
Bounded-Communication Leakage Resilience via Parity-Resilient Circuits

Vipul Goyal∗, Yuval Ishai†,‡, Hemanta K. Maji§, Amit Sahai‡ and Alexander A. Sherstov‡
∗Microsoft Research
Bangalore, India.

Email: vipul@microsoft.com
†Department of Computer Science

Technion, Haifa, Israel.
Email: yuvali@technion.ac.il
‡Department of Computer Science

University of California, Los Angeles, USA.
Email: {sahai,sherstov}@cs.ucla.edu
§Department of Computer Science

Purdue University, West Lafayette, USA.
Email: hmaji@purdue.edu

Abstract—We consider the problem of distributing a com-
putation between two parties, such that any bounded-
communication leakage function applied to the local views of
the two parties reveals essentially nothing about the input.
This problem can be motivated by the goal of outsourcing
computations on sensitive data to two servers in the cloud,
where both servers can be simultaneously corrupted by viruses
that have a limited communication bandwidth.

We present a simple and efficient reduction of the above
problem to that of constructing parity-resilient circuits, namely
circuits that map an encoded input to an encoded output so that
the parity of any subset of the wires is essentially independent
of the input. We then construct parity-resilient circuits from
circuits that are resilient to local leakage, which can in turn
be obtained from protocols for secure multiparty computation.
Our main reduction builds on a novel generalization of the “ε-
biased masking lemma” that applies to interactive protocols.

Applying the above, we obtain two-party protocols with
resilience to bounded-communication leakage either in the
information-theoretic setting, relying on random oblivious
transfer correlations, or in the computational setting, relying
on non-committing encryption which can be based on a variety
of standard cryptographic assumptions.

Keywords: Leakage-resilient cryptography, communica-
tion complexity, ε-biased masking.

I. INTRODUCTION

The goal of leakage-resilient cryptography is to maintain
the traditional guarantees of cryptography even when partial
information about internal secrets can be leaked. A central
theme of research in this area is that of securing general
computations against leakage. Originating from [1], [2], [3],
this goal has been pursued in a variety of computational
models and with different types of natural leakage functions.

In this work we focus on securing general computations
against leakage in the following simple scenario. Suppose
that a client wishes to outsource the computation of a
function f on a sensitive input x to the cloud. The client

trusts the cloud servers to perform the computation correctly,
but would like to ensure that no information about x is
revealed. A direct solution is to have the client encrypt x
using fully homomorphic encryption (FHE) [4], and have a
cloud server compute f on the encrypted input. However,
FHE is currently still quite far from being practical, its
existence relies on a relatively narrow class of cryptographic
assumptions related to the intractability of lattice problems,
and its fully compact form requires an ad-hoc circular
security assumption.

A potentially more efficient alternative approach is to
distribute the computation of f between two non-colluding
servers. That is, the client starts by secret-sharing x between
the two servers. This step should be done very efficiently,
e.g., in quasi-linear time, and should be independent of the
function f . Given a description of f , the servers then engage
in an interactive secure two-party computation protocol [5],
[6] for evaluating the shares of y = f(x) from the shares of
x. Finally, the servers send the shares of y back to the client,
who reconstructs the output. Again, the final reconstruction
step should be efficient and independent of f .

In addition to not requiring the use of FHE, such two-
server solutions offer several other advantages over the
single-server solution: They can minimize the amount of
work performed by the client (eliminating expensive “cryp-
tographic” computations), they can provide information-
theoretic security given correlated randomness between the
servers that can be set up before the input x is known,
and they do not require the client to maintain a secret
state for reconstructing the output. The latter feature is
useful for accommodating more general scenarios in which
inputs originate from and/or outputs are delivered to multiple
clients.

Bounded-communication leakage. If such a two-server
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solution is implemented using standard protocols for secure
two-party computation, the client is protected against any
single corrupted server. The question we consider is that
of providing a meaningful protection even when the two
servers are simultaneously corrupted. We envision a scenario
where both servers are infected by cooperating viruses, but
the viruses are subject to a bound on the total number of bits
they can communicate with each other. We refer to this type
of leakage as bounded-communication leakage (BCL). Our
goal is to design BCL-resilient two-party protocols, namely
ones that allow the servers to interactively compute shares of
f(x) from shares of x while completely hiding x from the
viruses. See Figure 1 for an illustration of this motivating
scenario.

Client with
input x

Server 1 Server 2

x̂1 x̂2

Virus 1 Virus 2

Client computes
output y

ŷ1 ŷ2

Figure 1. Motivating Example.

Note that the standard notion of security for two-party
protocols coincides with BCL-resilience when the commu-
nication bound is 0 (i.e., the viruses cannot communicate at
all). However, the security guarantees of standard protocols
for secure two-party computation break down if even a small
amount of leakage is allowed [7]. In particular, both “GMW-
style” protocols and “Yao-style” protocols effectively gen-
erate a simple secret-sharing of all intermediate values of
the computation, and any such intermediate value can be
recovered using a single bit of leakage regardless of the
amount of communication required to compute this value
given the inputs alone.

