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Abstract—All constructions of general purpose indis-
tinguishability obfuscation (IO) rely on either meta-
assumptions that encapsulate an exponential family of
assumptions (e.g., Pass, Seth and Telang, CRYPTO 2014
and Lin, EUROCRYPT 2016), or polynomial families of
assumptions on graded encoding schemes with a high poly-
nomial degree/multilinearity (e.g., Gentry, Lewko, Sahai
and Waters, FOCS 2014).

We present a new construction of IO, with a security
reduction based on two assumptions: (a) a DDH-like
assumption — called the joint-SXDH assumption — on
constant degree graded encodings, and (b) the existence
of polynomial-stretch pseudorandom generators (PRG) in
NC0. Our assumption on graded encodings is simple, has
constant size, and does not require handling composite-
order rings. This narrows the gap between the mathemat-
ical objects that exist (bilinear maps, from elliptic curve
groups) and ones that suffice to construct general purpose
indistinguishability obfuscation.

Index Terms—Cryptography; Program Obfuscation;
Graded Encodings.

I. INTRODUCTION

Indistinguishability obfuscation (IO) is a probabilistic

polynomial-time algorithm O that takes as input a circuit

C and outputs an (obfuscated) circuit C ′ = O(C)
satisfying two properties:

(a) functionality: C and C ′ compute the same function;

and

(b) security: for any two circuits C1 and C2 that

compute the same function (and have the same

size), O(C1) and O(C2) are computationally in-

distinguishable.

IO is a surprisingly powerful cryptographic notion.

Defined first in the seminal work of Barak, Goldreich,

Impagliazzo, Rudich, Sahai, Vadhan and Yang [15], it

was largely unnoticed (with the singular exception of

[37]) until the recent work of Garg, Gentry, Halevi,

Raykova, Sahai and Waters [31] who demonstrated a

candidate construction of indistinguishability obfusca-

tion, and the work of Sahai and Waters [50] who showed

that despite appearing somewhat useless to an untrained

eye, IO has enormous power, so much so that it is

virtually “crypto-complete”. Starting from [50], we now

know that IO gives us a treasure-chest of cryptographic

constructions, solutions to a number of open problems

(see, e.g., [50], [31], [30], [25], [17] and many more) and

even has implications in complexity theory [18], [39].

In the tradition of theoretical cryptography, one defines
a useful cryptographic object (a definition involves a

notion of functionality and one of security), demonstrates

a construction of this object using mathematics, and

finally, proves its security from computational hardness

assumptions (such as the hardness of factoring, discrete

logarithms, or learning with errors). Garg et al. [31]

showed a construction of IO using ideal lattices (which

they abstracted into a framework called cryptographic

multilinear maps [29]) but the construction came as-is
with no security proof. There have since been a series

of attempts at security proofs for IO under assumptions

of varying complexity (which we will review in detail

in the sequel). This state of affairs motivates one of the

most important questions in cryptography today:

Does indistinguishability obfuscation exist,
and under which cryptographic assumptions?

Let us cut to the chase: in this work, we show a

construction of IO from the joint SXDH assumption

on prime-order multilinear maps with constant multi-
linearity. This narrows the gap between the mathematical

objects that exist (bilinear maps) and ones that suffice

for IO (O(1)-linear maps). We now describe what each

of these terms mean through the lens of existing IO

constructions.

Constructions and Proofs of Indistinguishability Ob-
fuscation Over the last three years, there has been

a great deal of work trying to construct IO schemes

and prove their security. The mathematics underlying

all IO constructions, broadly speaking, arises from the

geometry of numbers (or the theory of integer lattices),

but this has been abstracted out into the framework

of graded encoding schemes (also called cryptographic
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multilinear maps) [21], [29].1

In a nutshell, a graded encoding scheme for a ring R
provides us with a (potentially exponentially large) col-

lection of groups (written multiplicatively) of order q to-

gether with a relation pairable on them such that for any

two groups Gi and Gj such that pairable(Gi, Gj) = Gk,

we have gαi ⊗ gβj = gαβk where ⊗ is a pairing function

and α, β ∈ Zq are scalars. If pairable(Gi, Gj) = ⊥, then

we say that Gi and Gj are not pairable, and otherwise

they are pairable. (In the literature, such graded encoding

schemes are referred to as clean graded encodings, and

can be generalized to noisy graded encodings. For most

part of this introduction, we will use the interface of

clean graded encodings; see Section I-C for a discussion

on noisy graded encodings towards the end of the

introduction.)

We can use these groups to compute multivariate

polynomials in the exponent. That is, given a sequence

of elements g
αj

j , compute g
p(α1,...,αn)
k where p is an

n-variate polynomial and gk is an element in the ap-

propriate group, provided that p can be computed using

a sequence of group operations in the same group and

pairing operations over different groups as specified by

pairable. The maximum degree of a multivariate poly-

nomial that can be computed in the exponent is called the

multilinearity of the collection. We call the number of

groups in the collection the universe size (which could

be constant, polynomial or exponential in the security

parameter). The order of the group is q, and we will

differentiate between prime-order and composite-order

groups. In this language, the well-known bilinear maps

have multilinearity 2 and universe size 2 (or 3 in the

case of asymmetric pairing groups).

