
Topology Matters in Communication

Arkadev Chattopadhyay and Jaikumar Radhakrishnan

School of Technology and Computer Science

Tata Institute of Fundamental Research

Mumbai, India

Email: arkadev.c@tifr.res.in, jaikumar@tifr.res.in

Atri Rudra

Department of Computer Science and Engineering

University at Buffalo, SUNY

Buffalo, USA

Email: atri@buffalo.edu

Abstract—We consider the communication cost of computing
functions when inputs are distributed among the vertices of
an undirected graph. The communication is assumed to be
point-to-point: a processor sends messages only to its neighbors.
The processors in the graph act according to a pre-determined
protocol, which can be randomized and may err with some
small probability. The communication cost of the protocol is
the total number of bits exchanged in the worst case.

Extending recent work that assumed that the graph was
the complete graph (with unit edge lengths), we develop a
methodology for showing lower bounds that are sensitive to
the graph topology. In particular, for a broad class of graphs,
we obtain a lower bound of the form Ω(k2

n), for computing a
function of k inputs, each of which is n-bits long and located
at a different vertex. Previous works obtained lower bounds
of the form Ω(kn). This methodology yields a variety of other
results including the following: A tight lower bound (ignoring
poly-log factors) for Element Distinctness, settling a question
of Phillips, Verbin and Zhang (SODA ’12, [1]); a distributed
XOR lemma; a lower bound for composed functions, settling a
question of Phillips et al. [1]; new topology-dependent bounds
for several natural graph problems considered by Woodruff
and Zhang (DISC ’13, [2]).

To obtain these results we use tools from the theory of metric
embeddings and represent the topological constraints imposed
by the graph as a collection of cuts, each cut providing a
setting where our understanding of two-party communication
complexity can be effectively deployed.

Keywords-Communication Complexity; Metric Embeddings;
Distributed Computing.

I. INTRODUCTION

We consider the cost of communication associated with

computation in a distributed model of computing. The pro-

cessors are located at the vertices of an undirected graph

and communicate with each other by exchanging messages.

Some of the processors, called terminals, have inputs; the

others just participate in the computation. All processors

collaborate to compute a boolean function of the inputs. In

this paper, we study the communication cost of this task

for various functions. Such a study has been carried out

in the past in various guises and lower and upper bounds

have been derived. These results typically assume complete

connectivity, or restricted families of graph (e.g. the line

graph, the ring, etc.). We develop a methodology for deriving

lower bounds that relates the communication cost to well-

known parameters of the graph, making them sensitive to

the topology of the graph.

In order to present the background to our work and our

results in a common setting, it will be helpful to use the

following terminology. As usual, the graph will consist of

vertices and edges. Every vertex of the graph has a processor.

Some of the processors, known as terminals, receive inputs.

The processors operate synchronously with a common clock,

and communicate by sending bits across the edges of the

graph according to a fixed protocol. We will assume that

before a bit is sent, the receiver knows that it is going to

receive one. We will assume unit cost for transmitting a bit

across an edge. The goal is to compute a common function

of the inputs; we will assume that at the end a predetermined

terminal node has the correct answer. Thus, a computational

problem in this model is of the form p = (f,G,K,Σ), where

G is the underlying graph, K is the set of terminals, Σ is

the alphabet from which each terminal receives its input,

and f : ΣK → {0, 1} is the function that the processors

must compute at the end. In our discussions, whenever the

underlying graph becomes clear from the context, we drop

it from our notation. If Σ is not explicitly mentioned, then

it is assumed to be {0, 1}n. Throughout the paper we will

use k for the size of the set K of terminals.

When the computation is randomized (the main focus

of this paper) we will assume that the processors share

a random string. Let Rε(p) be the expected (over the

protocol’s randomness) communication cost for the worst-

case input of a protocol for p that on all inputs errs with

probability at most ε. This definition differs from the usual

definition, where Rε(p) is defined in terms of worst case

communication. It will be easier to state our proofs using

this definition; the two notions are closely related, and the

lower bounds using our definition are stronger. When stating

our upper bounds we will indicate if they hold even for

worst-case communication. In particular, R0(p) will be the

worst-case expected communication cost of a zero-error

communication protocol for p. The worst case deterministic

complexity of the problem p is defined similarly, and is

denoted by D(p).
The two-party communication complexity model is
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clearly a special case of the above model: the graph is just an

edge. Multi-party generalizations of this model, where pro-

cessors communicate using broadcasts has been considered

in several earlier works. The point-to-point communication

assumed above is closer to the multi-party communica-

tion model of Dolev and Feder [3] who showed that in

general that in this model the deterministic complexity is

polynomially bounded by the non-deterministic complexity.

Subsequently, Duris and Rolim [4] obtained lower bounds

in this model on the deterministic and non-deterministic

communication complexity. These works assume that each

processor may send a bit to any other processor at the same

cost, that is, the underlying graph is completely connected.

The point to point model has seen a recent surge of

interest [1], [5], [2], [6]. This is because the point-to-point

model (as opposed to the broadcast model) arguably better

captures many of the modern day networks and has been

studied in the many distributed models: e.g. the BSP model

of Valiant [7], models for MapReduce [8], [9], massively

parallel models to compute conjunctive queries [10], [11],

distributed models for learning [12], [13] and in the core

distributed computing literature [14].

The recent surge in interest in this model is also in

part motivated by proving lower bounds for the distributed

functional monitoring framework (see e.g. the recent sur-

vey [15]), which generalizes the popular data streaming

model [16]. However, all of the recent work assumes that

the underlying topology is fully connected. In our opinion

this is a strict restriction since in many situations assuming

full connectivity would be too strong an assumption. Indeed

in areas like sensor networks, researchers have considered

the effects of network topology with some success [17] for

simple topologies like trees.