Other than the restriction on the total amount of commu-
nication between the viruses, we do not impose any other
restriction on the way they may interact. For instance, the
viruses may first store their local views of the entire pro-
tocol execution, and only then run a multi-round (bounded-
communication) protocol for recovering information about
the secret input x from their local views. We do assume,
however, that the viruses are passive in the sense that they
do not tamper with the messages sent by the infected servers
during the protocol execution.

The BCL assumption can be justified by the existence
of virus detection mechanisms that make it difficult for
the viruses to directly communicate with each other or
to alter the messages sent by the servers without being

detected. Still, the viruses can communicate at a slow rate,
e.g., by carefully controlling the timing of the messages.
Earlier works that impose bounds on the communication of
adversarial parties include [8], [9], [10], [11].

A very different motivating scenario for the BCL assump-
tion is that of protecting the computation performed by the
servers against unintentional leakage of partial information
resulting from the computation process itself. This type of
leakage is captured by the “only computation leaks” (OCL)
assumption put forward in the influential work of Micali and
Reyzin [2]. The OCL assumption is typically motivated by
side-channel leakage in hardware implementations, where
the servers correspond to different hardware components.
The BCL assumption we consider is less restrictive in that it
can apply globally to the entire views of the servers through-
out the protocol execution, regardless of the way in which
computations are carried out. Making the stronger OCL
assumption does not seem to make the problem considerably
easier. On the other hand, unlike previous works on the OCL
model, in this work we focus on a simple single-execution
setting, where only one (stateless) computation is being
performed, as opposed to the more challenging continuous
leakage setting in which a sequence of computations with a
common secret state are subject to leakage. The following
comparison captures the best adaptations of previous results
to our simpler model, ignoring FHE-based solutions [12],
[13] that are trivialized in our single-execution setting.

The first goal of the present work is to study the feasibility
of BCL-resilient computation.

Under which cryptographic assumptions or setup
assumptions can general computations be pro-
tected against bounded-communication leakage?

The prior state of the art can be summarized as fol-
lows. In the information-theoretic setting, a construction
of Dziembowski and Faust [14] (the “DF-construction” for
short) provides unconditional security by employing leak-
free hardware components whose size must inherently grow
with both the leakage bound and the statistical security
parameter. Concretely, each hardware component samples
a random pair of orthogonal vectors that are distributed
to the two servers. The security of the construction breaks
down if the entire output of any component is leaked. While
some form of setup seems necessary in the information-
theoretic setting even without leakage,1 the DF-construction
leaves open the possibility of using constant-size (or “finite”)
hardware components, namely ones whose size does not
depend on the leakage bound or the statistical security
parameter.

1Indeed, all known approaches for information-theoretic secure two-
party computation using correlated randomness require the entropy of the
correlated randomness to be bigger than the circuit size, except for the
extreme case of exponential-size circuits [15]. Thus, the small amount of
correlated randomness provided by the client’s messages is unlikely to be
sufficient.
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The breakthrough work of Goldwasser and Rothblum [16]
and subsequent variants of Bitansky et al. [17] show that
information-theoretic OCL and BCL security is possible
even without any setup. However, these protocols require
a large number of servers, whereas in this work we focus
on 2-server solutions.

In the computational security model, Dachman-Soled et
al. [18] showed how to instantiate the hardware components
of the DF-construction in the plain model by using a strong
form of deniable encryption [19], whose only known instan-
tiations rely on indistinguishability obfuscation (iO) [20],
[21]. The possibility of computational solutions in the plain
model that do not rely on FHE or iO remained open.

In addition to the feasibility questions, we will be inter-
ested in the achievable leakage rate, measured as the ratio
between the leakage communication bound c and the size
S of the circuits required for implementing the protocol for
f . (This captures the fractional information leakage about
internal computation steps.) We will also be interested in
the computational overhead of protocols, measured as the
ratio between S and the circuit size of f , denoted by s.

What are the best achievable leakage rate and
computational overhead of BCL-resilient proto-
cols?

In previous two-party solutions that do not rely on FHE
the leakage rate is worse than 1/cs, which is inherited from
the parameters of the DF-construction (see Table 1 in [18]).
Moreover, the computational overhead of these solutions is
at least quadratic in c. The latter holds also for protocols
from [16], [17] that involve more than two servers.

A. Our Results

We introduce a simple and general technique for con-
structing and analyzing BCL-resilient protocols. Our tech-
nique yields efficient protocols that achieve information-
theoretic security using a minimal setup, or alternatively
provide computational security under a variety of standard
assumptions.