• Proofs in Ideal Models: Several works [31], [24],

[22], [14], [9], [51] showed proofs of security for

obfuscation in the so-called ideal multilinear group
model. Roughly speaking, these models postulate

that the only way an adversary can operate on

group elements is through the legal group interface

(namely, group operations between two elements in

the same group and the pairing operation between

two elements in pairable groups). Restricting the

power of the adversary in such a way is unrealistic,

and is underscored by the fact that in this model,

one can actually get virtual black-box obfuscation

(which by [15] does not exist for general programs).

• Concrete Assumptions on Graded Encodings
(GES): Pass, Seth and Telang [48] postulated

an uber-assumption on multilinear maps which,

roughly speaking, say that any attack on a collec-

1In reality, we do not have any instantiations of graded encoding
schemes, but rather only noisy graded encodings which turn out to
suffice for functionality.

tion of group elements can be translated into an

attack in the ideal multilinear group model. Gentry,

Lewko, Sahai and Waters [36], following the work

of Gentry, Lewko and Waters [35], took the first

step in simplifying the assumption and came up

with a construction under the multilinear subgroup
elimination assumption on composite-order groups.

Bitansky and Vaikuntanathan [19] and Ananth and

Jain [5], showed how to convert any functional

encryption scheme into an IO scheme. Together

with the FE construction of Garg, Gentry, Halevi

and Zhandry [32], this gives us an IO scheme based

on similar assumptions on composite-order groups.

The main deficiency of all these constructions is

that they require graded encoding schemes with

large multilinearity – either poly(|C|, n, λ) stand-

alone, or at least poly(n, λ) after applying the

bootstrapping theorem of Canetti, Lin, Tessaro and

Vaikuntanathan [23].2 In addition, they all either

rely on a very complicated uber-assumption, or rely

on composite-order graded encodings. Furthermore,

the universe size in all these cases is at least

poly(n, λ).
• Towards Constant Multilinearity: The closest in

spirit to this work is the recent result of Lin [42]

who showed that constant-degree multilinear maps

suffice for IO. (This is in spite of recent implau-

sibility results [49], [43], [19], [44] showing that

construction of IO in the ideal constant-degree
multilinear map model, implies construction of IO

in the plain model; in other words, constant-degree

multilinear map does not “help” black-box con-

struction of IO. [42] circumvents this by making

non-black-box use of the graded encodings.) Un-

fortunately, her work has the following drawbacks:

First, the concrete complexity assumption was a

complicated über-assumption (borrowed from [48]);

and secondly, her graded encoding collection has

composite order and large, polynomial, universe

size, namely poly(n, λ).

See Figure I for a summary.

In short, all assumptions used in the construction

of IO are either a complicated uber-assumption that

encodes the computation in the assumption itself, or

an assumption on composite order graded encodings

(GES) with polynomial universe size. The gap between

bilinear maps and these objects is rather large. Even

the construction of Lin [42] requires a collection of

poly(n, λ) groups with a complex interaction between

2There are other IO bootstrapping theorems in the literature, notably
that of [31]. However, they do not appear to help in reducing the
multilinearity.
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Assumption Multilinearity Universe Composite Order?

[22]
ideal multilinear

poly(n, λ)‡ poly(n, λ)‡ no[14], [7]
model

[9], [51]

[48] über-multilinear poly(n, λ)‡ poly(n, λ)‡ no

[36]
multilinear subgroup

poly(n, λ)‡ poly(n, λ)‡ yes
elimination

[19], [5], [6] similar to multilinear
poly(n, λ) poly(n, λ) yes

+[32] subgroup elimination

[42] über-multilinear O(1) poly(λ) yes

This Work Joint SXDH O(1) O(1) no

Fig. 1. A Summary of Known IO Constructions. ‡ denotes the fact that the complexity (multilinearity or universe size) was originally
poly(|C|, n, λ) but can be brought down to poly(n, λ) using bootstrapping.

them (through the uber-assumption), even though the

multilinearity is constant.

With the aim of narrowing the gap between the

mathematical objects that exist (bilinear maps) and ones

that suffice for IO, we seek to:

Construct IO from a simple assumption on
prime-order GES with O(1) multilinearity and
universe size.

A. Our Results

Joint-SXDH Assumption on Graded Encodings. Our

joint-SXDH assumption on graded encodings is a natural

generalization of the standard symmetric external Diffie-

Hellman (SXDH) assumption on (asymmetric) bilinear

pairing groups. In short, SXDH states that the decisional

Diffie-Hellman assumption holds in every source group.

That is, let G0 and G1 be a pair of source groups, whose

elements can be paired to produce elements in a target

group GT .