The following is the motivating question for our work

(which was also mentioned as an interesting direction to

pursue in [6]):

Can we prove lower bounds on multi-party com-

munication complexity for point to point commu-

nication that are sensitive to the topology of the

connections between the processors?

To see how the network topology can make a big differ-

ence (for graphs G that have the same number of vertices),

consider the trivial protocol that computes the function f by

collecting the n-bit inputs of all processors at one designated

processor. If the underlying graph is the complete graph

(or has constant diameter), then this trivial protocol can be

implemented with a total communication of only about kn
bits. This is tight, because the designated processor needed

to receive kn bits in total. If, however, we were forced

to implement this protocol when the underlying graph is

the line graph, the total communication would be Ω(k2n).
Focusing only on the information each processor needs to

obtain would lead us to neglect such factors of k. Our

interest is in identifying situations where we can recover this

extra Θ(k) factor (up to a poly-log loss) in our lower bounds

and in general match the bound of the trivial algorithm for

any topology.

Not surprisingly, the role of topology in computation has

been studied extensively in distributed computing. There are

three main differences between works in this literature and

ours. First, the main objective in distributed computation is

to minimize the end to end delay of the computation, which

in communication complexity terminology corresponds to

the number of rounds need to compute a given function. By

contrast, we consider the related but different measure of

the total amount of communication. Second, the effect of

network topology on the cost of communication has been

analyzed to quite an extent when the networks are dynamic

(see for example the recent survey of Kuhn and Oshman

[18]). By contrast, in this work we are mainly concerned

with static networks of arbitrary topology. Finally, there has

also been work on proving lower bounds for distributed

computing on static networks, see e.g. the recent work of

Das Sarma et al. [19]. This line of work differs from ours in

at least two ways. First, their aim is to prove lower bounds on

the number of rounds needed to compute, especially when

the edges of the graph are capacitated. Our results, on the

other hand, focus on the total communication needed without

placing any restriction on the capacities of the edges or

the number of rounds involved. Second, the sense in which

their bounds are topology dependent is different than ours.

For instance, when they prove a lower bound involving the

diameter of a graph, they do so by carefully constructing

a particular family of graphs for which the claimed bound

holds. To the best of our knowledge, their bounds are not

known to extend to graphs outside this family. By contrast,

our results hold asymptotically for every graph.

Our work, in this regard, is perhaps closer to the ear-

lier work of Tiwari [20], who considered computing a

function when the inputs are distributed over graphs with

simple topologies. In our terminology, Tiwari considered

the deterministic complexity D(f, Pk, {1, k+1},Σ), where

Pk denotes the path of length k.1 He also considered

D(f,G, V (G),Σ) for specific functions f (including the

element distinctness problem, which we also consider in

this paper) and G being a path, grid or ring graph. In all

these cases, Tiwari proved lower bounds that match the

trivial protocol where all the terminals send their inputs to a

1In particular, Tiwari made the following remarkable linear array conjec-

ture, which in our terminology can be stated as: D(f, Pk, {1, k+1},Σ) =
kD(f, P2, {1, 2},Σ) for all functions f . That is, the communication costs
do not change much if the non-terminal vertices perform no real computa-
tion, beyond relaying the messages between the terminals. He further de-
veloped techniques for showing lower bounds in this setting, and confirmed
that the conjecture was true for several functions. In general, however, the
conjecture was found to be false, and it got resolved as follows: Kushilevitz,
Linial and Ostrovsky [21] exhibited a function for which D(f, Pk, {1, k+
1},Σ) ≤ ( 3

4
+ o(1))kD(f, P2, {1, 2},Σ); Dietzfelbinger [22] showed

that D(f, Pk, {1, k + 1},Σ) ≥ γkD(f, P2, {1, 2},Σ), for a constant
γ ≈ 0.275.
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designated terminal. To the best of our knowledge, Tiwari’s

results were not generalized to arbitrary topologies.

Our Contributions: We present a general framework to

prove lower bounds for general topologies. It is standard to

view the computation across a cut as a two-party problem

and extract lower bounds using two-party lower bounds:

in particular, Tiwari’s results on mesh and ring topologies

utilized cuts.2 We refine this method by combining the

effect of considering communication across several cuts. The

choice of cuts will be guided by the the theory of metric

embeddings as in the celebrated works of Bourgain [23]

and London, Linial and Rabinovich [24]. None of our proofs

are technically difficult in themselves, probably because the

tools we use are quite non-trivial. We believe our main

contribution is more conceptual: we identify certain key

components and show how to combine them to obtain

topology dependent lower bounds. We also believe that our

framework is fairly general and should be widely applicable.

In particular, this framework allows us to generalize many

of the existing lower bounds proved assuming the complete

graph topology to general graphs. The following are our

results.

Element distinctness: In the element distinctness prob-

lem (ED, G,K, {0, 1}n), each terminal node in K ⊆ V (G)
is given an n-bit binary string as input. The goal is to

determine if all the inputs are distinct. We express our

bounds using the following graph theoretic parameters (see

Goddard and Oellerman [25]). The length of the shortest

path between u and v will be denoted by d(u, v). The

diameter diamG(K) of K is the maximum value of d(u, v)
as u and v range over K. For a vertex v ∈ V (G), its status

w.r.t. K, denoted by σK(v), is the sum of the distances from

u to all other vertices in K. A vertex v whose status w.r.t.

K is minimum is said to be a median for K, and its status

is denoted by σG(K).

Theorem I.1. Suppose n ≥ 2 log k. We have the following

upper bounds.