The BCL-resilient protocols we construct can be obtained
from any standard protocol for secure multiparty compu-
tation (MPC), where the security threshold of the MPC
protocol serves as a leakage communication bound in the
BCL-resilient protocol. Alternatively, they can be obtained
from any multi-server OCL-resilient protocol (such as the
one from [16]), where the statistical error of the multi-server
protocol determines the leakage bound of the two-server
protocol.

More concretely, we obtain the following new results on
BCL-resilient protocols.
• FEASIBILITY: INFORMATION-THEORETIC SETTING.

We construct (2-server) BCL-resilient protocols with
information-theoretic security using only an oblivious
transfer (OT) setup. That is, the servers either have

access to an OT oracle or to constant-size leak-free
hardware components that produce OT correlations.2

As discussed above, this is the best one can hope for
barring a major breakthrough in information-theoretic
cryptography. This should be contrasted with the hard-
ware components required by the DF-construction,
whose size should grow with both the leakage bound
and the security parameter.

• FEASIBILITY: COMPUTATIONAL SETTING. We obtain
the first 2-server computational BCL-resilient protocols
(in the plain model) that do not rely on FHE or iO.
Concretely, our construction only requires the use of
non-committing encryption (NCE) [22], which can be
based on a variety of standard cryptographic assump-
tions that include the intractability of factoring Blum
integers [23] or Decisional Diffie Hellman [24]. These
instantiations make a crucial use of the simple setup of
our information-theoretic protocols.

• LEAKAGE RATE AND COMPUTATIONAL OVERHEAD.
Our BCL-resilient protocols, in both settings, offer
qualitative improvements in leakage rate and efficiency
over previous protocols. Recall that in the information-
theoretic setting, the 2-server DF-construction [14] the
leakage bound is inherently smaller than the size of
the trusted hardware compontents. Moreover, previous
solutions in both settings [14], [16], [17], [18] involve
multiplicative computational overhead on the server
side which is bigger than the leakage bound. Our
protocols get around these limitations. In particular,
whenever f can be computed by a circuit whose size
s and depth h satisfy the mild conditions s ≥ c2 and
s ≥ h2, where c is the leakage communication bound,
we can tolerate Ω̃(

√
s) bits of leakage with logO(1)(c)

computational overhead using either constant-size hard-
ware (alternatively, OT-correlations) or NCE.
More generally, if f : {0, 1}n → {0, 1}n is computable
by a circuit of size s and depth h, then we get BCL-
resilient protocols with security against c bits of leakage
where the client can be implemented by circuits of size
Õ(n + c), and where the servers can be implemented
by circuits of size Õ(s + ch + c2) in the information-
theoretic protocols, or alternatively invoke an NCE
protocol a similar number of times in the computational
protocols. These parameters are inherited from known
honest-majority MPC protocols [25]. The information-
theoretic protocols can be efficiently implemented by
having the client distribute the instances of the OT
correlation to the servers in an offline preprocessing

2An OT correlation delivers a pair of random bits (s0, s1) to one server
and the pair (b, sb) to the other, where b is a random bit.
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phase, before the input x is known.3

The above results are based on two technical ingredients
that may be considered as independently interesting results:
(1) the construction of so-called parity-resilient circuits,
a natural computational analogue of small-bias genera-
tors [26]; and (2) a generalization of the so-called ε-biased
masking lemma [27] that applies to interactive protocols.
These are described in the next section.

B. Overview of Techniques

We start by observing what goes wrong when trying to
evaluate f using a very simple protocol for secure two-
party computation, namely the “GMW protocol” [6], [28]
for passive adversaries when implemented over ideal OT. In
this protocol, the local views of the two parties essentially
form an additive secret sharing of the gate values in a circuit
computing f . That is, letting z denote the vector of gate
values on the input x, the joint views are distributed as
(z ⊕ r, r) where r is a uniformly random bit-string.

This protocol miserably fails in achieving our goal: any
intermediate value zi in the computation of f can be revealed
by leaking only a single bit from a local view. Moreover,
by the F2-linearity of the secret sharing of z, revealing
an arbitrary parity of bits from a local view reveals the
corresponding parity of the bits of z.

The first idea is that in order to protect the protocol
against such simple parity attacks, it suffices to protect the
computation of f via a parity-resilient circuit: a randomized
circuit that receives a randomized encoding x̂ of an input
x and produces an encoded output ŷ, where the parity of
any subset of the gate values (when evaluating the circuit
on x̂) reveals essentially nothing about x. A bit more
precisely, the circuit is ε-parity-resilient if for any inputs
x, x′, the distributions of the gate values z(x̂) and z(x̂′) are
ε-indistinguishable by parity functions.

Using such a parity-resilient circuit, we can easily obtain
a protocol with resilience to a single bit of parity leakage.
The client locally encodes the input x, and additively shares
the encoding x̂ between the two servers. The servers now
run the GMW protocol to obtain additive shares of an output
encoding ŷ. The shares of ŷ are sent back to the client, who
decodes y.

