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Abstract—The Fréchet distance is a well-studied and very
popular measure of similarity of two curves. Many variants and
extensions have been studied since Alt and Godau introduced
this measure to computational geometry in 1991. Their original
algorithm to compute the Fréchet distance of two polygonal
curves with n vertices has a runtime of O(n2 log n). More than
20 years later, the state of the art algorithms for most variants
still take time more than O(n2/ log n), but no matching lower
bounds are known, not even under reasonable complexity
theoretic assumptions.

To obtain a conditional lower bound, in this paper we assume
the Strong Exponential Time Hypothesis or, more precisely,
that there is no O∗((2 − δ)N ) algorithm for CNF-SAT for
any δ > 0. Under this assumption we show that the Fréchet
distance cannot be computed in strongly subquadratic time,
i.e., in time O(n2−δ) for any δ > 0. This means that finding
faster algorithms for the Fréchet distance is as hard as finding
faster CNF-SAT algorithms, and the existence of a strongly
subquadratic algorithm can be considered unlikely.

Our result holds for both the continuous and the discrete
Fréchet distance. We extend the main result in various direc-
tions. Based on the same assumption we (1) show non-existence
of a strongly subquadratic 1.001-approximation, (2) present
tight lower bounds in case the numbers of vertices of the
two curves are imbalanced, and (3) examine realistic input
assumptions (c-packed curves).

Keywords-lower bounds; computational geometry; curves;
inapproximability;

I. INTRODUCTION

Intuitively, the (continuous) Fréchet distance of two

curves P,Q is the minimal length of a leash required to

connect a dog to its owner, as they walk along P or Q,

respectively, without backtracking. The Fréchet distance is

a very popular measure of similarity of two given curves. In

contrast to distance notions such as the Hausdorff distance,

it takes into account the order of the points along the curve,

and thus better captures the similarity as perceived by human

observers [3].

Alt and Godau introduced the Fréchet distance to com-

putational geometry in 1991 [5, 24]. For polygonal curves

P and Q with n and m vertices1, respectively, they pre-

sented an O(nm log(nm)) algorithm. Since Alt and Godau’s

seminal paper, Fréchet distance has become a rich field

1We always assume that m � n.

of research, with various directions such as generalizations

to surfaces (see, e.g., [4]), approximation algorithms for

realistic input curves ([6, 7, 21]), the geodesic and ho-

motopic Fréchet distance (see, e.g., [15, 17]), and many

more variants (see, e.g., [11, 20, 29, 31]). Being a natural

measure for curve similarity, the Fréchet distance has found

applications in various areas such as signature verification

(see, e.g., [32]), map-matching tracking data (see, e.g., [9]),

and moving objects analysis (see, e.g., [12]).
A particular variant that we will also discuss in this paper

is the discrete Fréchet distance. Here, intuitively the dog and

its owner are replaced by two frogs, and in each time step

each frog can jump to the next vertex along its curve or stay

at its current vertex. Defined in [22], the original algorithm

for the discrete Fréchet distance has runtime O(nm).
Recently, improved algorithms have been found for

some variants. Agarwal et al. [2] showed how to com-

pute the discrete Fréchet distance in (mildly) subquadratic

time O(
nm log logn

logn

)
. Buchin et al. [13] gave algo-

rithms for the continuous Fréchet distance that runs in

time O(n2
√
log n (log log n)3/2) on the Real RAM and

O(n2(log log n)2) on the Word RAM. However, the problem

remains open whether there is a strongly subquadratic2 algo-

rithm for the Fréchet distance, i.e., an algorithm with runtime

O(n2−δ) for any δ > 0. For a particular variant, the discrete

Fréchet distance with shortcuts, strongly subquadratic algo-

rithms have been found recently [8], however, this seems to

have no implications for the classical continuous or discrete

Fréchet distance.
The only known lower bound shows that the Fréchet

distance takes time Ω(n log n) (in the algebraic decision

tree model) [10]. The typical way of proving (condi-

tional) quadratic lower bounds for geometric problems is

via 3SUM [23], in fact, Alt conjectured that the Fréchet

distance is 3SUM-hard. Buchin et al. [13] argued that the

Fréchet distance is unlikely to be 3SUM-hard, because it

has strongly subquadratic decision trees. However, their

argument breaks down in light of a recent result showing

strongly subquadratic decision trees also for 3SUM [25].

2We use the term strongly subquadratic to differentiate between this
runtime and the (mildly) subquadratic O(n2 log logn/ logn) algorithm
from [2].
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Hence, it is completely open whether the Fréchet distance

is 3SUM-hard.

A. Strong Exponential Time Hypothesis

The Exponential Time Hypothesis (ETH) and the Strong

Exponential Time Hypothesis (SETH), both introduced by

Impagliazzo, Paturi, and Zane [27, 28], provide alternative

ways of proving conditional lower bounds. ETH asserts that

3-SAT has no 2o(N) algorithm, where N is the number of

variables, and can be used to prove matching lower bounds

for a wealth of problems, see [30] for a survey. However,

since this hypothesis does not specify the exact exponent,

it is not suited for proving polynomial time lower bounds,

where the exponent is important.

The stronger hypothesis SETH asserts that there is no

δ > 0 such that k-SAT has an O((2 − δ)N ) algorithm for

all k. In this paper, we will use the following slightly weaker

variant, which has also been used in [33, 34].

Hypothesis SETH′: There is no O∗((2−δ)N ) algorithm for
CNF-SAT for any δ > 0. Here, O∗ hides polynomial factors
in the number of variables N and the number of clauses M .

While SETH deals with formulas of width k, SETH′

deals with CNF-SAT, i.e., unbounded width clauses. Thus,

it is a weaker assumption and more likely to be true.

Note that exhaustive search takes time O∗(2N ), and the

fastest known algorithms for CNF-SAT are only slighly

faster than that, namely of the form O∗(2N(1−C/ log(M/N)))
for some positive constant C [14, 19]. Thus, SETH′ is

a reasonable assumption that can be considered unlikely

to fail. It has been observed that one can use SETH and

SETH′ to prove lower bounds for polynomial time problems

such as k-Dominating Set and others [33], the diameter of

sparse graphs [34], and dynamic connectivity problems [1].

However, it seems to be applicable only for few problems,

e.g., it seems to be a wide open problem to prove that 3SUM

has no strongly subquadratic algorithms unless SETH fails,

similarly for matching, maximum flow, edit distance, and

other classic problems.

B. Main result

Our main theorem gives strong evidence that the Fréchet

distance may have no strongly subquadratic algorithms by

relating it to the Strong Exponential Time Hypothesis.