(i) For all 1
2 ≥ ε ≥ 0, Rε(ED,K) = O(σG(K) log(k/ε)).

(ii) R0(ED,K) = O(diamG(K)n+ σG(K) log k).

The following almost matching lower bounds are true.

(i) For all constant 1/2 > ε > 0, Rε(ED,K) =
Ω(σG(K)/ log k).

(ii) R0(ED,K) = Ω(diamG(K)n+ σG(K)/ log k).

In Section II, we present the proof of this theorem, with

a discussion of the tools we employ.

An XOR lemma: Suppose the underlying graph G is

on vertex set [N ] and M = {(i�, j�)}k/2�=1 is a partition

2We remark that for the randomized version of the linear array conjecture
stated earlier, using cuts would immediately yield Rε(f, Pk, {1, k +
1},Σ) = Ω(kRε(f, P2, {1, 2},Σ)).

of K (the set of terminals) into disjoint pairs of distinct

elements. For a function f : {0, 1}n×{0, 1}n → {0, 1}, let

f⊕,M ≡ ⊕(i,j)∈Mf(Xi, Xj). A natural way to compute

f⊕,M is to independently compute each f(Xi, Xj) and

combine the answers. The cost of this naive protocol will be

about d(M) · Rε/k(f), where d(M) =
∑

(u,v)∈M d(u, v).
Is this optimal? We show the following.

Theorem I.2. For every constant 1/20 ≥ ε > 0 and every

binary function f and every set of pairs M as described

above, the following hold.

(i)

Rε

(
f⊕,M,K

) ≥ Ω

(
(R2ε(f)− 2) · d(M)√

k · log k · log(nk)

)
.

(ii)

Rε

(
f⊕,M, G,K,Σ

) ≥ Ω

(
(R′2ε(f)− 2) · d(M)

log k · log(nk)
)
,

where R′δ(f) is the optimal two-party communication

complexity of f with randomized protocols that err

with probability δ that can be proved via distributional

complexity on product distributions.

Distributed OR/AND: It is natural to consider what

happens if one replaces the XOR function in Theo-

rem I.2 with OR or AND. More precisely, define: f∨M ≡∨
(u,v)∈M f(Xu, Xv) and f∧M ≡ ∧

(u,v)∈M f(Xu, Xv),
where M is a disjoint pairing of the terminals in K. Unlike

in the XOR case, it turns out that the bounds depend on f in

a more delicate manner. For instance, it can be shown that

R
(
NEQ∨M

)
and R

(
EQ∧M

)
are both roughly the cost of

the minimal steiner tree connecting the terminal nodes of K.

We leave the details of this result for the full version. On the

other hand, we also show the following topology sensitive

bounds:

Theorem I.3. Let M be a disjoint pairing of the terminal

nodes of G that each hold an n-bit string with n ≥ 2.

Then, Rε

(
EQ∨M

)
is Ω

(
d(M)/ log k

)
and there exists a

randomized protocol with worst case-cost O
(
d(M) log k

)
.

Of particular interest for applications to graph problems

are DISJ∨M and DISJ∧M. We establish the following:

Theorem I.4. Let each of the terminal nodes in K hold an

n-bit string and M be a disjoint pairing of these nodes.

Then,

(i)

Rε

(
DISJ∨M

)
= Ω

(
d(M)

log(k)
· n

)

.

(ii)

Rε

(
DISJ∧M

)
= Ω

(
d(M)

log(k)
· n

)

.
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While we provide the argument of Theorem I.2 later, the

proofs of Theorems I.3 and I.4 can be found in the full

version.

Graph problems: Using some of the above results, we

extend the lower bounds on graph problems considered in [2]

to the general topology case. In particular, in these problems

the k terminals get k subgraphs of some graph H (edges

can be duplicated) and the terminals want to solve one of

the following five problems: determining (i) the degree of

a vertex in H , (ii) if H is acyclic; (iii) if H is triangle-

free; (iv) if H is bipartite and (v) if H is connected. In all

these cases we show that the trivial algorithm of all terminals

sending their subgraphs to a designated terminal is the best

possible up to an O(log k) factor. Our reductions for (ii)-(v)

are different from those in [2] as the hard problem in [2] can

be solved with O(kn) communication for any topology.

A. The organization of the rest of the paper

In Section II we present the full proof of Theorem I.1.

We give an overview of our method to prove lower bounds

in Section II-A and then compare our techniques with those

of existing work in Section II-B. We present the proof of

Theorem I.2 in Section III. Section IV presents some of our

reductions that prove our lower bounds for graph problems.

All omitted proofs can be found in the full version of the

paper [26].

II. AN EXAMPLE: ELEMENT DISTINCTNESS

In this section we analyze the Element Distinctness

problem and prove Theorem I.1. The proof will point to

a general methodology for showing lower bounds on the

communication cost of distributed protocols. We summarize

the main features of this methodology at the end of the

section and compare our techniques with those of existing

related work.

Upper bounds: The upper bounds follow using stan-

dard randomized protocols to test equality of strings.