SXDH over bilinear maps:

∀l ∈ {0, 1}, {
g0, g1, gT , gal , gbl , gabl

}
≈ {

g0, g1, gT , gal , gbl , grl
}

where gi is the generator for group Gi and a, b, r are

random exponents. Note that SXDH possibly holds in

asymmetric bilinear groups because elements in the same

source group do not pair; otherwise, one can easily dis-

tinguish the above distributions by checking the equality

e(gal , g
b
l ) = e(gabl , gl).

The SXDH assumption naturally generalizes to graded

encodings with a collection of groups {Gl}l: It pos-

tulates that the distribution of gal , g
b
l , g

ab
l in any group

l should be indistinguishable to that of gal , g
b
l , g

r
l ,

provided that elements in Gl cannot be paired with

themselves. Here, because graded encodings allow for

a richer computation structure, it is not only nec-

essary that elements cannot be paired directly (i.e.
pairable(Gl, Gl) = ⊥), but they also do not pair

“indirectly”, via a sequence of pairings with elements

in other groups. This leads to the notion of the clo-

sure of the pairable function, denoted as pairable∗,

which roughly speaking indicates whether two groups

Gl1 , Gl2 can ever be paired via any sequence of pairing.

More precisely, pairable∗(Gl1 , Gl2) = 1 if there are

groups Gl3 and Gl4 such that pairable∗(Gl1 , Gl3) = 1,

pairable∗(Gl2 , Gl4) = 1, and pairable(Gl3 , Gl4) �=
⊥; otherwise, pairable∗(Gl1 , Gl2) = 0. Then,

SXDH over Graded Encodings:

∀l s.t. pairable∗(Gl, Gl) = 0,{{gi}, gal , gbl , gabl
} ≈ {{gi}, gal , gbl , grl

}
where {gi} is the set of generators of all groups.

Finally, joint-SXDH further generalizes SXDH. It con-

siders the joint distribution of elements (gal , g
b
l , g

ab
l )l∈S

in a set S of groups, with the same exponents a, b, ab.
By the same argument above, if any two groups Gl1 , Gl2

in the set are pairable, directly or indirectly, one can

distinguish the joint distribution from the distribution of

(gal , g
b
l , g

r
l )l∈S with random exponents a, b, r. Otherwise,

in the same spirit as SXDH, the distributions are possi-

bly indistinguishable — this is exactly our joint-SXDH

assumption.

Joint-SXDH over Graded Encodings: For all Set S that

satisfies ∀l1, l2 ∈ S, pairable∗(Gl1 , Gl2) = 0:

{
{gi},

{
gal , gbl , gabl

}
l∈S

}
≈{

{gi},
{
gal , gbl , grl

}
l∈S

}

Furthermore, the subexponential joint-SXDH assump-

tion requires the above distributions to have subexponen-
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tially small distinguishing gap to all polynomial time

distinguishers.

IO from joint-SXDH on Constant-Degree Graded
Encodings. We are now ready to state our main theorem.

Theorem 1 (Main Theorem, Informal). Assume the
existence of a sub-exponentially secure n1+α-stretch

pseudorandom generator (PRG) in NC0 for any positive
constant α > 0. Then, IO for P/poly is implied by the
sub-exponential joint-SXDH assumption on a constant-
degree graded encoding scheme, with prime order and
constant universe size.

Tree-GES: The graded encoding scheme that our main

theorem relies on has a specific pairable function that

allows computing arithmatic circuits of layers of addi-

tions and multiplications; we refer to such a scheme

a tree-structured graded encoding scheme, or tree-GES
for short. Roughly speaking, a tree-GES consists of a

set of groups arranged at the nodes of a 4-ary tree,

together with a pairable function defined in the following

way. If Gl0 , Gl1 , Gl2 and Gl3 are the (groups in the)

four children of a node Gl, then pairable(Gl0 , Gl1) =
pairable(Gl2 , Gl3) = Gl, whereas all other combina-

tions are not pairable (e.g., pairable(Gl0 , Gl2) = ⊥,

and so on). Naturally, given gai

li
for i ∈ {0, 1, 2, 3}, one

can compute ga0a1+a2a3

l (one layer of multiplications

followed by additions), and cannot compute (via the

honest interface) any quadratic polynomial containing

monomials aiaj for i = j or i ≤ 1 < j.
One of the nice features of this general interface is that

it captures directly the computation structure we need

from GES, and it can be instantiated from both set-based

and graph-based (prime- as well as composite-order)

multilinear maps, which gives it a great deal of flexi-

bility. For example, while none of the previous abstract

constructions [48], [36], [32], [42] can be instantiated

based on the graph-based multilinear maps of [34], our

IO scheme will admit such an instantiation.
In the language of tree-GES, our IO construction

relies on the joint-SXDH assumption on tree-GES with

a tree of constant depth. Carrying this over to the set-

multilinear map setting, this translates to constant mul-

tilinearity and constant universe size. Our main theorem

also relies on a sub-exponentially secure polynomial

stretch PRG. See Section I-D for a discussion on this

assumption.