Theorem I.1. There is no O(n2−δ) algorithm for the
(continuous or discrete) Fréchet distance for any δ > 0,
unless SETH′ fails.

Since SETH and its weaker variant SETH′ are reasonable

hypotheses, by this theorem one can consider it unlikely that

the Fréchet distance has strongly subquadratic algorithms.

In particular, any strongly subquadratic algorithm for the

Fréchet distance would not only give improved algorithms

for CNF-SAT that are much faster than exhaustive search,

but also for various other problems such as Hitting Set,

Set Splitting, and NAE-SAT via the reductions in [18].

Alternatively, in the spirit of [33], one can view the above

theorem as a possible attack on CNF-SAT, as algorithms

for the Fréchet distance now could provide a route to faster

CNF-SAT algorithms. In any case, anyone trying to find

strongly subquadratic algorithms for the Fréchet distance

should be aware that this is as hard as finding improved

CNF-SAT algorithms, which might be impossible.
We remark that all our lower bounds (unless stated

otherwise) hold in the Euclidean plane, and thus also in R
d

for any d � 2.

C. Extensions
We extend our main result in two important directions: We

show approximation hardness and we prove that the lower

bound still holds for restricted classes of curves.
First, it would be desirable to have good approximation

algorithms in strongly subquadratic time, say a near-linear

time approximation scheme. We exclude such algorithms by

proving that there is no 1.001-approximation for the Fréchet

distance in strongly subquadratic time unless SETH′ fails.

Hence, within no(1)-factors any 1.001-approximation takes

as much time as an exact algorithm. We did not try to opti-

mize the constant 1.001, but only to find the asymptotically

largest possible approximation ratio, which seems to be a

constant. We leave it as an open problem whether there is

a strongly subquadratic O(1)-approximation. The literature

so far contains no strongly subquadratic approximation

algorithms for general curves at all.
Second, it might be conceivable that if one curve has

much fewer vertices than the other, i.e., m� n, then after

some polynomial preprocessing on the smaller curve we can

compute the Fréchet distance of the two curves quickly, e.g.,

in total time O((n+m3) log n). Note that such a runtime is

not ruled out by the trivial argument that any algorithm needs

time Ω(n+m) for reading the input, and is also not ruled

out by Theorem I.1, since the runtime is not subquadratic

for n = m. We rule out such runtimes by proving that there

is no O((nm)1−δ) algorithm “for any m”, unless SETH′

fails. More precisely, we prove this lower bound for the

“special case” m ≈ nγ for any constant 0 � γ � 1. To

make this formal, for any input parameter α and constants

γ0 < γ1 in R∪{−∞,∞}, we say that a statement holds for
any polynomial restriction of nγ0 � α � nγ1 if it holds

restricted to instances with nγ−δ � α � nγ+δ for any

constants δ > 0 and γ0 + δ � γ � γ1 − δ. We obtain the

following extension of the main result Theorem I.1, which

yields tight lower bounds for any behaviour of m and any

(1 + ε)-approximation with 0 � ε � 0.001.

Theorem I.2. There is no 1.001-approximation with run-
time O((nm)1−δ) for the (continuous or discrete) Fréchet
distance for any δ > 0, unless SETH′ fails. This holds for
any polynomial restriction of 1 � m � n.
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D. Realistic input curves

In attempts to capture the properties of realistic input

curves, strongly subquadratic algorithms have been devised

for restricted classes of inputs such as backbone curves [7],

κ-bounded and κ-straight [6], and φ-low density curves [21].

The most popular model are c-packed curves, which have

been used for various generalizations of the Fréchet dis-

tance [16, 20, 26]. Driemel et al. [21] introduced this model

and presented a (1 + ε)-approximation for the continuous

Fréchet distance that runs in time O(cn/ε+cn log n), which

works in any R
d, d � 2.

While the algorithm of [21] is near-linear for small c and

1/ε, is is not clear whether its dependence on c and 1/ε
is optimal for c and 1/ε that grow with n. We give strong

evidence that the algorithm of [21] has optimal dependence

on c for any constant 0 < ε � 0.001.

Theorem I.3. There is no 1.001-approximation with runtime
O((cn)1−δ) for the (continuous or discrete) Fréchet distance
on c-packed curves for any δ > 0, unless SETH′ fails. This
holds for any polynomial restriction of 1 � c � n.

Since we prove this claim for any polynomial restriction

c ≈ nγ , the above result excludes 1.001-approximations

with runtime, say, O(c2 + n).
Regarding the dependence on ε, in any dimension d � 5

we can prove a conditional lower bound that matches the

dependency on ε of [21] up to a polynomial. Due to space

limitations, we omit its proof in this extended abstract.

Theorem I.4. There is no (1 + ε)-approximation for the
(continuous or discrete) Fréchet distance on c-packed curves
in R

d, d � 5, with runtime O(min{cn/√ε , n2}1−δ) for any
δ > 0, unless SETH′ fails. This holds for sufficiently small
ε>0 and any polynomial restriction of 1�c�n and ε�1.

E. Outline of the main result

To prove the main result we present a reduction from

CNF-SAT to the Fréchet distance. Given a CNF-SAT in-

stance ϕ, we partition its variables into sets V1, V2 of equal

size. In order to find a satisfying assignment of ϕ we have

to choose (partial) assignments a1 of V1 and a2 of V2. We

will construct curves P1, P2 where Pk is responsible for

choosing ak. To this end, Pk consists of assignment gadgets,

one for each assignment of Vk. Assignment gadgets are

built of clause gadgets, one for each clause. The assignment

gadgets of assignments a1 of V1 and a2 of V2 are constructed

such that they have Fréchet distance at most 1 if and

only if (a1, a2) forms a satisfying assignment of ϕ. In P1

and P2 we connect these assignment gadgets with some

additional curves to implement an OR-gadget, which forces

any traversal of (P1, P2) to walk along two assignment

gadgets in parallel. If ϕ is not satisfiable, then any pair of

assignment gadgets has Fréchet distance larger than 1, so

that P1, P2 have Fréchet distance larger than 1. If, on the

other hand, a satisfying assignment (a1, a2) of ϕ exists, then

we ensure that there is a traversal of P1, P2 that essentially

only traverses the assignment gadgets of a1 and a2 in

parallel, so that it always stays in distance 1.

To argue about the runtime, since Pk contains an as-

signment gadget for every assignment of one half of the

variables, and every assignment gadget has polynomial size

in M , there are n = O∗(2N/2) vertices on each curve. Thus,

any O(n2−δ) algorithm for the Fréchet distance would yield

an O∗(2(1−δ/2)N ) algorithm for CNF-SAT, contradicting

SETH′.