Constructing parity-resilient circuits. We turn to the ques-
tion of constructing parity-resilient circuits. Despite this
being a very natural object, we are not aware of any previous
related study. Our first observation is that any multi-party
protocol which is ε-resilient to a single bit of OCL leakage
per computation step, such as the protocol of [16], directly
implies an ε-parity-resilient circuit. Indeed, arbitrarily rep-
resenting each computation step by a boolean circuit, the

3Note that the DF-construction can also be implemented in this setting
by having the client distribute (large) instances of an inner product corre-
lation instead of OT correlation. However, our protocol has the efficiency
advantages discussed above.

parity of an arbitrary subset of gates can be recovered using
a single bit of leakage from each computation step. However,
given the complexity and the relatively poor parameters of
the construction from [16] and its variants, we seek an
alternative and more direct construction.

Our main construction of parity-resilient circuits can be
based on any general MPC protocol that offers security
against k passively corrupted parties. The construction is
broken into several modular steps, where the first two
steps mimic previous constructions of small-bias PRGs
from bounded independence [29], [30]. The first step is a
transformation of a k-secure MPC protocol into a k-private
circuit, namely a circuit with the same syntax as parity-
resilient circuits, except that the joint values of any k gates
should reveal nothing about x. The transformation, pointed
out in [1], is straightforward: let f ′ denote a randomized
function which maps a secret-shared input for f to a secret-
shared output for f . Then, a k-secure MPC protocol for
f ′ can be directly implemented as a k-private circuit. The
second step replaces each atomic gate in the k-private circuit
by a constant-size (“finite”) randomized gadget that maps a
non-linear encoding of the inputs to a non-linear encoding
of the output. The existence of a gadget with the required
properties follows by a probabilistic argument (cf. [31]),
however we also give a simple explicit construction of a
gadget g : {0, 1}9 → {0, 1}3.

The combination of the above two steps gives a construc-
tion of 2−Ω(k)-parity-resilient circuits over the finite gadget,
where the size of a parity resilient-circuit for f is linear
in the circuit size of the k-secure MPC protocol for f ′.
Somewhat surprisingly, turning a circuit over g to a circuit
over a standard binary gates is not as straightforward as
it may seem. In particular, a naive implementation of g
will compromise parity resilience. Instead, we will consider
for now a natural generalization of the GMW protocol that
works over g-gates instead of binary gates by using a finite
two-party oracle H instead of the standard OT oracle. When
applied to a parity-resilient circuit over g, this protocol
generates a pair of views distributed as (z ⊕ r, r), where
z is a parity-resilient encoding of the input. The protocol
still offers resilience to a single bit of parity-leakage.

From parities to bounded communication via gener-
alized ε-biased masking. Our next, and most technical,
step is arguing that parity-resilience automatically implies
general BCL-resilience with related parameters. Concretely,
we prove the following theorem. Suppose that µ0 and µ1

are two distributions that are ε-indistinguishable by parities.
Then any interactive two-party protocol with c bits of
communication can have at most an ε · 2c/2 advantage in
distinguishing between a secret sharing of µ0 and µ1, namely
between the distributions (µ0 ⊕ r, r) and (µ1 ⊕ r, r), where
r is a random bit-string chosen independently of µ0, µ1.
This means that as long as ε� 2−c/2, an ε-parity-resilient
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circuit (combined with the GMW protocol) offers good
BCL-resilience against c bits of leakage. Together with the
above, we get a transformation from k-secure MPC protocols
to BCL-resilient protocols over a finite two-party oracle H
that tolerate Ω(k) bits of leakage.

Specializing the above theorem to 1-message protocols
and for the case where one of the two distributions is uni-
form, the theorem can be shown to be essentially equivalent
to the so-called ε-biased masking lemma from [27]. The
ε-biased masking lemma says that M ⊕ X , where M is
a high entropy source and S is an independent small-bias
distribution, is statistically close to uniform. See the full
version [40] for a proof of the equivalence. Our theorem
is more general in two orthogonal ways: it applies to
multi-round protocols, and it extends pseudorandomness to
indistinguishability. In light of the usefulness of the original
ε-biased masking lemma in cryptography (see, e.g., [32],
[33], [34], [30]) we expect our generalized version to find
additional applications.

Wrapping up. The above is almost enough to get our results
for the information-theoretic model. The only remaining step
is to replace the finite oracle H by a standard OT oracle,
or alternatively an OT correlation. (The latter protocols
directly imply parity-resilient circuits over the binary basis.)
This step follows by observing that a simple deterministic
reduction from H to OT respects BCL-resilience. More
generally, to respect BCL-resilience we need such reduc-
tions to satisfy a strong notion of security we refer to as
joint simulation security. This notion, previously considered
in [18], strengthens the standard simulation-based definition
of secure computation by considering the outputs of the two
simulators jointly. To make this possible, the two simulators
share a common source of randomness. Finally, we obtain
our results for the computational model by observing that
the standard construction of OT from NCE is also secure
under the strong joint simulation requirement.