(i) Let v ∈ V (G) be a median for K. Each terminal node

in K computes a random �-bit hash of its input treating

the shared random string as a hash function. These

fingerprints are sent to v, where it is verified that they

are all distinct. By the union bound, the probability of

error is at most
(
|K|
2

)
2−�. Thus, if � is chosen to be

around 2 log |K|+ log(1ε ), this quantity is at most ε.
(ii) It suffices to show that there is a randomized protocol

that (i) always terminates declaring success or failure

after communicating O(diamG(K)n+σG(K) log |K|)
bits, (ii) on all inputs, with probability at least 1

2
declares success (iii) when it declares success, gives

the correct answer to the problem, but when it declares

failure, commits to no answer to the problem. (Re-

peating this protocol until success is obtained, yields a

protocol that terminates with probability 1, and always

gives the correct answer; the expected communication

of the new protocol is at most twice the original

protocol’s worst case communication.) We start with

the protocol for part (i) with ε = 1
2 . If all hashes are

different we declare that the elements are distinct. If

some two fingerprints match, the corresponding n-bit

inputs at the two terminals are compared (at one of

the terminals, say); if the inputs match, we declare that

the elements are not distinct; if the inputs don’t match,

we declare failure but give no answer. On all inputs,

this protocol terminates successfully with probability

at least 1
2 , but its answer is never wrong.

Lower bounds: Many of the key ideas of the paper will

already be encountered in this section. Let us first gather our

tools.

Metric embeddings: Consider an unweighted network

G. A cut in G is a pair (VA, VB) of disjoint non-empty sets

of vertices such that VA ∪ VB = V (G). We say that a pair

of vertices {u, v} is cut by C, and write {u, v} ∈ C, if

(u, v) ∈ (VA × VB) ∪ (VB × VA). We need a collection of

cuts C such that each pair of nodes of G is cut by roughly

as many C ∈ C as the distance between them.

Definition II.1. Let K be a subset of vertices of a graph G.

A collection (multiset) C of cuts is said to be an (α, β)-family

for K, if the following two conditions hold.

(i) For u, v ∈ K, |{C ∈ C : {u, v} ∈ C}| ≥ α · d(u, v);
(ii) For all {u, v} ∈ E(G), |{C ∈ C : {u, v} ∈ C}| ≤ β.

The stretch of C is the minimum (taken over all choices of

α and β satisfying (i) and (ii)) of the quantity β
α .

Approximating distances in graphs using cuts in this

manner is a central tool in the theory of metric embed-

dings [24]; it has numerous applications in network design

and optimization. For us its value stems from the following

observation.

Proposition II.2. Let G be an undirected graph, and let

g : E(G) → R
+. Suppose C is an (α, β)-family of cuts for

G. Let h : C → R
+ be such that for all C ∈ C, we have∑

e∈C g(e) ≥ h(C). Then,
∑

e g(e) ≥ 1
β

∑
C h(C).

In our applications, g(e) will be the expected number of

bits exchanged along the edge e; and h(C) will be the com-

plexity of an appropriate two-party communication problem

induced by C. This allows us to derive lower bounds for

general distributed protocols from two-party communication

lower bounds. The loss in translation from the graph protocol

to the two-party problem will be governed by the quantity
β
α . It is, therefore, desirable to obtain families of cuts with

small stretch. The celebrated results of Bourgain [23] and

Linial, London and Rabinovich [24] provides us a general

tool for obtaining such families.

Lemma II.3. In every graph G for every non-empty K ⊆
V (G), there is a family C of cuts for K with stretch

O(log |K|).
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Two-party communication complexity: To apply Propo-

sition II.2 we need h(C) to be a lower bound on the

expected communication across C. We suggested earlier

that h(C) could be derived from an appropriate two-party

communication complexity problem induced by C. We now

make this association explicit. Let C = (VA, VB). Fix a

protocol Π for (ED, G,K, {0, 1}n) and a distribution on

its inputs. We will imagine that the inputs corresponding to

vertices in VA are with Alice and the inputs corresponding to

the vertices in VB are with Bob. They wish to determine if

the inputs are all distinct. One strategy available to Alice

and Bob is to simulate the protocol Π and return the

answer it gives. To simulate the protocol Π, Alice performs

computations that take place at vertices in VA and Bob

performs all computations that take place at vertices in VB .

They share the messages that travel across the edges cut

by C. In particular, the resulting two-party protocol will

have expected communication exactly equal to the expected

communication across the cut C in Π. (This can be formally

justified; we omit the details.) Thus, one candidate for

h(C) is the expected communication cost of the best two-

party communication protocol under the given distribution.

Before we proceed, we must do the following: (i) identify

a good distribution to use; (ii) show that the corresponding

two-party problem is hard to solve for all cuts under this

distribution. The two lower bounds for (ED, G,K, {0, 1}n)
claimed in Theorem I.1 will use different distributions. For

the first lower bound the following natural distribution μ0

will be effective: all input nodes receive distinct strings,

each of the
(
2n

k

)
possibilities being equally likely. For the

second lower bound, we will use μ1 defined as follows. Let

u, v ∈ K such that d(u, v) = diamG(K). Now define μ1

to be the uniform distribution on those inputs where all

terminals other than u and v are assigned distinct values,

and u and v are assigned a common value distinct from

the others. We are thus led to a two-party communication

problem of the following form. Alice receives a sequence

SA of a distinct elements of {0, 1}n and Bob a sequence

SB of b distinct elements of {0, 1}n. They need to determine

if SA ∩ SB = ∅.
Lemma II.4. (i) Suppose SA and SB are chosen uni-

formly at random and disjoint from each other; we

call this distribution also μ0. Let a ≤ b and 2n ≥
4(a + b) + 1. Let Π be a two-party ε-error random-

ized communication protocol for the above two-party

problem (thus, it computes the answer correctly with

probability at least 1− ε on all inputs). Then,

E
(SA,SB)∼μ0

[|Π(SA, SB)|] = Ω(min{a, b}).

(ii) Suppose SA and SB are as above, but chosen so that

their first elements are equal but they are otherwise

disjoint; call this distribution μ1. Let a, b ≥ 1, 2n ≥
a+ b, and let Π be a zero-error protocol for the above

two-party problem. Then,

E
(SA,SB)∼μ0

[|Π(SA, SB)|] ≥ log(2n − (a+ b) + 2).