F. Remark: Orthogonal Vectors

Let Orthog be the problem of ‘finding a pair of orthogonal

vectors”: given two sets S1, S2 ⊆ {0, 1}d of n vectors

each, determine if there are u ∈ S1 and v ∈ S2 with

〈u, v〉 = ∑d
i=1 uivi = 0, where the sum is computed over

the integers, see [35, 36]. Clearly, Orthog can be solved in

time O(n2d). However, Orthog has no strongly subquadratic

algorithms unless SETH′ fails. More precisely, in [35] it was

shown that SETH′ implies the following statement.

OrthogHypothesis: There is no algorithm for Orthog with
runtime O(n2−δdO(1)) for any δ > 0.

All known conditional lower bounds based on SETH′ im-

plicitly go through Orthog or some variant of this problem.

In fact, this is also the case for our results, as is easily seen

by going through the proof in [35] and noting that we use

the same tricks.3

Hence, in Theorems I.1, I.3, and I.4 we could replace the

assumption “unless SETH′ fails” by the weaker assumption

“unless OrthogHypothesis fails”. This is a stronger state-

ment, since there is only more reason to believe that Orthog
has no strongly subquadratic algorithms than that there is for

believing that CNF-SAT takes time 2N−o(N). Moreover, it

shows a relation between two polynomial time problems,

Orthog and the Fréchet distance.

For Theorem I.2 we would need an imbalanced version

of the OrthogHypothesis, where the two sets S1, S2 have

different sizes n1, n2. Then unless SETH′ fails there is no

O((n1n2)
1−δdO(1)) algorithm for any δ > 0, and this holds

for any polynomial restriction of 1 � n1 � n2, which

follows from a slight generalization of [35]. If we state this

implication of SETH′ as a hypothesis OrthogHypothesis∗,

3Specifically, given a CNF-SAT instance φ on variables x1, . . . , xN and
clauses C1, . . . , CM we split the variables into two halves V1, V2 of equal
size and enumerate all assignments Ak of true and false to Vk . Then every
clause Ci specifies sets Bi

k ⊆ Ak of partial assignments that do not make
Ci become true. Clearly, a satisfying assignment (a1, a2) ∈ A1 ×A2 has
to evade Bi

1 × Bi
2 for all i. This problem is equivalent to an instance of

Orthog with d = M and n = 2N/2, where Sk contains a vector for every
partial assignment ak ∈ Ak and the i-th position of this vector is 1 or 0,
depending on whether ak ∈ Bi

k or not. In our proof, we could replace
this instance by an arbitrary instance of Orthog, yielding a reduction from
Orthog to the Fréchet distance.
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then in Theorem I.2 we could replace “unless SETH′ fails”

by the weaker assumption “unless OrthogHypothesis∗ fails”.

G. Organization

We start by defining the variants of the Fréchet dis-

tance, c-packedness, and other basic notions in Section II.

Section III deals with general curves. We prove the main

result for the discrete Fréchet distance in less than 2 pages

in Section III-A. This construction also already proves

inapproximability. We generalize the proof to the continuous

Fréchet distance in Section III-B (which is more tedious than

in the discrete case) and to m� n in Section III-C (which

is an easy trick). Section IV deals with c-packed curves.

We present a new OR-gadget that generates less packed

curves; plugging in the curves constructed in the main result

proves Theorem I.3. We omit the proof of Theorem I.4

in this extended abstract. We close with open problems in

Section V.

II. PRELIMINARIES

For N ∈ N we let [N ] := {1, . . . , N}. A (polygonal)

curve P is defined by its vertices p1, . . . , pn. We view P
as a continuous function P : [0, n] → R

d with P (i + λ) =
(1 − λ)pi + λpi+1 for i ∈ [n − 1], λ ∈ [0, 1]. We write

|P | = n for the number of vertices of P . For two curves

P1, P2 we let P1 ◦ P2 be the curve on |P1| + |P2| vertices

that first follows P1, then walks along the segment from

P1(|P1|) to P2(0), and then follows P2. In particular, for

two points p, q ∈ R
d the curve p ◦ q is the segment from p

to q, and any curve P on vertices p1, . . . , pn can be written

as P = p1 ◦ . . . ◦ pn.

Consider a curve P and two points p1 = P (λ1), p2 =
P (λ2) with λ1, λ2 ∈ [0, n]. We say that p1 is within distance
D of p2 along P if the length of the subcurve of P between

P (λ1) and P (λ2) is at most D.

Variants of the Fréchet distance: Let Φn be the set of

all continuous and non-decreasing functions φ from [0, 1]
onto [0, n]. The continuous Fréchet distance between two

curves P1, P2 with |P1| = n, |P2| = m is defined as

dF(P1, P2) := inf
φ1∈Φn
φ2∈Φm

maxt∈[0,1] ‖P1(φ1(t))− P2(φ2(t))‖,

where ‖.‖ denotes the Euclidean distance. We call (φ1, φ2) a

(continuous) traversal of (P1, P2), and say that it has width
D if maxt∈[0,1] ‖P1(φ1(t))− P2(φ2(t))‖ � D.

In the discrete case, we let Δn be the set of all non-

decreasing functions φ from [0, 1] onto [n]. The discrete
Fréchet distance between two curves P1, P2 with |P1| = n,

|P2| = m is then defined as

ddF(P1, P2) := inf
φ1∈Δn
φ2∈Δm

maxt∈[0,1] ‖P1(φ1(t))− P2(φ2(t))‖.

We obtain an analogous notion of a (discrete) traversal and

its width. Note that any φ ∈ Δn is a staircase function

attaining all values in [n]. Hence, (φ1(t), φ2(t)) changes

only at finitely many points in time t. At any such time
step we jump to the next vertex in P1 or P2 or both.

It is known that for any curves P1, P2 we have

dF(P1, P2) � ddF(P1, P2) [22].

Realistic input curves: As an example of input restric-

tions that resemble practical input curves we consider the

model of [21]. A curve P is c-packed if for any point q ∈ R
d

and any radius r > 0 the total length of P inside the ball

B(q, r) is at most cr. Here, B(q, r) is the ball of radius

r around q. In this paper, we say that a curve P is Θ(c)-
packed, if there are constants α > β > 0 such that P is

αc-packed but not βc-packed.

This model is well motivated from a practical point of

view. Examples of classes of c-packed curves are boundaries

of convex polygons and γ-fat shapes as well as algebraic

curves of bounded maximal degree (see [21]).