These final steps crucially rely on the constant-size setup
feature of our information-theoretic protocols. Indeed, the
setup required previous DF-construction could only be in-
stantiated in the plain model using iO [18]. This qualitative
difference between our constant-size setup and the compu-
tationally simple inner-product setup required by DF may
seem surprising. However, natural attempts to realize the DF
setup via standard protocols for secure two-party computa-
tion (even ones that offer adaptive security [22]) fail. This
can be attributed to the fact, already discussed above, that
applying a low-communication leakage attack to standard
secure computation protocols [5], [6] reveals intermediate
values of the computation that cannot be computed via a
low-communication protocol.

More broadly, obtaining “leakage tolerant” forms of
information-theoretic protocols for functions with a super-
polynomial input domain appears to be a difficult task even

for simple functions [35]. We bypass this problem by using
constant-size oracles, whose brute-force secure evaluation
using a truth-table representation is trivially leakage tolerant.

See Figure 2 for a roadmap of the different steps of
our construction and the relations between different types
of leakage-resilient objects and Section II for the relevant
definitions and formal theorem statements.

C. Open Problems

Our work gives rise to two natural open questions: ex-
tending the results from the single-execution setting to the
more challenging continuous leakage setting, and obtaining
similar information-theoretic results in a multi-party setting
without a setup (reproducing the result of [16] with better
parameters). We believe that the ideas introduced in this
work will serve as a useful basis for such extensions.

II. OUTLINE OF DEFINITIONS AND THEOREMS

A. Definitions

We consider boolean circuits over a basis B of gates. Each
gate in B computes a function of the form g : {0, 1}α →
{0, 1}β . When the basis is not specified, it is understood
to be the full binary basis B = {AND,OR,NOT,XOR}
where AND,OR,XOR gates have fan-in 2. We will consider
both deterministic and randomized circuits (a circuit is
deterministic by default). We let |C| denote the number of
gates in C, also including inputs and randomness gates.

We consider a simple model for leakage-resilient cir-
cuits that generalizes the stateless variant of private circuits
from [1] (see also [3], [36]). Such circuits map an encoded
input for a function f into an encoded output, where the
internal gate values of C should hide the input in the
presence of partial leakage.

Definition 1 (Leakage-resilient circuits and k-private cir-
cuits). For f : {0, 1}ni → {0, 1}no , a leakage-resilient
circuit for f is defined by (I, C,O), where:

• I : {0, 1}ni → {0, 1}n̂i is a randomized input encoder
circuit, which maps an input x to an encoded input x̂;

• C is a randomized circuit, mapping an encoded input
x̂ ∈ {0, 1}n̂i to an encoded output ŷ ∈ {0, 1}n̂o ;

• O : {0, 1}n̂o → {0, 1}no is a deterministic output
decoder circuit, which maps an encoded output ŷ to
an output y.

We say that (I, C,O) is an (L, ε)-leakage-resilient im-
plementation of f , for a leakage function L : {0, 1}|C| →
{0, 1}∗ and ε ≥ 0, if the following requirements hold:
• Correctness: For any input x ∈ {0, 1}ni , we have

Pr[O(C(I(x))) = f(x)] = 1, where the probability
is over the randomness of I and C;

• Leakage-resilience: For any x, x′ ∈ {0, 1}ni , the statis-
tical distance between the distributions L(C[I(x)]) and
L(C[I(x′)]) is at most ε, where C[x̂] denotes the joint
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Honest-majority MPC

Private circuit

Parity-resilient circuit over a finite basis

BCL-resilient 2-party protocol over a finite oracle

BCL-resilient 2-party protocol over OT

Parity-resilient circuit
over the standard basis

Computational BCL-resilient
2-party protocol in the plain model

(assuming non-committing encryption)

Multi-party
OCL protocol

(e.g., [16])

[1](instantiated with
[25] in Theorem 1)

Theorem 2

Theorem 4 (using generalized
GMW+Theorem 3)

Lemma 1

Corollary 6
Corollary 5 +Theorem 7

Using GMW +
Theorem 3

Figure 2. Relations between different notions of leakage-resilient circuits and protocols.

distribution of the |C| gate values in the computation
of C on input x̂.

For a class L of leakage functions, we say that (I, C,O) is
an (L, ε)-leakage-resilient implementation of f , if it is an
(L, ε)-leakage-resilient implementation of f for all L ∈ L.
We say that (I, C,O) is a k-private implementation of f
if it is an (L, 0)-leakage-resilient implementation of f for
the class L of all k-bit projection functions (which output k
fixed entries of the input).