We will justify this later. With this we are now ready to

establish the lower bounds claimed in Theorem I.1.

Proof: (of Theorem I.1)

(i) Considered an ε-error randomized protocol for

(ED, G,K, {0, 1}n). Let C be an (α, β)-family of

cuts with stretch O(log |K|) promised by Lemma II.3.

Assume the inputs are chosen according to the dis-

tribution μ0 defined above. We apply Proposition II.2

taking g(e) as the expected number of bits exchanged

across edge e and taking h(C) to be the lower bound

on the two-party communication problem given by

Lemma II.4. (We use linearity of expectation, where

the expectations are over the choice of inputs from

μ0 and the random choices implicit in Π.) For a cut

C = (VA, VB), let KA = VA ∩K and VB = VB ∩K.

We conclude that

E
X∼μ0

[|Π(X)|] =
∑

e∈E(G)

g(e)

≥ 1

β

∑
C∈C

h(C)

≥ 1

β

∑
(VA,VB)∈C

Ω(min(|KA|, |KB |))

≥ 1

βk

∑
(VA,VB)∈C

Ω(|KA||KB |).

Note that∑
(VA,VB)∈C

|KA||KB | =
∑

{u,v}⊆K

|{C ∈ C : {u, v} ∈ C}|

≥
∑

{u,v}⊆K

α · d(u, v)

=
α

2

∑
u∈K

σK(u).

Therefore, E[|Π(X)|] ≥ ( α
2βk )

∑
u∈K Ω(σK(u)) ≥

( α
2β )Ω (σG(K)), and E[|Π(X)|] = Ω(σG(K)/ log k).

(ii) Since R0(ED, G,K, {0, 1}n) ≥
Rε(ED, G,K, {0, 1}n) for all ε ≥ 0, we conclude

from part (i) that R0(ED, G,K, {0, 1}n) =
Ω(σG(K)/ log k). It thus suffices to show that

R0(ED, G,K, {0, 1}n) ≥ diamG(K)n. For this, we

will use a different family of cuts and a different

distribution. Let u, v ∈ K such that d(u, v) =
diamG(K). For i = 0, 1, . . . ,diamG(K) − 1, let

Vi = {w ∈ V : d(u,w) ≤ i}, and Ci = (Vi, V \ Vi).
Consider the family C = {C0, C1, . . . , Cd(u,v)−1} of

cuts. Now we use μ1 defined above, under which all

terminals other than u and v are assigned distinct

values, and u and v are assigned a common value
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distinct from the others. Since no edge appears in

more than one cut, arguing as above, we obtain from

Proposition II.2 and Lemma II.4 that

E
μ1

[|Π|] ≥
d(u,v)∑

i

log(2n−k+2) = diamG(K) log(2n−k+2).

It remains to establish Lemma II.4.

Proof: (of Lemma II.4)

(i) Now, suppose a ≤ b and N = 2n ≥ 4(a+ b). Identify

[N ] with {0, 1}n. We may assume that SA and SB

are sets instead of sequences. Thus SA and SB are

subsets of [N ] chosen uniformly at random such that

|SA| = a, |SB | = b and SA∩SB = ∅. Suppose there is

an ε-error two-party randomized protocol Π for the set

disjointness problem (its error probability is bounded

by ε for all inputs (SA, SB) even outside the support of

μ0). We may assume (by repeating the protocol) that

ε ≤ 1
8 . Let

E
(SA,SB)∼μ0

[|Π(SA, SB)|] = �. (1)

We wish to show that � = Ω(a).
We will appeal to the following result of

Razborov [27]. Let N ′ = 4a+ 1. Define distributions

ρ0 and ρ1 on pairs of subsets (TA, TB) of [N ′] as

follows. In ρ0, the the sets TA and TB are disjoint

a-element subsets of [N ′] chosen at random; in ρ1, the

sets TA and TB are a-element subsets of [N ′] chosen

at random with the condition that they intersect at

exactly one place. Let ρ = 3
4ρ0+

1
4ρ1. Then, there is a

constant α > 0 such that for all randomized protocols

Γ for the set disjointness problem with worst-case

communication less than αa,

Pr
(TA,TB)∼ρ

[Γ errs on (TA, TB)] ≥ 1

4
.

Now consider the following protocol Γ for sets gener-

ated according to the distribution ρ.

Input: Alice receives TA and Bob receives TB .

Step 1:Let π be a random permutation of [N ] shared

by Alice and Bob. Let SA = π(TA) and SB =
π(TB ∪ {N ′ + 1, . . . , N ′ + (b − a)}) (note

N ≥ N ′ + b− a). Note that TA ∩ TB = ∅ iff

SA ∩ SB = ∅; furthermore, if TA and TB are

disjoint, (SA, SB) have distribution precisely

μ0.

Step 2:Alice and Bob simulate Π(SA, SB) but limit

the communication to 6� bits. If Π is termi-

nated before it finishes naturally, we say ‘Yes,

the sets intersect’; otherwise, we return the

answer Π returns.

One can verify that Γ errs only when Π errs or when

Π is terminated prematurely and SA ∩ SB = ∅. Thus,

our assumption (1) and Markov’s inequality imply

Pr[Γ errs ] ≤ 1

8
+ Pr[SA ∩ SB = ∅]
· Pr[|Π| > 6� | SA ∩ SB = ∅]

<
1

8
+
3

4
× 1

6
=
1

4
.