Our Approach via Bootstrapping FE for NC0 to IO:
Our approach towards constructing IO from constant-

depth tree-GES is through a bootstrapping step show-

ing that assuming the existence of polynomial-stretch

pseudorandom generators (PPRG) in NC0, a (collusion-

resistant) Functional Encryption (FE) scheme for NC0

implies indistinguishability obfuscation for all of P; the

FE scheme for NC0 needs to have linear efficiency, in

the sense that, encryption time depends linearly in the

message length. Then, we use constant-depth tree-GES

to implement a such FE scheme.

We invite the reader to pause for a moment and note

that while common sense would dictate that obfuscation

is more powerful than functional encryption, obfuscation

for NC0 circuits is completely trivial (namely, for each

output bit of the circuit, publish the truth table of the

circuit that generates it, and the constant number of input

bits that the output bit depends on) and yet, FE for NC0 is

far from trivial. Indeed, the theorem below says that FE

for NC0 is powerful enough to imply indistinguishability

obfuscation for all of P.

Theorem 2 (Informal, following [19], [6], [42]). As-
sume the existence of a sub-exponentially secure n1+α-

stretch pseudorandom generator in NC0 for any positive
constant α > 0. Then, IO for P/poly is implied by FE
schemes for NC0 with encryption time linear in the input
length.

The theorem follows from combining observations in

previous works [19], [6], [42], in particular, combining

randomized encoding in NC0 and PRG in NC0 to trans-

form any NC1 computation into an NC0 computation.

Constructing FE for NC0 from Constant-Degree
GES: Our main technical contribution is the construction

of an FE scheme for NC0 with linear efficiency under the

joint-SXDH assumption on tree-GES for constant-depth

trees.

Theorem 3 (Informal). Assuming the existence of a
prime-order tree-GES for depth-O(1) trees with the
joint-SXDH assumption, there is a (collusion-resistant)
FE scheme for all NC0 circuits, with encryption time
linear in message length.

Thus, put together, we get IO for P/poly, assum-

ing joint-SXDH and the existence of polynomial-stretch

PRGs in NC0. We now proceed to describe the tech-

niques behind the FE construction.

B. Technical Overview

Since Theorem 2 follows from observations in previ-

ous works, we focus on the question:

How does one construct a collusion-resistant
functional encryption scheme for NC0, with
linear efficiency?

The State-of-the-Art of Collusion Resistant FE. In the

literature, the only constructions of collusion-resistant

FE from standard assumptions are for computing inner

products, referred to as Inner Product Encryption (IPE).

Roughly speaking, a (public key or secret key) IPE

scheme allows to encode vectors y and x in a ring R,
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in a function key sky and ciphertext ctx respectively,

and decryption computes the inner product 〈y,x〉 ∈ R.

Abdalla, Bourse, De Caro and Pointcheval (ABCP) [2],

[1] came up with a public key IPE scheme based on

one of a variety of assumptions, such as the decisional

Diffie-Hellman assumption, the Paillier assumption and

the learning with errors assumption. Following that,

Bishop, Jain and Kowalczyk [16] (BJK) constructed

a secret-key scheme based on the SXDH assumption

over asymmetric bilinear maps; their scheme achieves

the stronger security property of weak function-hiding
(explained below). Both the ABCP and BJK schemes

do not compute the inner product 〈y,x〉 in the clear,

but computes it in the exponent g〈y,x〉; the BJK scheme

in fact computes the inner product θ〈y,x〉 masked by a

scalar θ in the exponent; see more discussion later.3

Given IPE schemes, it is trivial to implement FE for

quadratic polynomials: Simply write a quadratic function

f as a linear function over quadratic monomials f(x) =
Σi,jci,jxixj = 〈c,x⊗ x〉, where ⊗ is tensor product.

Then, use an IPE scheme to generate a ciphertext ctx⊗x

and a function key skc, which produce f(x). However,

the ciphertext size scales quadratically in n = |x|.
This idea easily generalizes and gives a FE scheme for

NC0 with encryption time nd, where d is the degree

of the computation. Unfortunately, improving these FE

schemes to have encryption time linear in the input

length under standard assumptions (e.g. bilinear maps)

has proved elusive.

Coming from the “other side”, Garg, Gentry,

Halevi and Zhandry (GGHZ) [32] proposed a general-

purpose FE scheme from polynomial-degree GES (with

composite-order). A natural next attempt would be to

try to specialize their FE scheme to NC0 circuits, in the

hope that we can pull off the construction using only

constant-degree GES. This wishful thinking runs into

trouble. Very roughly speaking, the GGHZ construction

works with a universal branching program and requires

GES with multilinearity that is O(�) where � is the length

of the branching program. Now, even if we only want to

handle NC0 circuits that take n bits of input, converting

them into a universal branching program results in a

program of size Ω(n).