Without any requirements on I and O, the above definition
can be met by having I compute a leakage-resilient secret
sharing of the input that is passed by C directly to the
output decoder. The decoder decodes the circuit output and
computes f . To rule out such a solution, we require the
encoder and the decoder to be universal (i.e., depend only
on ni, no and the circuit size of f but not on f itself).
Furthermore, we would like the encoder and decoder size
to be considerably smaller than the circuit size f . These
requirements effectively force C to perform the bulk of the
computation in a leakage-resilient manner.

The following bound on the efficiency of k-private circuits
follows by implementing a secure multiparty computation
protocol from [25] as a circuit, via the general transformation
suggested in [1]. The protocol achieves security against k
semi-honest parties by using n = O(k) parties. The private
circuit is obtained by applying the protocol to the function
which maps a secret sharing of the input for f to a secret
sharing of the output of f . In the private circuits model,
the secret sharing of the input is implemented by the input
encoder and the reconstruction of the output from its shares
is implemented by the output decoder.

Theorem 1 (Implicit in [25]). There is an efficient algo-

rithm Q such that for every positive integer k and every
circuit Cf of size s and depth h computing a function
f : {0, 1}ni → {0, 1}no , the output of Q(1k, Cf ) is a k-
private implementation (I, C,O) of f with |I| = Õ(ni+k),
|C| = Õ(s+ kh+ k2) and |O| = Õ(no + k).

We will be particularly interested in the following special
case of leakage-resilient circuits.

Definition 2 (Parity-resilient circuits). We say that (I, C,O)
is an ε-parity-resilient implementation of f if it is an (L, ε)-
leakage-resilient implementation of f for the class L of all
parity functions, namely the class of functions that output
the parity of a subset of the wires.

The main goal of this work is to construct two-party
protocols that are resilient to bounded-communication leak-
age. We consider two-party protocols that start with encoded
inputs and end with encoded outputs. Furthermore, we also
consider protocols that receive correlated random inputs, or
alternatively invoke a two-argument function as an oracle.

Definition 3 (Two-party protocol with encoded input and
output). A two-party protocol for f : {0, 1}ni → {0, 1}no is
defined by Π = (I, (R1, R2), (M1,M2), O), where:

• I : {0, 1}ni → {0, 1}n̂i×{0, 1}n̂i is a randomized input
encoder circuit, which maps an input x for f to a pair
of protocol inputs (x̂1, x̂2).

• R1 and R2 are distributions over {0, 1}nr that capture
the random inputs of the two parties. They are assumed
to be uniform and independent by default. Otherwise,
we say that Π uses correlated randomness (R1, R2).

• M1 and M2 are deterministic next message functions,
where Mj determines the next message to be sent by
party j as a function of its input x̂j , random input rj ,

666



and the sequence of previous messages received from
the other party. Messages are sent in rounds, where
party 1 sends messages in odd rounds and party 2 in
even rounds. After a predetermined number of rounds,
the function Mj returns a local output ŷj ∈ {0, 1}n̂o

for party j.
• O : {0, 1}n̂o × {0, 1}n̂o → {0, 1}no is a deterministic

output decoder circuit, which maps a pair of protocol
outputs (ŷ1, ŷ2) to an output y of f .

For x ∈ {0, 1}ni , we denote by Π(x) the output of π on input
x, namely the result of applying the input encoder I to x,
interacting as specified by (R1, R2), (M1,M2), and apply-
ing the output decoder O to the pair of protocol outputs. We
say that Π correctly computes f : {0, 1}ni → {0, 1}no if for
every input x ∈ {0, 1}ni we have Pr[Π(x) = f(x)] = 1.

We denote by view(x) the joint distribution (view1, view2)
obtained by running Π on input x, where viewj includes
the encoded input x̂j , the random input rj (sampled from
Rj), and the sequence of messages received by party j.
(The messages sent by party j as well as its output ŷj are
uniquely determined by viewj .) We denote by |Π| the total
circuit size required for implementing all invocations of the
next message functions, including the input and randomness
gates.

Finally, we also consider oracle-aided protocols, where
the parties can invoke a two-party oracle H : {0, 1}α1 ×
{0, 1}α2 → {0, 1}β . After receiving an input from each
party, the oracle delivers the output to party 2. In an oracle-
aided protocol, the outputs of the next message function Mj

also include messages sent by party j as inputs to H and the
inputs of M2 include messages received by party 2 as outputs
of H . The oracle may be invoked several times in parallel,
where each party can send inputs to several invocations of
H in a single round.

We now define our main notion of bounded-
communication leakage resilience.

Definition 4 (BCL-resilient protocol). We say that Π is
a (c, ε)-bounded-communication leakage resilient proto-
col for f (or (c, ε)-BCL-resilient for short) if Π cor-
rectly computes f , and the following security requirement
holds. For any communication protocol π : {0, 1}n1 ×
{0, 1}n2 → {0, 1} with communication complexity at most
c, and any pair of inputs x, x′ ∈ {0, 1}ni we have
|Pr[π(view(x)) = 1]− Pr[π(view(x′)) = 1]| ≤ ε, where
nj = |viewj |.