It follows that 6� ≥ αa, that is, � = Ω(a).
(ii) Let X be the first element of SA and SB , when

(SA, SB) ∼ μ1. Let Y be values at the other locations

of SA and SB . Let Π have expected cost c. We first fix

Y and the public randomness of Π so that the resultant

deterministic protocol, denoted by ΠD, has expected

cost c. Using the rectangle property of transcripts we

conclude that for no two different values of X the

transcripts of ΠD are the same. Using a well-known

property of such prefix-free transcripts, we conclude

that c ≥ log(2n − a− b+ 2).

A. The outline of the method

The above proof for element distinctness exemplifies

the following natural methodology. Let (F,G,K,Σ) be a

distributed computing problem. Each cut C = (VA, VB)
induces a two-party communication complexity problem FC

as follows: Alice’s input corresponds to the input xA ∈ ΣKA

and Bob receives the input xB ∈ ΣKB , where KA = K∩VA

and KB = K ∩ VB . The function they wish to compute is

FC(xA, xB) = F (x), where x is the input for the vertices

in K obtained by combining xA and xB .

Cuts: Intuitively, the main contributors to the complex-

ity of the problem are the distances between the inputs. As

in the above example, we will define a suitable family of

cuts that captures this. In most cases, we will use the cuts

promised by Lemma II.3.

Distribution: As stated in the introduction, the diffi-

culty of the problem across any one cut is often not hard

to establish based on results already available. However, in

order to use of Proposition II.2, we need to somehow show

inputs that are hard simultaneously across all cuts. This will

be achieved by arguing not in terms of worst-case bounds

but expected bounds, for which it will be crucial to obtain

the right distribution.

Two-party communication complexity: Suppose we

have defined the distribution μ on inputs x for F . For each

cut C, this naturally defines a distribution on the inputs to

FC ; we refer to this distribution as μC . Standard results from

two-party communication complexity will be deployed here.

These results will also suggest the right global distribution

that we can impose on the inputs to the problem.
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Putting it together: This will be straightforward, and

we will just use Proposition II.2 in the following form.

Proposition II.5. Rε(F,K) ≥ 1

β

∑
C∈C

EDμC ,ε(FC), where C
is the (α, β)-family of cuts with stretch γ = β/α = O(log k)
obtained from Lemma II.3, and EDμC ,ε(FC) is the minimum

expected communication (averaged over inputs drawn from

μ and the coin tosses of the protocol) of a protocol ΓC for

FC that errs with probability at most ε for all inputs. Note

that ΓC is required to err with probability at most ε even

for inputs not in the support of μC .

In subsequent sections, we will use this method to derive

lower bounds for a variety of problems.

B. Connections to Related Work

Finally, we put our techniques in the context of existing

techniques used to argue lower bounds (most of which are

for the case when G is fully connected or almost equivalently

when G is a star graph). In particular, we will argue that

our techniques essentially generalize many of the existing

techniques.

The first lower bounds for the message-passing Number

in Hand (NIH) model seems to be due to Duris and Rolim

[4]. They also considered the complete graph topology (co-

ordinator model) and their bounds were for deterministic

and non-deterministic complexity. In particular it uses a

generalization of 2-party fooling set argument that does not

seem to apply to bounded error randomized protocols. Very

recently, the symmetrization technique was introduced by

Phillips et al. [1] and was further developed by Woodruff

and Zhang [5], [2], [28]. At a very high level, the core

idea in symmetrization is as follows. First we consider the

case when G is a star graph of diameter 2 with a co-

ordinator node at the center. Prototypical hard problems to

consider are functions of the form ∨k
i=1f(Xi, Y ), where

the center gets Y and the k leaves of G get X1, . . . , Xk

(i.e. in this case K = V (G)). If ν is a hard distribution

for (the 2-party) function f , then the trick is to define a

hard distribution μ on X1, . . . , Xk, Y such that for every

i ∈ [k] the effective distribution on (Xi, Y ) is ν. Then the

argument, slightly re-phrased in our language, proceeds as

follows: pick a random cut among the k cuts corresponding

to the k edges. Then by definition of μ the induced 2-party

problem across each cut is f and hence, the communication

complexity is Ω(R(f)), where R(f) is the randomized two-

party communication complexity of f . Then we note that

since the cut was picked completely at random, and the

distribution μ is symmetric with respect to the leaf-nodes,

the communication across such a random cut in expectation

is Θ(1/k) of the total communication, which leads to an

overall Ω(k ·R(f)) lower bound on the total communication.

By contrast, our technique does not need this symmetric

property though our use of linearity of expectation seems

similar. Indeed, we show how to recover the lower bound on

the OR of f from [2] using our techniques in the full version

of the paper. Note that the cuts in a star-graph are all similar,

as all leaves are symmetric with respect to the prototypical

example. As identified by the authors [1] themselves, this

property seems to be lost even for star graphs when the

inputs held by leaf-nodes are not symmetric with respect

to the function that players want to compute. For general

graph topology, there might be very little symmetry left. In

particular, in our technique, the cuts obtained are arbitrary

with no guarantee of symmetry. Nevertheless, our technique

seems flexible enough to handle such cases.

One technique that we cannot (yet) handle with ours is

the result of Braverman et al. [6] that proves a lower bound

of Ω(kn) on the set disjointness problem on the star graph.

It is an interesting open question to see if we can port the

techniques of Braverman et al. to our setting.

As mentioned in the introduction, Tiwari’s work [20]

did consider the case when G is not well connected. His

lower bounds for graphs other than the line graph were

obtained by embedding the graph G on to a line graph.