One might hope to get around this problem by repre-

senting the NC0 circuit for each output bit as a constant-

3There has been a long line of work on “inner product testing
functional encryption” or “zero-testing IPE” (see, e.g., [40], [41] and
many others) which is different from what we need here. In IPE, we
require that function key sky and ciphertext ctx produce the inner
product in R in the exponent. In contrast, in zero-testing IPE, one can

only compute whether 〈x,y〉 ?
= 0 in R. In particular, they do not

produce the inner product in the exponent, in a way that allows for
further computation. Hence, they are insufficient for our construction
of FE for NC0.

sized branching program; however, in this case, it is not

clear how each function key can “index” the right input

bits in the n-bit input to compute on. This “indexing

problem” prevents us from tweaking the construction to

support NC0 circuits with constant multilinearity.
In this work, we come up with a completely dif-

ferent FE construction that not only gives us constant

multilinearity, but also relies on GES with prime order

and constant universe size, and the simple joint-SXDH

assumption.

Overview Towards constructing FE for NC0 with linear

efficiency from constant-degree GES, our first obser-

vation is that functionality is easy to achieve, since

NC0 circuits f can be represented as constant-degree

arithmetic circuits or polynomials, and constant-degree

GES supports evaluating constant-degree polynomials in

the exponent. Once the output y = f(x) is computed in

the exponent gy , it can be extracted as it is Boolean.

Thus, the main challenge lies in achieving security,

ensuring that the input and all intermediate computation

results are hidden.
To hide the input and computation, the first tool that

comes in mind is Randomized Encodings (RE). An

RE scheme allows one to use randomness to encode a

function f and an input x, Π
$← RE(f, x; r), so that:

1) The encoding algorithm is simple: Each element of

Π is of the form xπ(i) ·pi(r)+qi(r), where π is an

input-mapping function, and pi, qi are polynomial

functions of the randomness r. That is, a linear

function of a single input bit (and a polynomial

function of the randomness r);

2) The encoding Π reveals the output z = f(x) of

the computation and nothing more.

The key difference of RE from FE in that RE cannot

be reused, whereas the ciphertexts (respectively, function

keys) of a FE scheme can be reused across an unbounded

number of function keys (respectively, ciphertexts).

The First Idea and Challenges. Our first and foremost

idea is to combine the re-usability of IPE schemes with
the capability of hiding inputs and computations of RE
schemes, by designing techniques to use an IPE scheme

to compute randomized encodings. More specifically,

Outline of Our FE scheme
• Key Generation: To create a key skf for f ∈ NC0,

first encode f in a set of vectors {uk}, and then

publish IPE function keys skf = {skkuk
} for these

vectors, using independently sampled master keys.

• Encryption: Similarly, to encrypt an input x ∈
{0, 1}n, encode x in a set of vectors {vk}, and

encrypt them in IPE ciphertexts ctx = {ctkvk
} with

corresponding master keys.

The vectors uk and vk are set up in a way so that their

inner products 〈uk,vk〉 = Πk produce exactly the kth
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element Πk in the randomized encoding for f, x. Thus,

the IPE scheme ensures that evaluating skkuk
and ctkvk

produces Πk in the exponent gΠk

lk
in some group Glk .

In the literature, the idea of using FE for a weak

function class, to compute the randomized encodings of

a stronger function class has been used in bootstrapping

FE for NC1 to FE for P/poly [4]. In some sense, our

construction can be viewed as bootstrapping FE for inner

products to FE for NC0. Here, unique challenges arise

due to the fact that we can only compute inner products.

• Challenge 1: How to generate randomized encod-
ings using only inner products?
To do so, we crucially rely on affine randomized

encodings, where each element Πk in the encoding

of a computation f, x depends linearly on each bit

in x. The idea is then to represent each element Πk

as the inner product between some coefficient vec-

tors (depending on f ) and input vectors (depending

on x), so that, Πk can be computed using IPE.

In particular, we will use the arithmetic random-

ized encodings for NC1 of Applebaum, Ishai and

Kushilevitz [12], which is affine and has many other

useful properties.

• Challenge 2: How to generate the randomness for
randomized encodings?
Consider a scenario where our FE for NC0 scheme

is used to publish m function keys {skfj} and m
ciphertexts {ctxi

}. Every pair of key and ciphertext

skfj , ctxi computes a randomized encoding Πj,i ∈
RE(fj , xi) (in the exponent), which requires using

fresh (at least, “computationally fresh”) randomness

rji. Note that we need in total m2 “pieces” of

randomness, but has only m function keys and

ciphertexts — rji’s can only be pseudorandom.

In the case of bootstrapping FE for NC1 to FE

for P/poly, this problem is easily resolved using

Pseudo Random Functions (PRFs): One can simply

encrypt a PRF seed s together with the input x, and

the function keys evaluate the PRF on s to expand

pseudorandomness for computing the randomized

encoding. However, in our case, the functionality

of IPE does not support PRF evaluation. Not even

extremely strong local PRGs can help here, since

any quadratic-stretch PRGs (from O(m) bits to m2

bits) has at least degree 3.