For a polynomial-time computable f : {0, 1}∗ → {0, 1}∗,
the above definition can be naturally extended to capture
computational BCL-resilient protocols for f . Such a proto-
col is specified by PPT algorithms Π = (I, (M1,M2), O).
We say that Π is computationally c(n)-BCL-resilient if for
every input length n it is (c(n), ε(n))-BCL-resilient for some
negligible function ε, with respect to every leakage protocol

π that is implemented by circuits of size poly(n).

B. Main Theorems

Following are the main theorems and corollaries that
correspond to the steps of the construction described in
Section I-B. See Figure 2 for a roadmap. Transformations
between different objects are always polynomial-time com-
putable, even when we do not say so explicitly.

Theorem 2 (Private circuits ⇒ parity-resilient circuits over
a finite basis). There is a function g : {0, 1}9 → {0, 1}3 such
that every k-private implementation (I, C,O) of a function f
can be efficiently transformed into a 2−Ω(k)-parity-resilient
implementation (I ′, C ′, O′) of f over the basis B = {g},
with |I ′| = O(|I|), |C ′| = O(|C|), and |O′| = O(|O|).

Theorem 3 (Generalized ε-biased masking). Let µ0,
µ1 be probability distributions over {0, 1}n that are ε-
indistinguishable by parities. Then any communication pro-
tocol π : {0, 1}n × {0, 1}n 7→ {0, 1} with communication
complexity at most c obeys:∣∣∣∣∣ E

x∼µ0

E
r

$←{0,1}n
[π(x⊕ r, r)]− E

x∼µ1

E
r

$←{0,1}n
[π(x⊕ r, r)]

∣∣∣∣∣
≤ 2c/2ε

Theorem 4 (Parity-resilient circuits ⇒ BCL-resilient ora-
cle-aided protocols). Suppose (I ′, C ′, O′) is a 2−k-parity-
resilient implementation of f over a basis B = {g}, where
g : {0, 1}α → {0, 1}β , and where C ′ has depth h.
Then there is a (c, ε)-BCL-resilient O(h)-round two-party
protocol Π = (I ′′, (R1, R2), (M1,M2), O′′) for f using an
oracle H : {0, 1}α+β × {0, 1}α → {0, 1}β , with c = Ω(k),
ε = 2−Ω(k), |I ′′| = O(|I ′|), |R1| = β · |C ′|, |R2| = 0,
|O′′| = O(|O′|), and |Π| = O(|C ′|).

Lemma 1 (Finite oracle ⇒ OT oracle). For any positive
integers α1, α2, β, a (c, ε)-BCL-resilient H-aided protocol
Π for f , where H : {0, 1}α1 × {0, 1}α2 → {0, 1}β , can be
efficiently transformed to a similar OT-aided protocol Π′ for
f , where Π′ has the same input encoder and output decoder
as Π, and where |Π|′ ≤ 2α2 · β · |Π|.

Corollary 5 (BCL-resilient protocols over OT). For ev-
ery positive integer k and circuit Cf of size s and
depth h computing a function f : {0, 1}ni → {0, 1}no ,
there is a (k, 2−k)-BCL-resilient OT-aided protocol Π =
(I, (R1, R2), (M1,M2), O) for f , where |Π| = Õ(s+ kh+
k2), |I| = Õ(ni + k), and |O| = Õ(no + k), and where
the OT oracle is called Õ(s+ kh+ k2) times. Alternatively,
there is a similar protocol that uses independent instances
of OT correlation instead of an OT oracle.

Corollary 6 (Parity-resilient circuits over a binary basis).
For every positive integer k and circuit Cf of size s and
depth h computing a function f : {0, 1}ni → {0, 1}no , there
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is a 2−k-parity-resilient implementation (I, C,O) of f over
the full binary basis, with |I| = Õ(ni + k), |C| = Õ(s +
kh+ k2), and |O| = Õ(no + k).

Theorem 7 (Computational BCL-resilient protocols in the
plain model). Suppose the DDH assumption holds. Then, for
every polynomial-time computable f : {0, 1}n → {0, 1}m(n)

and polynomial c(n), there is a computational c(n)-BCL-
resilient implementation Π = (I, (M1,M2), O) of f , where
the running time of I is Õ(n+ c(n)) and the running time
of O is Õ(m(n) + c(n)).

III. COMMUNICATION COMPLEXITY BOUND

In this section, we present a generalization of the popular
“Small-bias Masking Lemma” [26], [37], [38], [27] (refer
to the full version [40]) in the two-party setting.