Satisfiability: In CNF-SAT we are given a formula ϕ on

variables x1, . . . , xN and clauses C1, . . . , CM in conjunctive

normal form with unbounded clause width. Let V be any

subset of the variables of ϕ. Let a be any assignment of

T (true) or F (false) to the variables of V . We call a a

partial assignment and say that a satisfies a clause C =∨
i∈I xi∨

∨
i∈J ¬xi if for some i ∈ I∩V we have a(xi) = T

or for some i ∈ J ∩ V we have a(xi) = F. We denote

by sat(a, C) whether partial assignment a satisfies clause

C. Note that assignments a of V and a′ of the remaining

variables V ′ form a satisfying assignment (a, a′) of ϕ if

and only if we have sat(a, Ci) ∨ sat(a′, Ci) = T for all

i ∈ {1, . . . ,M}.
All bounds that we prove in this paper assume the hypoth-

esis SETH′ (see Section I), which asserts that CNF-SAT has

no O∗((2− δ)N ) algorithm for any δ > 0. Here, O∗ hides

polynomials factors in N and M . The following is an easy

corollary of SETH′.

Lemma II.1. There is no O∗((2 − δ)N ) algorithm for
CNF-SAT restricted to formulas with N variables and
M � 2δ

′N clauses for any δ, δ′ > 0, unless SETH′ fails.

Proof: Any such algorithm would imply an O∗((2 −
δ)N ) algorithm for CNF-SAT (with no restrictions on the

input), since for M � 2δ
′N we can run the given algorithm,

while for M > 2δ
′N we can decide satisfiability in time

O(M2N ) = O(M1+1/δ′) = O∗(1).

III. GENERAL CURVES

We first present a reduction from CNF-SAT to the Fréchet

distance and show that it proves Theorem I.1 for the discrete

Fréchet distance. In Section III-B we then show that the

same construction also works for the continuous Fréchet

distance. Finally, in Section III-C we generalize these results

to curves with imbalanced numbers of vertices n,m to show

Theorem I.2.
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A. The basic reduction, discrete case

Let ϕ be a given CNF-SAT instance with variables

x1, . . . , xN and clauses C1, . . . , CM . We split the vari-

ables into two halves V1 := {x1, . . . , xN/2} and V2 :=
{xN/2+1, . . . , xN}. For k ∈ {1, 2} let Ak be all assign-

ments4 of T or F to the variables in Vk, so that |Ak| = 2N/2.

In the whole section we let ε := 1/1000.

We will construct two curves P1, P2 such that

ddF(P1, P2) � 1 if and only if ϕ is satisfiable. In the

construction we will use gadgets as follows.

c12,F

c12,T

c02,F

c02,Tr2

c11,F

c11,T

c01,F

c01,T
r1

Clause gadgets: This gadget en-

codes whether a partial assignment sat-

isfies a clause. We set for i ∈ {0, 1}
ci1,T :=

(
i/3, 1

2 − ε
)
,

ci1,F :=
(
i/3, 1

2 + ε
)
,

ci2,T :=
(
i/3,− 1

2 + ε
)
,

ci2,F :=
(
i/3,− 1

2 − ε
)
.

Let k ∈ {1, 2}. For any partial assign-

ment ak ∈ Ak and clause Ci, i ∈ [M ],
we construct a clause gadget consisting

of a single point,

CG(ak, i) := cimod 2
k,sat(ak,Ci)

.

Thus, if assignment ak satisfies clause Ci then the cor-

responding clause gadget is nearer to the clause gadgets

associated with A3−k. Explicitly calculating all pairwise

distances of these points, we obtain the following lemma.

Lemma III.1. Let ak ∈ Ak, k ∈ {1, 2}, and i, j ∈ [M ].
If i ≡ j (mod 2) and sat(a1, Ci) ∨ sat(a2, Cj) = T then
‖CG(a1, i) − CG(a2, j)‖ � 1. Otherwise ‖CG(a1, i) −
CG(a2, j)‖ � 1 + 2ε.

Assignment gadgets: This gadget

consists of clause gadgets and encodes

the set of satisfied clauses for an assign-

ment. We set

r1 := (− 1
3 ,

1
2 ), r2 := (− 1

3 ,− 1
2 ).

The assignment gadget for any ak ∈ Ak

consists the starting point rk followed by

all clause gadgets of ak,

AG(ak) := rk ◦©i∈[M ]CG(ak, i),

(recall the definition of ◦ in Section II). The above figure

shows an assignment gadget on M = 2 clauses at the top

and an assignment gadget on M = 4 clauses at the bottom.

The arrows indicate the order in which the segments are

traversed.

4In later sections we will replace V1, V2 by different partitionings and
A1, A2 by subsets of all assignments. The lemmas in this section are proven
in a generality that allows this extension.

Lemma III.2. Let ak ∈ Ak, k ∈ {1, 2}. If (a1, a2) is a
satisfying assignment of ϕ then ddF(AG(a1), AG(a2)) � 1.
If (a1, a2) is not satisfying then ddF(AG(a1), AG(a2)) >
1 + ε, and we even have ddF(AG(a1) ◦ π1, AG(a2) ◦ π2) >
1 + ε for any curves π1, π2.

Proof: If (a1, a2) is satisfying then the parallel traversal

(r1, r2), (CG(a1, 1), CG(a2, 1)), . . . , (CG(a1,M), CG(a2,
M)) has width 1 by Lemma III.1.

Assume for the sake of contradiction that (a1, a2) is not

satisfying but there is a traversal of (AG(a1)◦π1, AG(a2)◦
π2) with width 1 + ε. Observe that ‖r1 − r2‖ = 1 and

‖rk − ci3−k,x‖ � 1 + 2ε for any k ∈ {1, 2}, i ∈ {0, 1}, x ∈
{T,F}. Thus, the traversal has to start at positions (r1, r2)
and then step to positions (CG(a1, 1), CG(a2, 1)), as ad-

vancing in only one of the curves leaves us in distance larger

than 1 + ε. Inductively and using Lemma III.1, the same

argument shows that in the i-th step we are at positions

(CG(a1, i), CG(a2, i)) for any i ∈ [M ]. Since there is an

unsatisfied clause Ci, so that ‖CG(a1, i) − CG(a2, i)‖ �
1 + 2ε by Lemma III.1, we obtain a contradiction.

s1

s2

s∗2

t1

t2

t∗2

c12,F

c12,T

c02,F

c02,T
r2

c11,F
c11,T

c01,F

c01,T

r1

Construction of the curves:
The curve Pk will consist of all

assignment gadgets for assignments

Ak, k ∈ {1, 2}, plus some addi-

tional points. The additional points

implement an OR-gadget over the

assignment gadgets, by enforcing

that any traversal of (P1, P2) with

width 1 + ε has to traverse two

assignment gadgets in parallel, and

traversing one pair of assignment

gadgets in parallel suffices. We de-

fine the following control points,

s1 := (− 1
3 ,

1
5 ), s2 := (− 1

3 , 0), s∗2 := (− 1
3 ,− 4

5 ),

t1 := ( 13 ,
1
5 ), t2 := ( 13 , 0), t∗2 := ( 13 ,− 4

5 ).