In our terminology, the set of cuts considered by Tiwari

were the layers of a BFS. For the simple cases of G being

a grid or a cycle, these set of cuts are a (1, 1) family of

cuts for G. In our work we use the full power of metric

embedding to handle general topologies in G. One can

think of our use of metric embeddings as embedding the

general graph G into suitable subgraphs of a grid graph.

The other difference is that Tiwari considered deterministic

communication complexity. This seems to present some

difficulties when applying to cuts in the following sense:

only 2-party lower bounds proved using certain techniques

like the fooling set or rank arguments could be employed.

The randomized protocol setting of our work appears to

be more flexible. When working across a cut, our method

seems oblivious of the particular technique used to derive

the relevant 2-party bound on the expected communication.

We conclude this discussion by pointing out another

area where cuts have been used to prove lower bounds

on communication. In the network coding literature one

of the outstanding open questions is the so called Li and

Li conjecture [29], [30], [31], which asks whether the gap

between the trivial upper bound and the cut based lower

bound is necessary. In fact, like our work this gap of

Θ(log k) is due to the use of metric embedding results.

However, the cut-based lower bound in network coding

seems more relevant to proving a lower bound for the version

of our problem where we are interested in minimizing the

total number of rounds. Further, in network coding, the main

goal seems to be transmitting a set of bits from a source to

a sink. By contrast, we deal with function computation in

the spirit of classical communication complexity.
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III. DISTRIBUTED XOR LEMMA

As observed in the introduction, the naive protocol gives

R(f⊕,M) = d(M)Rε/|M|(f) = O(d(M)Rε(f) log k).

In this section, we show the lower bound claimed in The-

orem I.2. Our proof will be a straightforward consequence

of a result of Barak et al. [32], which we now present.

Recall that f : Σ × Σ → {0, 1}. For

m ≥ 1, let f⊕m : Σm × Σm → {0, 1}, where

f⊕m((X1, . . . , Xm), (Y1, . . . , Ym)) =
⊕

i f(Xi, Yi).
Fix a distribution distribution ν on Σ× Σ, and let

EDνm, 1

20

(f⊕m) = E
νm
[R 1

20

(f⊕m)],

and let Dν, 1
5

(f) be the ( 15 )-error distributional complexity of

f under ν (that is, the minimum worst-case communication

over all deterministic protocols for f whose error probability

is at most 1
5 when inputs are drawn from ν).

Theorem III.1 (Barak et al. [32]). (i)

EDνm, 1

20

(f⊕m) log(20ER(f⊕m)) =

Ω(
(
(Dν, 1

5
(f) − 2)

√
m
)

.

(ii) If ν itself is a product distribution on Σ × Σ,

then EDνm, 1

20

(f⊕m) log(20ED(f⊕m)) =

Ω(
(
(Dν, 1

5
(f)(f)− 2) ·m

)
.

Remark 1. The LHS of both (i) and (ii) differ from those

in Theorem 2.8 and Theorem 2.9 of [32], because we define

the complexity of a randomized protocol to be its expected

communication cost instead of its worst-case communication

cost. Our claims follow from theirs by a straightforward

application of Markov’s inequality.

With this, we can justify Theorem I.2.

Proof: We will use the methodology outlined in the

Section II-A. Let F = f⊕,M. Let C be a (α, β)-family of

cuts for K with stretch γ = β/α = O(log k) obtained from

Lemma II.3.

The next step requires defining a distribution on ΣK . Let ν
be the distribution on Σ×Σ such that Dν, 1

5

(f) is maximized.

Our distribution μ on ΣK will be obtained by placing one

copy of ν on each pair in M. That is, if K = [k] and M =
{(i1, j1), (i2, j2), . . . , (ik/2, jk/2)}, then for each X ∈ Σk,

we have

μ(X) = ν(Xi1 , Xj1)ν(Xi2 , Xj2) · · · ν(Xik/2
, Xjk/2

).

The third step requires finding a lower bound on ED(FC)
for each cut C ∈ C.

Claim III.2. Suppose the cut C separates � pairs in M.

(i) EDμC , 1

20

[FC ] log(20EDμC , 1

20

[FC ]) =

Ω
(
(Dν, 1

5

(f)− 2)
√
�
)

.

(ii) If ν is itself a product distribution,

then EDμC , 1

20

[FC ] log(20EDμC , 1

20

[FC ]) =

Ω
(
(Dν, 1

5

(f)− 2) · �
)

.

We will justify this claim later. Let us first see how this

implies our theorem. Consider part (i) of our theorem. We

have from Proposition II.5 that

R 1

20

(F,K) ≥ 1

β

∑
C∈C

EDμC , 1

20

[FC ].

Multiplying both sides by log(20R 1

20
(F,K)) ≥

log(20EDμC , 1

20

[FC ]) gives

R 1

20

(F,K) log(20R 1

20
(F,K))

≥ 1

β

∑
C∈C

EDμC , 1

20

[FC ](log 20EDμC , 1

20

[FC ])

≥ 1

β

∑
C∈C

Ω̃
(
(Dν, 1

5

(f)− 2)
√

�C

)
,

where �C is the number of pairs of M separated by C and

we use the first part of the above claim to justify the last

inequality. Note that
∑

C∈C

√
�C ≥ ∑

C∈C �C/
√
k ≥ α ·

d(M)/
√
k. Thus,

R 1

20

(F,K) log(10R 1

20

(F,K)) = Ω
(
(Dν, 1

5

(f)− 2)d(M)/(γ
√
k)

)
.

Yao’s lemma (strong duality) implies that for our choice of

ν, Dν, 1
5

(f) ≥ R 1

5

(f). Thus,

R 1

20

(F,K) log(10R 1

20
(F,K)) = Ω

(
(R 1

5

(f)− 2)d(M)/(γ
√
k)

)
.

