) denote a non-interactive statistically bind-

ing commitment scheme, and small− NMtag(·) de-

note the commitment messages of the one-one two-

sided non-malleable commitment scheme with re-

spect to some tag ∈ [n], from Figure 4.

Tag: Let the tag for the interaction be tag ∈ [2n],
with bit-representation tag = t1, t2, . . . tn.

Input: Committer C has private input m ∈ {0, 1}n.

1) Commit Stage:
◦ C samples uniformly random shares

m1,m2, . . .mn such that m =
⊕

i∈[n] mi.

◦ C commits to in parallel to mi with tag

i||ti, using scheme small− NM as follows:

small− NM1||t1(m1), small− NM2||t2(m2)
. . . small− NMn||tn(mn).

2) Reveal Stage: C decommits in parallel to each

of the small− NM generated above.

R verifies that the decommitments are correct,

and for each i ∈ [n], the decommitments ob-

tained are shares of message m.

Fig. 5: Two-Sided Non-Malleable Protocol for tag ∈ [2n]
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