Finally, we set

P1 :=©a1∈A1

(
s1 ◦AG(a1) ◦ t1

)
,

P2 := s2 ◦ s∗2 ◦
(
©a2∈A2

AG(a2)
)
◦ t∗2 ◦ t2.

The above figure shows P1 (dotted) and P2 (solid) in an

example with M = 2 clauses and (unrealistically) only two

assignments.

Let Qk be the vertices that may appear in Pk,

i.e., Q1 = {s1, t1, r1, c01,F, c01,T, c11,F, c11,T} and Q2 =
{s2, t2, r2, s∗2, t∗2, c02,F, c02,T, c12,F, c12,T}. Explicitly calculating

all pairwise distances of all points, we obtain the following

lemma.

Lemma III.3. No pair (q1, q2) ∈ Q1×Q2 has ‖q1− q2‖ ∈
(1, 1+ε]. Moreover, the set {(q1, q2) ∈ Q1×Q2 | ‖q1−q2‖ �
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1} consists of the following pairs:

(q, s2), (q, t2) for any q ∈ Q1,

(s1, q) for any q ∈ Q2 \ {t∗2},
(t1, q) for any q ∈ Q2 \ {s∗2},
(r1, r2),

(ci1,x, c
i
2,y) for x ∨ y = T where i ∈ {0, 1}, x, y ∈ {T,F}.

Correctness: We show that if ϕ is satisfiable then

ddF(P1, P2) � 1, while otherwise ddF(P1, P2) > 1 + ε.

Lemma III.4. If ddF(P1, P2) � 1+ε then A1×A2 contains
a satisfying assignment.

Proof: By Lemma III.3 any traversal with width 1 + ε
also has width 1. Consider any traversal of (P1, P2) with

width 1. Consider any time step T at which we are at

position s∗2 in P2. The only point in P1 that is within distance

1 of s∗2 is s1, say we are at the copy of s1 that comes right

before assignment gadget AG(a1), a1 ∈ A1. Following time

step T , we have to start traversing AG(a1), so consider the

first time step T ′ where we are at the point r1 in AG(a1).
The only points in P2 within distance 1 of r1 are s2, t2,
and r2. Note that we already passed s∗2 in P2 by time T ,

so we cannot be in s2 at time T ′. Moreover, in between T
and T ′ we are only at s1 and r1 in P1, which have distance

larger than 1 to t∗2. Thus, we cannot pass t∗2, and we cannot

be at t2 at time T ′. Hence, we are at r2, say at the copy of

r2 in assignment gadget AG(a2) for some a2 ∈ A2. The yet

untraversed remainder of Pk is of the form AG(ak)◦πk for

k ∈ {1, 2}. Since our traversal of (P1, P2) has width 1, we

obtain ddF(AG(a1)◦π1, AG(a2)◦π2) � 1. By Lemma III.2,

(a1, a2) forms a satisfying assignment of ϕ.

Lemma III.5. If A1 ×A2 contains a satisfying assignment
then ddF(P1, P2) � 1.

Proof: Let (a1, a2) ∈ A1 × A2 be a satisfying assign-

ment of ϕ. We describe a traversal through P1, P2 with

width 1. We start at s2 ∈ P2 and the first point of P1. We

stay at s2 and follow P1 until we arrive at the copy of s1
that comes right before AG(a1) (note that s2 has distance

1 to any point in P1). Then we stay at s1 and follow P2

until we arrive at the copy of r2 in AG(a2) (note that the

only point that is too far away from s1 is t∗2, but this point

comes after all assignment gadgets in P2). In the next step

we go to positions (r1, r2) (in AG(a1), AG(a2)). Then we

follow the clause gadgets (CG(a1, i), CG(a2, i)) in parallel,

always staying within distance 1 by Lemma III.1. In the next

step we stay at CG(a2,M) and go to t1 in P1 (which has

distance 1 to any point in P2 except for s∗2, which we will

never encounter again). We stay at t1 in P1 and follow P2

completely until we arrive at its endpoint t2. Since t2 has

distance 1 to any point in P1, we can now stay at t2 in P2

and follow P1 to its end.

Proof of Theorem I.1, discrete case: Note that we

have n = max{|P1|, |P2|} = O(M) · max{|A1|, |A2|} =
O(M · 2N/2). Moreover, the instance (P1, P2) can be con-

structed in time O(NM2N/2). Any (1 + ε)-approximation

can decide whether ddF(P1, P2) � 1 or ddF(P1, P2) > 1+ε,

which by Lemmas III.4 and III.5 yields an algorithm that

decides whether ϕ is satisfiable. If such an algorithm runs

in time O(n2−δ) for any small δ > 0, then the resulting

CNF-SAT algorithm runs in time O(M22(1−δ/2)N ), contra-

dicting SETH′.

B. Continuous case

The construction from the last section also works for the

continuous Fréchet distance. However, for unsatisfiable for-

mulas it becomes tedious to argue that continuous traversals

are not much better than discrete traversals. For instance, we

have to argue that we cannot stay at a fixed point between

the clause gadgets c01,T and c11,T while traversing more than

one clause gadget in P2.

To adapt the proof from the last section, we have to

reprove Lemmas III.4 and III.5. We will make use of the fol-

lowing property. Here, we set sym(CG(a1, i)) := CG(a2, i)
and sym(r1) := r2 and interpolate linearly between them

to obtain a symmetric point in AG(a2) for every point in

AG(a1) (for any fixed a1 ∈ A1, a2 ∈ A2). We also set

sym(sym(p1)) := p1, to obtain a symmetric point in AG(a1)
for every point in AG(a2).

Lemma III.6. Consider any points pk in AG(ak), k ∈
{1, 2}, with ‖p1 − p2‖ � 1 + ε. Then we have ‖p2 −
sym(p1)‖ � 1

9 and ‖sym(p2)− p1‖ � 1
9 .