Theorem 3 Restated (Generalized ε-biased masking). Let
µ0, µ1 be probability distributions over {0, 1}n that are
ε-indistinguishable by parities. Then any communication
protocol π : {0, 1}n×{0, 1}n 7→ {0, 1} with communication
complexity at most c obeys:∣∣∣∣∣ E

x∼µ0

E
r

$←{0,1}n
[π(x⊕ r, r)]− E

x∼µ1

E
r

$←{0,1}n
[π(x⊕ r, r)]

∣∣∣∣∣
≤ 2c/2ε

Intuitively, the theorem states the following. Suppose we
have a distribution µ0 and µ1 that are ε-indistinguishable
from each other w.r.t. any linear test. That is, given a
sample that is drawn according to the distribution µb (where
b

$← {0, 1}), any linear test can predict b with at most ε
advantage.

Now, we additively secret share a sample according to
the distribution µb, for b

$← {0, 1}, among two parties,
i.e. the joint views of parties is (U, µb ⊕ U). Next, the
parties run a low communication protocol (communication
complexity bounded by c) among themselves. Now, given
this communication, the advantage to predict b is at most
2c/2ε, i.e. at most 2c/2 times the advantage to predict b
using linear tests on a sample drawn according to µb.

To prove this result, we will need some elementary Fourier
analysis. The characters χS : {0, 1}n → R of the Fourier
transform are given by χS(x) = (−1)S·x. The Fourier
coefficients of a function f : {0, 1}n → R are denoted by:
f̂(S) = 1

N

∑
x∈{0,1}n f(x)χS(x), where N = 2n.

Definition 5 (ε-Indistinguishability by Parities). Two prob-
ability distributions µ0, µ1 over {0, 1}n are called ε-
indistinguishable by parities if, for every S ⊆ [n],∣∣∣∣∣∣

∑
x∈{0,1}n

µ0(x)χS(x)−
∑

x∈{0,1}n
µ1(x)χS(x)

∣∣∣∣∣∣ ≤ ε

Equivalently, for every S ⊆ [n],∣∣∣∣ Pr
x∼µ0

[χS(x) = 1]− Pr
x∼µ1

[χS(x) = 1]

∣∣∣∣ ≤ ε
We need to show:∣∣∣∣∣ E
x∼µ0

E
r

$←{0,1}n
[π(x⊕ r, r)]− E

x∼µ1

E
r

$←{0,1}n
[π(x⊕ r, r)]

∣∣∣∣∣
≤ 2c/2ε (1)

Let ∆ stand for the left-hand side of Equation 1. Consider
the matrix:

P = 2−n [µ0(x⊕ r)− µ1(x⊕ r)]x,r∈{0,1}n

We have

∆ =

∣∣∣∣∣
2−n

∑
x,r∈{0,1}n

µ0(x)π(x⊕ r, r)


−

2−n
∑

x,r∈{0,1}n
µ1(x)π(x⊕ r, r)

∣∣∣∣∣
=

∣∣∣∣∣∣2−n
∑

x,r∈{0,1}n
(µ0(x⊕ r)− µ1(x⊕ r)) · π(x, r)

∣∣∣∣∣∣
= |〈P, π〉|

where we view π as a matrix π = [π(x, r)]x,r. Decompose
the protocol as a sum of combinatorial rectangles:

π =
∑
i∈[2c]

1Ai
1T
Bi
,

where Ai, Bi ⊆ {0, 1}n are some sets and 1Ai
, 1Bi

are
their, respective, characteristic vectors. Then,

∆ = |〈P, π〉|

≤
∑
i∈[2c]

∣∣1T
Ai
P1Bi

∣∣
≤
∑
i∈[2c]

√
|Ai| · |Bi| ‖P‖

≤ 2c/2
√∑
i∈[2c]

|Ai| · |Bi| ‖P‖

≤ 2c/22n ‖P‖
= 2n+c/2 ‖P‖ ,

where ‖·‖ denotes the spectral norm (equivalently, the largest
singular value).

Claim 1. ‖P‖ ≤ ε2−n
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Proof: The singular value decomposition of P is found
as follows:

P =

 ∑
S⊆[n]

2−n (µ̂0(S)− µ̂1(S)) · χx(S)χr(S)


x,r

= [χS(x)]x,S


. . .

2−n (µ̂0(S)− µ̂1(S))
. . .

 [χS(r)]S,r

= H ·


. . .

2−n (µ̂0(S)− µ̂1(S))
. . .

 ·HT,

where H = 2−n/2 [χS(x)]x,S is a unitary matrix. In partic-
ular,

‖P‖ = max
S⊆[n]

|µ̂0(S)− µ̂1(S)| ≤ ε2−n,

where the final step uses the assumption that µ0, µ1 are
ε-indistinguishable.

Thus, we get that ∆ ≤ 2n+c/2 ‖P‖ ≤ 2c/2ε.
For the missing details, please refer to the full version of

this paper [40].
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