We resolve this problem by, instead, relying

on built-in pseudorandomness assumption, namely

joint-SXDH, in GES. Indeed, the SXDH assumption

w.r.t. a group Gl guarantees that given a set of 2m
random elements in the exponent {gsjl , gtil }j,l∈[m],

the set of m2 products in the exponent {gsjtil }
are indistinguishable to elements {grjil } with truly

random exponents. The rji’s in the exponent will

be the randomness for generating RE. They can be

computed from short, length-2m, seeds {sj , ti} in

degree 2; just that they must reside in the exponent.

Before going into details on how to resolve the above two

challenges, we first complete the construction outline.

Achieving Functionality. Given that we can use IPE to

compute randomized encodings in the exponent {gΠk

lk
},

it is tempting to think that one can simply extract Π
if the encodings are binary, and compute the output

y in the clear. If this could be done, we would have

obtained FE for NC0 from only bilinear maps, and thus

IO from bilinear maps. The catch is that we have to use

arithmetic randomized encodings (where the elements

that compose the randomized encoding, namely Πk,

live in a large field) and cannot use binary randomized

encodings. Roughly speaking, the culprit is our solution

to Challenge 2. As mentioned above, the elements of the

randomized encodings are generated pseudo-randomly.

The randomness used for generating the randomized

encoding lives in the exponent ring R, and can only

produce pseudorandomness in the exponent through the

joint-SXDH assumption. In turn, as a result of this,

we need to use arithmetic randomized encodings (in

particular, [12]), which cannot be extracted from the

exponent, unless discrete logarithm is easy. In fact,

extracting these arithmetic randomized encodings would

lead to attacks on the joint-SXDH assumption.

Therefore, we rely on constant-degree GES to achieve

functionality, by evaluating the arithmetic randomized

encoding Π in the exponent. Evaluation produces the

output y in the exponent, which can be extracted since

it is binary. More specifically, recall that we use a tree-

structured GES that supports evaluating arithmetic cir-

cuits with a constant number of layers of multiplications

and additions, in particular, the RE evaluation circuit for

NC0 computation. We will carefully instantiate different

IPE instances (skkuk
, ctkvk

) using different groups in the

tree-GES so that IPE evaluation produces the random-

ized encoding gΠk

lk
in appropriate groups lk, on which

RE evaluation can be performed.

With these insights, let’s now circle back and resolve

challenges 1 and 2.

Resolving Challenge 1. Our key tool is the affine AIK

arithmetic randomized encodings (ARE) [12], which

depends linearly in the input. More specifically, the AIK

arithmetic randomized encoding for an (arithmetic) NC1

function f and input x ∈ Rn is computed using a set of

m = poly(n) fixed linear functions Lk as follows:{
Πk = Lk(x, r) = pk(r)xπ(k)+ qk(r); π : [m]→ [n]

}

Here, each randomized encoding element Πk depends on

a single input bit xπ(k), determined by an input mapping
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function π. The coefficients of the linear functions pk(r)
and qk(r) are fixed multi-linear polynomials that act on

the randomness r. The only part that depends on the

function f is the input mapping function.
To use IPE to compute such arithmetic randomized

encodings, the idea is that the FE key generation al-

gorithm encodes the coefficients pk(r), qk(r) and the

input mapping function π, and the FE encryptor encrypts

x; they together compute the affine functions Lk(x, r).
More precisely,

Our FE scheme, version 1
• Key Generation: To generate a key skf for f ,

sample randomness r, and publish IPE keys skf =
{skkuk

} for vectors uk = (pk(r)||qk(r)) ⊗ eπ(k)
(using independently sampled master keys).

• Encryption: To encrypt x, publish IPE ciphertexts

ctx = {ctkvk
} for vectors vk = (xi||1)i∈[n] (using

corresponding master keys).

It is easy to verify that 〈uk,vk〉 = Πk. In other

words, we achieve the goal of computing AIK arithmetic

randomized encodings using IPE. The above scheme is,

however, insecure: In particular, the randomness r for

generating randomized encodings is hardcoded in the

secret key, meaning that the randomized encodings for

the same function f and different inputs x1, x2, · · · share

the same randomness, which renders them insecure.

This leads us back to resolving the second challenge of

generating the randomness for randomized encodings.

Resolving Challenge 2. We rely on joint-SXDH to

generate randomness. What we need is that for every pair

of key and ciphertext, the randomized encoding should

use fresh (at least, “computationally fresh”) randomness.

We accomplish this by (re-)writing the affine functions

as {
Πk = Lk(x, r, s) = pk(rs)xπ(k) + qk(rs)

}

The randomness in use is the coordinate-wise multipli-

cation of r and s. We will put one multiplicative “share”

r in the key, and the other s in the ciphertext. To see

how to compute such a thing, note that if

pk(r) =
∑
j

Mkj(r) and qk(r) =
∑
j

M ′
kj(r)

where the Mkj and M ′
kj are monomials, then

pk(rs) =
∑
j

Mkj(r)Mkj(s)

and similarly for qk. We modify our FE scheme as below:

Our FE scheme, version 2
• Key Generation: To generate skf for f , sample r

and publish IPE keys skf = {skkuk
} for vectors

uk =

(
Mkj(r),M

′
kj(r)

)
j

⊗ eπ(k) (1)

• Encryption: To encrypt x ∈ {0, 1}n, sample s and

publish IPE ciphertexts ctx = {ctkvk
} for vectors

vk =

(
Mkj(s)xi,M

′
kj(s)

)
i,j

(2)

Now, the inner product 〈uk,vk〉 is the randomized

encoding element Πk generated using randomness rs.