Proof: Let pk = (xk, yk) and note that we have |y1 −
y2| � 1 − 2ε. Thus, if |x1 − x2| > 1

9 − 2ε then we have

(recall that ε = 1/1000)

‖p1 − p2‖ >
√
( 19 − 2ε)2 + (1− 2ε)2 > 1 + ε,

a contradiction. Since sym(p1) = (x1, y
′
1) with |y′1 − y2| �

2ε, we obtain

‖p2 − sym(p1)‖ �
√
( 19 − 2ε)2 + (2ε)2 � 1

9 .

and the same bound holds for ‖sym(p2)− p1‖.
Lemma III.7. (Analogue of Lemma III.4) If dF(P1, P2) �
1+ε = 1.001 then A1×A2 contains a satisfying assignment.

Proof: In this proof, we say that two points p1 =
(x1, y1), p2 = (x2, y2) have y-distance D if |y1− y2| � D.

Consider any traversal of (P1, P2) with width 1 + ε.

Consider any time step T where we are at position s∗2 in P2.

The only points in P1 that are within distance 1+ε of s∗2 are

within distance 1/20 and y-distance ε of s1 (since no point in

P1 has lower y-value than s1 and
√
1 + (1/20)2 > 1 + ε).

Say we are near the copy of s1 that comes right before

assignment gadget AG(a1), a1 ∈ A1. Following time step
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T , we have to start traversing AG(a1), so consider the first

time step T ′ where we are at the point r1 in AG(a1). The

only points in P2 within distance 1+ε of r1 are near s2, t2,
or r2. Note that we already passed s∗2 in P2 by time T , so

we cannot be near s2 at time T ′. Moreover, in between T
and T ′ we are always near s1 or between s1 and r1 in P1,

so we are always above and to the left of s1 + (1/20, 0),
which has distance larger than 1+ ε to t∗2. Thus, we cannot

pass t∗2, and we cannot be near t2 at time T ′. Hence, we

are near r2, more precisely, we are in distance 1/20 and y-

distance ε of r2 (this is the same situation as for s1 and

s∗2). After that, the traversal has to further traverse AG(a1)
and/or AG(a2). Consider the first time step at which we are

at CG(a1, 1) or CG(a2, 1), say we reach CG(a1, 1) first.

By Lemma III.6, we are within distance 1/9 of CG(a2, 1).
Since we were near r2 at time T ′, we now passed r2, and

since we did not pass CG(a2, 1) yet, we are even within

distance 1/9 of CG(a2, 1) along the curve P2. This proves

the induction base of the following inductive claim.

Claim III.8. Let Ti be the first step in time at which the
traversal is at CG(a1, i) or CG(a2, i), i ∈ [M ]. At time Ti

the traversal is within distance 1/9 of CG(ak, i) along the
curve Pk for both k ∈ {1, 2}.

Proof: Note that at all times Ti (and in between)

Lemma III.6 is applicable, so we clearly are within distance

1/9 of CG(ak, i + 1) at time Ti+1 for any i ∈ [M ],
k ∈ {1, 2}. Since ‖CG(ak, i)−CG(ak, i+1)‖ � 1/3, points

within distance 1/9 of CG(ak, i) are not within distance

1/9 of CG(ak, i+ 1). Hence, if we are within distance 1/9

of CG(ak, i) along Pk for both k ∈ {1, 2} at time Ti,

then at time Ti+1 we passed CG(ak, i) and did not pass

CG(ak, i + 1) yet (by definition of Ti+1), so that we are

within distance 1/9 of CG(ak, i + 1) along Pk for both

k ∈ {1, 2}.
Finally, we show that the above claim implies that (a1, a2)

is a satisfying assignment. Assume for the sake of contradic-

tion that some clause Ci is not satisfied by both a1 and a2.

Say at time Ti we are at CG(a1, i) (if we are at CG(a2, i)
instead, then a symmetric argument works). At the same time

we are at some point p in AG(a2). By the above claim, p is

within distance 1/9 of CG(a2, i) along P2. Note that p lies

on any of the line segments c02,T ◦c12,F, c02,F ◦c12,T, c02,F ◦c12,F,

or r2 ◦ c02,F, since sat(a2, Ci) = F. In any case, the current

distance ‖p − CG(a1, i)‖ is at least the distance from the

point c01,F to the line through c02,F and c12,T. We compute this

distance as
(
1
3 (1 + 2ε)

)/√
( 13 )

2 + (2ε)2 > 1 + ε,

which contradicts the traversal having width 1 + ε.

Lemma III.9. (Analogue of Lemma III.5) If A1 × A2

contains a satisfying assignment then dF(P1, P2) � 1.

Proof: Follows from Lemma III.5 and the general

inequality dF(P1, P2) � ddF(P1, P2).

C. Generalization to imbalanced numbers of vertices

Assume that the input curves P1, P2 have different num-

bers of vertices n = |P1|, m = |P2| with n � m. We

show that there is no O((nm)1−δ) algorithm for the Fréchet

distance for any δ > 0, even for any polynomial restriction

of 1 � m � n. More precisely, for any δ � γ � 1 − δ we

show that there is no O((nm)1−δ) algorithm for the Fréchet

distance restricted to instances with nγ−δ � m � nγ+δ .

To this end, given a CNF-SAT instance ϕ we partition its

variables x1, . . . , xN into5 V ′1 := {x1, . . . , x�} and V ′2 :=
{x�+1, . . . , xN} and let A′k be all assignments of V ′k , k ∈
{1, 2}. Note that |A′1| = 2|V

′
1 | = 2� and |A′2| = 2N−�. Now

we use the same construction as in Section III-A but replace

Vk by V ′k and Ak by A′k. Again we obtain that any 1.001-

approximation for the Fréchet distance of the constructed

curves P1, P2 decides satisfiability of ϕ. Observe that the

constructed curves contain a number of points of

n = |P1| = Θ(M · |A′1|), m = |P2| = Θ(M · |A′2|).
Hence, any 1.001-approximation of the Fréchet distance

with runtime O((nm)1−δ) for any small δ > 0 yields an al-

gorithm for CNF-SAT with runtime O(M2(2�2N−�)1−δ) =
O(M22(1−δ)N ), contradicting SETH′.

Finally, we set � := N/(γ + 1) (rounded in any way) so

that |A′1| = Θ(2N/(γ+1)) and |A′2| = Θ(2Nγ/(γ+1)). Using

Lemma II.1 we can assume that 1 � M � 2δN/4. Hence,

we have

Ω(2N/(γ+1)) �n � O(2N/(γ+1)+δN/4),

Ω(2Nγ/(γ+1)) �m � O(2Nγ/(γ+1)+δN/4),

which implies Ω(nγ−δ/2) � m � O(nγ+δ/2). For suffi-

ciently large n, we obtain the desired polynomial restriction

nγ−δ � m � nγ+δ . This proves Theorem I.2.