The proof of the second part is similar, so we omit it; but

we still need to verify the claim above. Again, the two-parts

are similar and we present our justification only for the first

part. Fix C and a randomized protocol ΓC for FC , and write

� for �C . Let M = {(i1, j1), (i2, j2), . . . , (ik/2, jk/2)}, and

let the � pairs of M cut by C be (i1, j1), . . . , (i�, j�). We

will now derive a protocol Γ for the function f⊕�.

Step 1:Alice receives X = (X1, X2, . . . , X�) and Bob

receives inputs Y = (Y1, Y2, . . . , Y�).
Step 2:Alice and Bob construct inputs X ′ ∈ ΣK for ΓC

as follows. First we deal with the pairs cut by C:

we set (X ′
ir
, X ′

jr
) = (Xr, Yr) for r = 1, 2, . . . , �.

For r = � + 1, . . . , k/2, we choose (X ′
ir
, X ′

jr
)

according to ν, independently for different j.

Step 3:Alice and Bob simulate ΓC(X
′); let the an-

swer it returns be z. Then Γ returns z ⊕⊕k/2
r=�+1 f(X

′
ir
, X ′

jr
) (f(X ′

ir
, X ′

jr
) is available in

their shared randomness).

Now, Γ errs in computing f⊕�(X,Y ) only if ΓC errs in

computing FC(X
′). Also, if the inputs to ΓC are drawn

from ν�, then the inputs Alice and Bob present to ΓC are

drawn according to νk/2. Thus, the expected communication

between Alice and Bob is precisely Eμ[|ΓC |], and the
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probability of error is at most 1
20 . Thus, our claim follows

from Theorem III.1 (i).

IV. LOWER BOUNDS FOR GRAPH PROBLEMS

In this section, we will consider the case when the k
terminals are trying to compute a function about a graph

H = (V,E) that is distributed among the k terminals. In

particular, for terminal i ∈ K, we will denote its subgraph

by Hi. We study the graph based problems considered in [2]

and show that in all of them the trivial algorithm where all

terminals send their input to one terminal is the best possible

algorithm (up to an O(log k) factor). In particular, these give

topology dependent extensions to the corresponding results

in [2]. In this section, we will not explicitly differentiate

whether the edge sets of Hi are disjoint for every i or not.

In what follows we will use |Hi| to denote the size of Hi

(i ∈ K).

We begin with a technical result that we will use:

Lemma IV.1. For any graph G and subset of terminals K
with even k = |K|, let M(K) denote the set of all disjoint

pairings in K. Then for any k ≥ 2,

1

2
· σG(K) ≤ max

M∈M(K)
d(M) ≤ σG(K).

In this section, we consider the following three problems.

Acyclicity: Given Hi to terminal i ∈ K, the terminals

need to decide if H is acyclic or not.

Triangle-Freeness: Given Hi to terminal i ∈ K, the

terminals have to decide if H has a triangle or not.

Bipartitiness: Given Hi to terminal i ∈ K, the termi-

nals have to decide if H is bipartite or not.

We will show that for all of the problems above, the trivial

algorithm is the best.

Theorem IV.2. Each of the problems of acyclicity,

triangle-freeness and bipartitenes on graph G needs

Ω
(
σG(K) · maxi |Hi|

log k

)
communication.

Proof: We will prove the claimed lower bounds by

showing the claimed lower bound on the problem where

the terminals have to decide if (i) H is a forest vs (ii) H
has a triangle. (Note that solving any of acyclicity, triangle-

freeness or bipartitenes will determine which of the two

cases H falls in.)

Consider the DISJ∨M , where we pick the pairing M
so that it maximizes d(M) (and hence, we can apply

Lemma IV.1). For notational convenience let us assume that

K = [k] and that

M = {(i, i′)|i ∈ [k/2] and i′ = i+ k/2}.
Assume that for the DISJ∨M problem, terminal i ∈ [k] gets

a set/vector Xi ∈ {0, 1}n. We now define the subgraphs Hi.

To begin with we have

V = ∪k/2
j=1Uj ∪ {w1, . . . , wk},

X1

1

2

3

4

0
1
0
1

u1
2

u1
4

w1 w3

H1

Player 1

X2

1

2

3

4

1
1
0
1

u2
1

u2
2

u2
4

w2 w4

H2

Player 2

X3

1

2

3

4

1
0
1
0

u1
1

u1
3

w3w1

H3

Player 3

X4

1

2

3

4

0
1
0
0

u2
2w4w2

H4

Player 4

Figure 1. Illustration of the reduction in proof of Theorem IV.2 for n =
k = 4. The pairing M = (1, 3), (2, 4) is denoted by the paired terminals
having the same colored boxes. In this example the overall graph H =
∪4

i=1
Hi has a triangle and the three participating nodes are colored in

orange.

where

Uj = {uj
1, . . . , u

j
n}.

For every p ∈ [k], Hp has the following edges: (wp, wp′

)

and (wp, up′

j ) for every j ∈ [n] such that Xp(j) = 1, where

p′ = p if p ≤ k/2 and p′ = p−k/2 otherwise. See Figure 1

for an illustration of this reduction.

Note that each terminal p can construct its sub-

graph just from its Xp and that H is in case (i) if

DISJ∨M (X1, . . . , Xk) = 0 and is in case (ii) otherwise.

Theorem I.4 along with the lower bound in Lemma IV.1

and the fact that for every i ∈ [k], |Hi| = Θ(n) completes

the proof.

In the full version of the paper [26] we present analogous

lower bounds for determining the degree of a vertex in H
and checking if H is connected or not.
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