Moreover, the AIK randomized encoding has the prop-

erty that the total number of monomials Mk,j ,M
′
k,j is

bounded by 2O(d), where d is the depth of the arithmetic

circuit computing f . Thus for NC0 computations, the

vectors uk,vk are of length O(n), linear in the input

length, giving us the desired linear efficiency property.

Overview of Security Proof FE security states that the

ciphertexts ctx0 and ctx1 of inputs x0 and x1 should be

indistinguishable, even in the presence of keys {skfj}
as long as they satisfy that fj(x

0) = fj(x
1) for every

j. We want to reduce this indistinguishability to the

security of randomized encodings — that encodings

{Π0
j} for fj , x

0, and encodings {Π1
j} for fj , x

1 are

indistinguishable. But, before invoking RE security, we

must first argue that the input xb is hidden, and the

randomness {rjs} for generating Πb
j is jointly pseudo-

random. This is certainly not the case w.r.t. honestly

generated keys and ciphertexts: First xb is embeded in

the ciphertext, and second it seems impossible to argue

that the products {rjs} are pseudorandom, when rj and

s reside respectively in IPE keys and ciphertexts that can

be paired together.

To resolve this conundrum, our idea is leveraging the

function hiding property of a secret-key IPE scheme, in

order to “move” the input xb and s into the function

keys in security hybrids. Let us explain. The function

hiding property guarantees that IPE keys and cipher-

texts for two sets of vectors {ai,bi} and {a′i,b′
i} are

indistinguishable if they produce identical inner products

〈ai,bj〉 = 〈a′i,b′
j〉. We now further modify the FE

scheme to encode vectors with some trailing zeros.

Our FE scheme, version 3
• Key Generation: To generate skf for f , sample r

and publish IPE keys skf = {skkuk
} for vectors

u′
k = uk || 0, where uk is described in Equation (1).

• Encryption: To encrypt x ∈ {0, 1}n, sample s and

publish IPE ciphertexts ctx = {ctkvk
} for vectors

v′
k = vk || 0, where vk is described in Equation (2).

The trailing zeros do not affect the functionality. But,

in the security proof, they provide the crucial “space”

for hardwiring the randomized encoding Πb in the

function key skf , without computing it. More specif-

ically, in the proof, we move to a hybrid, encoding

vectors of form u′′
k = uk||Πk, and v′′

k = 0||1. Since

〈u′′
k ,v

′′
k〉 = 〈u′

k,v
′
k〉 = 〈uk,vk〉, by function hiding

of IPE, this hybrid is indistinguishable to the honest
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execution. Notice that in this hybrid, the ciphertext

contains no information of the input xb, and the key

for a function fj has the corresponding randomized

encoding Πb
j (for fj , x

b) hardwired in. Furthermore, the

fact that the randomness share s disappears eventually

allows us to argue that {rjs} used for generating {Πb
j}

are pseudorandom. Then, we can finally invoke the RE

security, that {Π0
j} and {Π1

j} are indistinguishable, to

argue that FE security holds.

The proof strategy of using computational assump-

tions to reduce the FE security to RE security resembles

that of many FE and IO schemes in the literature in a

high level (e.g., [36]), but the details of how we make

this approach go through are very different.

Additional Challenges Additional challenges must be

addressed in order to make the above security proof

overview go through. First, applying joint-SXDH to

argue the pseudorandomness of {rs} is tricky. This

is because we (have to) compute elements Πk in a

randomized encoding Π in different groups gΠk

lk
in order

to further evaluate Π in the exponent. But, the collec-

tion of elements {Πk} are correlated through shared

randomness rs. An attacker can potentially leverage

this correlation, and through computation over different

groups, distinguish Πk generated from rs and that from

true randomness. It turns out that the structure of the

tree-GES, together with the join-SXDH assumption is

exactly what we need to prevent all attacks that arise

out of such correlations.

Second, the above proof relies on a secret key IPE that

is fully function hiding. Looking back into the literature,

we see that the BJK secret key IPE [16] is only weak

function hiding. A followup work [28] constructed fully

function hiding secret-key IPE. In this work, we show

how to generically transform any weak function hiding

IPE to full function hiding IPE; our transformation is

black-box, extremely simple and of independent interest.