IV. REALISTIC INPUTS: C-PACKED CURVES

The curves constructed in Section III-A are highly packed,

since all assignment gadgets lie roughly in the same area.

Specifically they are not o(n)-packed. In this section we

want to construct c-packed instances and show that there is

no 1.001-approximation with runtime O((cn)1−δ) for any

δ > 0 for the Fréchet distance unless SETH′ fails, not even

restricted to instances with nγ−δ � c � nγ+δ for any δ �
γ � 1− δ. This proves Theorem I.3.

To this end, we again consider a CNF-SAT instance ϕ,

partition its variables x1, . . . , xN into two sets V1, V2 of

size N/2, and consider the set Ak of all assignments of

T and F to the variables in Vk. Now we partition Ak

into sets A1
k, . . . , A

�
k of size Θ(2N/2/�), where we fix

1 � � � 2N/2 later. Formula ϕ is satisfiable if and only

5For the impatient reader: we will set � := N/(γ + 1).
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if for some pair (j1, j2) ∈ [�]2 the set Aj1
1 ×Aj2

2 contains a

satisfying assignment. This suggests to use the construction

of Section III-A after replacing A1 by Aj1
1 and A2 by Aj2

2 ,

yielding a pair of curves (P j1j2
1 , P j1j2

2 ). Now, ϕ is satisfiable

if and only if dF(P
j1j2
1 , P j1j2

2 ) � 1 for some (j1, j2) ∈ [�]2.

For the sake of readability, we rename the constructed curves

slightly so that we have curves (P j
1 , P

j
2 ) for j ∈ [�2].

UL UR

U

OR-gadget: In the whole section

we let ρ := 1/
√
2 . We present an OR-

construction over the gadgets (P j
1 , P

j
2 )

that is not too packed, in contrast to the

OR-construction over assignment gad-

gets that we used in Section III-A. We

start with two building blocks, where for

any j ∈ N we set

UL(j) := (jρ, 0) ◦ ((j − 1)ρ, ρ)

◦ ((j − 1)ρ, 3ρ) ◦ ((j − 1)ρ, 2ρ) ◦ ((j − 1)ρ, ρ),

UR(j) := ((j + 1)ρ, ρ) ◦ ((j + 1)ρ, 2ρ)

◦ ((j + 1)ρ, 3ρ) ◦ ((j + 1)ρ, ρ) ◦ (jρ, 0).
Moreover, we set U(j) := UL(j) ◦ UR(j). For a curve π

and z ∈ R we let trz(π) be the curve π translated by z in

x-direction. The OR-gadget now consists of the following

two curves,

R1 :=©�2

j=1

(
UL(2j) ◦ tr2jρ(P

j
1 ) ◦ UR(2j)

)
,

R2 := U(1) ◦©�2

j=1

(
tr2jρ(P

j
2 ) ◦ U(2j + 1)

)
.

The above figure shows R1 (dotted) and R2 (solid) for �2 =
4, see below for a figure showing �2 = 1 with more details

visible.

We denote by Rj
1 the j-th “summand” of R1, i.e., Rj

1 =
UL(2j)◦tr2jρ(P

j
1 )◦UR(2j). Informally, we will use the term

U -shape for the subcurves Rj
1 and U(2j + 1), since they

resemble the letter U. Moreover, we consider “summands”

of R2, namely Rj
2 := U(2j − 1) ◦ tr2jρ(P

j
2 ) ◦ ((2j +1)ρ, 0)

and R̃j
2 := ((2j − 1)ρ, 0) ◦ tr2jρ(P

j
2 ) ◦ U(2j + 1).

Intuition: Considering traversals that stay within dis-

tance 1, we can traverse one U -shape in R1 and one

neighboring U -shape in R2 together. Such traversals can

be stitched together to a traversal of any number j of

neighboring U -shapes in both curves. So far we can only

traverse the same number of U -shapes in both curves, but

R2 has one more U -shape than R1. We will show that we

can traverse two U -shapes in R2 while traversing only one

U -shape in R1, if these parts contain a satisfying assignment.

In the unsatisfiable

case, essentially we

show that we cannot

traverse two U -shapes

in R2 while traversing

only one U -shape in

R1, which implies a

contradiction since the

number of U -shapes in

R2 is larger than in R1.

We make this intuition

formal in the remain-

der of this section.

Analysis: In order to be able to replace the curves

P j
1 , P

j
2 constructed above by other curves in the next section,

we analyse the OR-gadget in a rather general way. To this

end, we first specify a set of properties and show that the

curves P j
1 , P

j
2 constructed above satisfy these properties.

Then we analyse the OR-gadget using only these properties

of P j
1 , P

j
2 .

Property IV.1. (i) If ϕ is satisfiable then for some j ∈
[�2] we have ddF(P

j
1 , P

j
2 ) � 1.

(ii) If ϕ is not satisfiable then for all j ∈ [�2] and curves
σ1, σ2, π1, π2 such that σ1 stays to the left and above
(−ρ, ρ) and π1 stays to the right and above (ρ, ρ), we
have dF(σ1◦P j

1 ◦π1, σ2◦P j
2 ◦π2) > β, for some β > 1.

(iii) P j
k is Θ(c)-packed for some c � 1 for all j ∈ [�2],

k ∈ {1, 2}.
(iv) (0, ρ) is in distance 1 of any point in P j

1 for all j ∈ [�2].
(v) (0, 0) is in distance 1 of any point in P j

2 for all j ∈ [�2].

Lemma IV.2. The curves (P j
1 , P

j
2 ) constructed above satisfy

Property IV.1 with β = 1.001 and c = Θ(M · 2N/2/�).
Moreover, we have |P j

k | = Θ(M · 2N/2/�) for all j ∈ [�2],
k ∈ {1, 2}.

Due to space limitations, the proof of this lemma is

omitted and the proof of the next lemma is partially omitted.

In the following lemma we analyse the OR-gadget.

Lemma IV.3. For any curves (P j
1 , P

j
2 ) that satisfy Prop-

erty IV.1, the OR-gadget (R1, R2) satisfies:

(i) |Rk| = Θ
(∑�2

j=1 |P j
k |
)

for k ∈ {1, 2}.
(ii) R1 and R2 are Θ(c)-packed,

(iii) If ϕ is satisfiable then dF(R1, R2) � ddF(R1, R2) � 1,
(iv) If ϕ is not satisfiable then ddF(R1, R2) �

dF(R1, R2) > min{β, 1.2}.
Proof: (i) Precisely, we have |Rk| =

∑�2

j=1(|P j
k |+10)+

10(k − 1) for k ∈ {1, 2}.
(ii) Let k ∈ {1, 2} and consider any ball B = B(q, r).

If r � 1 then B hits O(1) of the curves P j
k . Since these

curves are c-packed, their contribution to the total length of

Rk in B is at most O(cr). Moreover, B hits O(1) segments

of U or UL, UR, and the connecting segments to P j
k . Each of

668668



these segments has length at most 2r inside B. This yields

a total length of Rk in B of O((c+ 1)r).

Similarly, if r > 1 then B hits O(r) of the curves P j
k .

Note that the total length of P j
k is at most c, since the curve

is c-packed and contained in a ball of radius 1 around (0, 0)
or (0, ρ) by Property IV.1. Hence, the total length of of the

curves P j
k in B is O(cr). Moreover, B hits O(r) segments

of U,UL, UR, and the connectors to P j
k , each of constant

length. This yields a total length of Rk in B of O((c+1)r).

In total, the curve Rk is O(c + 1)-packed. As c � 1, it

is also O(c)-packed. Since for some α > 0 the curve P j
k

is not αc-packed, also Rk is not αc-packed, so Rk is even

Θ(c)-packed.

(iii) Note that dF(R1, R2) � ddF(R1, R2) holds in general,

so we only have to show that if ϕ is satisfiable then

ddF(R1, R2) � 1. First we show that we can traverse one

U -shape in R1 and one neighboring U -shape in R2 together.

Claim IV.4. For any j ∈ [�2], we have ddF(R
j
1, U(2j−1)) �

1 and ddF(R
j
1, U(2j + 1)) � 1.

We can stitch these traversals together so that we traverse

any number j of neighboring U -shapes in both curves

together, because the parts in between the U -shapes are near

to a single point, as shown by the following claim. Note

that (2jρ, 0) ◦ ((2j + 2)ρ, 0) is the connecting segment in

R1 between UR(2j) and UL(2j+2), while ((2j− 1)ρ, 0) ◦
tr2jρ(P

j
2 )◦((2j+1)ρ, 0) is the part in R2 between U(2j−1)

and U(2j + 1).

Claim IV.5. For any j ∈ [�2],

ddF((2jρ, 0) ◦ ((2j + 2)ρ, 0), ((2j + 1)ρ, 0)) � 1,

ddF((2jρ, 0), ((2j−1)ρ, 0) ◦ tr2jρ(P
j
2 ) ◦ ((2j+1)ρ, 0)) � 1.

Thus, we can stitch together traversals of U -shapes in

both curves. However, so far we can only traverse the same

number of U -shapes in both curves, but R2 has one more

U -shape than R1. Consider J ∈ [�2] with ddF(P
J
1 , P

J
2 ) �

1, which exists since ϕ is satisfiable, see Property IV.1.(i).

Consider the two subcurves (also see the above figure)

R′1 := RJ
1 = UL(2J) ◦ tr2Jρ(P

J
1 ) ◦ UR(2J),

R′2 := U(2J − 1) ◦ tr2Jρ(P
J
2 ) ◦ U(2J + 1).

We show that ddF(R
′
1, R

′
2) � 1, i.e., we can traverse two

U -shapes in R2 while traversing only one U -shape in R1,

using ddF(P
J
1 , P

J
2 ) � 1. Adding simple traversals of U -

shapes before and after (R′1, R
′
2), we obtain a traversal of

(R1, R2) with width 1, proving ddF(R1, R2) � 1. It is left

to show the following claim.

Claim IV.6. ddF(R
′
1, R

′
2) � 1.

(iv) Note that the inequality ddF(R1, R2) � dF(R1, R2)
holds in general, so we only have to show that if ϕ is not

satisfiable then dF(R1, R2) > min{β, 1.2}. Assume for the

sake of contradiction that there is a traversal of (R1, R2)
with width min{β, 1.2}. Essentially we show that it cannot

traverse 2 U -shapes in R2 while traversing only one U -shape

in R1, which implies a contradiction since the number of U -

shapes in R2 is larger than in R1.

Let Yρ be the line {(x, y) ∈ R
2 | y = ρ}. We inductively

prove the following claims.

Claim IV.7. (i) For any 0 � j � �2, when the traversal is
in R2 at the left highest point (2jρ, 3ρ) of U(2j + 1),
then in R1 we fully traversed Rj

1 and are above the
line Yρ.

(ii) For any 1 � j � �2, when the traversal is in R1 at the
right highest point ((2j+1)ρ, 3ρ) of Rj

1, then in R2 it
is in U(2j − 1).

Note that claim (i) for j = �2 yields the desired contra-

diction, since after traversing R�2

1 the curve R1 has ended

(at the point (2�2ρ, 0)), so that we cannot go above the line

Yρ anymore.

Proof of Theorem I.3: Finally, we use the OR-gadget

(Lemma IV.3) together with the curves P j
1 , P

j
2 we obtained

from Section III-A (Lemma IV.2) to prove a runtime bound

for c-packed curves: Any 1.001-approximation for the (dis-

crete or continuous) Fréchet distance of (R1, R2) decides

satisfiability of ϕ. Note that R1 and R2 are c-packed with

c = Θ(M · 2N/2/�) and n = max{|R1|, |R2|} = Θ(�2M ·
2N/2/�). Thus, any O((cn)1−δ) algorithm for the Fréchet

distance implies a O(M22(1−δ)N ) algorithm for CNF-SAT,

contradicting SETH′. Moreover, using Lemma II.1 we can

assume that 1 � M � 2δN/4. Setting � := Θ(2
1−γ
1+γ N/2) for

any 0 � γ � 1 we obtain

Ω(2
2

1+γ N/2) �n � O(2(
2

1+γ +δ/2)N/2),

Ω(2
2γ

1+γ N/2) � c � O(2(
2γ

1+γ +δ/2)N/2).

From this it follows that Ω(nγ−δ/2) � c � O(nγ+δ/2),
which implies the desired polynomial restriction nγ−δ �
c � nγ+δ for sufficiently large n.

V. OPEN PROBLEMS

Our results leave three particularly interesting open ques-

tions for the Fréchet distance, asking for new algorithms

or improved lower bounds. Here, Õ ignores any polylog-

arithmic factors in n, c, and 1/ε. (1) Is there a strongly

subquadratic O(1)-approximation on general curves? (2) In

any dimension d ∈ {2, 3, 4}, is there a (1+ε)-approximation

with runtime Õ(cn) on c-packed curves? (3) In any dimen-

sion d � 5, is there a (1 + ε)-approximation with runtime

Õ(cn/
√
ε ) on c-packed curves?
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