A further issue is that these function hiding secret-key

IPE schemes do not produce the inner product in the

exponent directly g〈u,v〉, but produce the inner product

masked by a scalar (g〈u,v〉θ, gθ), where the scalar θ is

determined by the randomness used in key generation

and encryption. This creates the problem that random-

ized encoding elements computed using different IPE

instances are masked by distinct scalars (gΠkθk
lk

, gθk),
preventing RE evaluation in the exponent. To resolve

this, in our FE scheme, the secret-key IPE instances

{skkuk
, ctkvk

} are generated using different master secret

keys, but the same randomness. Thus, they produce

randomized encoding elements masked by the same

scalar (gΠkθ
lk

, gθ) and then evaluation can be done as

before. As a result, we need function hiding secret-key

IPE that allows sharing randomness among instances

generated using different master secret keys. It turns out

that our function hiding secret-key IPE derived from the

BJK scheme has this property.

Stitching all pieces together, we obtain a secret-key

FE for NC0 with linear efficiency, from constant-depth

tree-GES.

Slotted IPE and Public-key FE. We have to go one

step further to construct a public-key FE for NC0 with

linear efficiency. The natural first idea is to use, instead

of a secret-key function-hiding IPE scheme, a public-

key function-hiding IPE. However, a moment’s reflection

tells us that such an object cannot possibly exist: that is,

the properties of function-hiding and being public-key

do not play well with each other.

Our solution to this issue is to construct a “hybrid”

encryption scheme that we call a slotted inner product
encryption (or slotted IPE) scheme. Roughly speak-

ing, a slotted IPE scheme generates keys for vectors

ypub||ypriv , encrypts vectors xpub||xpriv, and given the

functional secret key, computes an inner product between

them. Crucially, a slotted IPE scheme has the following

seemingly contradictory properties:

• Public Key for the first Slot: Anyone can encrypt

vectors of the form xpub||0. (However, it is compu-

tationally hard to encrypt any vector with a non-zero

component in the second slot.) The usual notion

of semantic security holds, that is, encryption of

xpub||xpriv and x′
pub||x′

priv are indistinguishable

if all published function keys do not separate them.

• Function Hiding for the second Slot: We require

hiding for the second component of the vector

in the secret key. That is, the following two

worlds are indistinguishable: In the first world,

one gets the secret key for ypub||ypriv and the

ciphertext for 0||xpriv, and in the second world,

one gets the secret key for ypub||y′
priv and the

ciphertext for 0||x′
priv such that 〈xpriv,ypriv〉 =

〈xpriv
′,ypriv

′〉.

It turns out that this notion is the right combination

of public-key and function-hiding FE which is both

achievable and useful. Slotted IPE is similar in spirit to

objects defined in [40] and also similar to (but simpler

than) the slotted FE definition of [32]. Replacing the

secret-key IPE with a slotted IPE in our construction

yields a public-key FE for NC0 with linear efficiency.

Constructing Slotted IPE from Joint SXDH. The final

piece of the puzzle is to construct a slotted IPE scheme.

We do this by combining our secret key function hiding

IPE scheme, derived from the BJK scheme [16], and the

public-key IPE scheme of Abdalla et al. [2].
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C. Noisy Graded Encodings

So far, we described our constructions and security

proof in the language of clean graded encodings, how-

ever all the instantiations [29], [27], [34] are for noisy
graded encodings. Our constructions of FE for NC0 and

IO can be instantiated with noisy graded encodings.

However, the security reduction to the joint-SXDH as-

sumption does not go through, as the reduction performs

scalar multiplication in order to “re-purpose” elements in

the joint-SXDH assumption, to elements in the security

experiments of FE for NC0. Known noisy instantiations,

when modified to support scalar multiplication, succumb

to attacks. Nevertheless, our FE for NC0 scheme when

instantiated with ideal noisy graded encodings is secure.

We leave it as an interesting open question whether our

construction of FE or IO is secure (or can be made

secure) in the recently proposed weakly ideal multilinear

model [45], [46], [33] which seems to capture all known

attacks against noisy graded encodings.

D. Local PRGs

We briefly survey constructions of low depth PRGs.

See Applebaum’s book [8] for more references and dis-

cussions. Applebaum, Ishai, and Kushilevitz [10] showed

that any PRG in NC1 can be efficiently “compiled” into

a PRG in NC0 using randomized encodings, but with

only sub-linear stretch. Unfortunately, to the best of our

knowledge, there is no construction of PRG in NC0 with

super-linear stretch from well-known assumptions. But,

there are candidate constructions.

The authors of [10] constructed a linear-stretch PRG

in NC0 under a specific intractability assumption related

to the hardness of decoding “sparsely generated” linear

codes [11], previously conjectured by Alekhnovich [3].

Goldreich’s one-way functions f : {0, 1}n → {0, 1}m
where each bit of output is a fixed predicate P of a

constant number d of input bits chosen at random, is

also a candidate PRG when m > n. Several works

investigated the (in)security of Goldreich’s OWFs and

PRGs: So far, there are no successful attacks when

the choice of the predicate P avoids certain degenerate

cases [26], [20], [47], [13].

We refer the reader to the full version of this paper

for detailed constructions and proofs.
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