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Abstract—The 3SUM problem is to decide, given a set of n real
numbers, whether any three sum to zero. It is widely conjectured
that a trivial Opn2q-time algorithm is optimal and over the
years the consequences of this conjecture have been revealed.
This 3SUM conjecture implies Ωpn2q lower bounds on numerous
problems in computational geometry and a variant of the
conjecture implies strong lower bounds on triangle enumeration,
dynamic graph algorithms, and string matching data structures.

In this paper we refute the 3SUM conjecture. We prove that the
decision tree complexity of 3SUM is Opn3{2?log nq and give two
subquadratic 3SUM algorithms, a deterministic one running in
Opn2{plog n{ log log nq2{3q time and a randomized one running
in Opn2plog lognq2{ log nq time with high probability. Our results
lead directly to improved bounds for k-variate linear degeneracy
testing for all odd k ě 3. The problem is to decide, given a linear
function fpx1, . . . , xkq “ α0 ` ř

1ďiďk αixi and a set A Ă R,
whether 0 P fpAkq. We show the decision tree complexity of this
problem is Opnk{2?log nq.

Finally, we give a subcubic algorithm for a generalization of
the pmin,`q-product over real-valued matrices and apply it to
the problem of finding zero-weight triangles in weighted graphs.
We give a depth-Opn5{2?log nq decision tree for this problem,
as well as an algorithm running in time Opn3plog log nq2{ log nq.

I. INTRODUCTION

The time hierarchy theorem [24] implies that there exist

problems in P with complexity Ωpnkq for every fixed k.

However, it is consistent with current knowledge that all

problems of practical interest can be solved in Õpnq time

in a reasonable model of computation. Efforts to build a

useful complexity theory inside P have been based on the

conjectured hardness of certain archetypal problems, such

as 3SUM, pmin,`q-matrix product, and CNF-SAT. See, for

example, the conditional lower bounds in [22], [30], [31], [25],

[1], [2], [32], [15], [36].
In this paper we study the complexity of 3SUM and related

problems such as linear degeneracy testing (LDT) and finding

zero-weight triangles. Let us define the problems formally.

3SUM: Given a set A Ă R, determine if there exists a, b, c P
A such that a` b` c “ 0.

INTEGER3SUM: Given a set A Ď t´U, . . . , Uu Ă Z, deter-

mine if there exists a, b, c P A such that a`b`c “ 0.

k-LDT and k-SUM: Fix a k-variate linear function

φpx1, . . . , xkq “ α0 ` řk
i“1 αixi, where

α0, . . . , αk P R. Given a set A Ă R, determine if

φpxq “ 0 for any x P Ak. When φ is
řk

i“1 xi the

problem is called k-SUM.

ZEROTRIANGLE: Given a weighted undirected graph G “
pV,E,wq, where w : E Ñ R, determine if there

exists a triangle pa, b, cq P V 3 for which wpa, bq `
wpb, cq ` wpc, aq “ 0. (From the definition of

love : a score of zero, one could also call this the

LOVETRIANGLE problem.)

These problems are often defined with further constraints

that do not change the problem in any substantive way [22].

For example, the input to 3SUM can be three sets A,B,C Ă R

and the problem is to determine if there exists a P A, b P
B, c P C such that a ` b ` c “ 0. Even if there is only one

set, there is sometimes an additional constraint that a, b, and

c be distinct elements.

As a problem in its own right, 3SUM has no compelling

practical applications. However, lower bounds on 3SUM imply

lower bounds on dozens of other problems that are of practical

interest. Before reviewing existing 3SUM algorithms we give

a brief survey of conditional lower bounds that depend on the

hardness of 3SUM.

A. Implications of the 3SUM Conjectures

It is often conjectured that 3SUM requires Ωpn2q time and

that INTEGER3SUM requires Ωpn2´op1qq time [30], [2]. These

conjectures have been shown to imply strong lower bounds on

numerous problems in computational geometry [22], [4], [8],

[33] dynamic graph algorithms [30], [2], and pattern match-

ing [3], [6], [13], [16]. For example, the 3SUM conjecture

implies that the following problems require at least Ωpn2q
time.

— Given an n-point set in R
2, determine whether it contains

three collinear points [22].

— Given two n-edge convex polygons, determine whether

one can be placed inside the other via rotation and

translation [8].

— Given n triangles in R
2, determine whether their union

contains a hole, or determine the area of their union [22].

Through a series of reductions, Pǎtraşcu [30] proved that the

INTEGER3SUM conjecture implies lower bounds on triangle

enumeration and various problems in dynamic data structures,

even when all updates and queries are presented in advance.

Some lower bounds implied by the INTEGER3SUM conjecture

include the following.

— Given an undirected m-edge graph, enumerating up to

m triangles (3-cycles) requires at least Ωpm4{3´op1qq
time [30].1

1Bjorklund et al. [9] recently proved that the exponent 4{3 is optimal if
the matrix multiplication exponent ω is 2.
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— Given a sequence of m updates to a directed graph (edge

insertions and edge deletions) and two specified vertices

s, t, determining whether t is reachable from s after each

update requires at least Ωpm4{3´op1qq time [2].

— Given an edge-weighted undirected graph, deciding

whether there exists a zero-weight triangle requires at

least Ωpn3´op1qq time [37].

In recent years conditional lower bounds have been ob-

tained from other plausible conjectures: that computing the

pmin,`q-product of two nˆ n matrices requires Ωpn3´op1qq
time, that CNF-SAT requires 2Ωpnq time (Exponential Time

Hypothesis, or ETH), and that CNF-SAT requires 2p1´op1qqn
time (Strong ETH). We now know that if the ETH holds, k-

SUM requires nΩpkq time [31], and if the Strong ETH holds,

p3{2´εq-approximating the diameter of an m-edge unweighted

graph requires Ωpm2´op1qq time [32], [15]. Williams and

Williams [36] proved that numerous problems are equivalent to

pmin,`q-matrix multiplication, inasmuch as a truly subcubic

(Opn3´Ωp1qq) algorithm for one would imply truly subcubic

algorithms for all the others.

B. Algorithms, Lower Bounds, and Reductions

The evidence in favor of the 3SUM and INTEGER3SUM

conjectures is rather thin. Erickson [19] and Ailon and

Chazelle [5] proved that any k-linear decision tree for solv-

ing k-LDT must have depth Ωpnk{2q when k is even and

Ωpnpk`1q{2q when k is odd. In particular, any 3-linear decision

tree for 3SUM has depth Ωpn2q. (An s-linear decision tree is

one where each internal node asks for the sign of a linear

expression of s elements.) The INTEGER3SUM problem is

obviously not harder than 3SUM, but no other relationship

between these two problems is known. Indeed, the assumption

that elements are integers opens the door to a variety of

algorithmic techniques that cannot be modeled as decision

trees. Using the fast Fourier transform it is possible to solve

INTEGER3SUM in OpU logUq time, which is subquadratic

even for a rather large universe size U .2 Baran, Demaine,

and Pǎtraşcu [7] showed that INTEGER3SUM can be solved in

Opn2{plog n{ log lognq2q time (with high probability) on the

word RAM, where U “ 2w and w ą log n is the machine

word size. The algorithm uses a mixture of randomized

universe reduction (via hashing), word packing, and table

lookups.

It is straightforward to reduce k-LDT to a 2SUM prob-

lem or unbalanced 3SUM problem, depending on whether

k is even or odd. When k is odd one forms certain sets

A,B,C where |A| “ |B| “ npk´1q{2 and |C| “ n, then

sorts them in Opnpk´1q{2 log nq time. The standard three-

set 3SUM algorithm on A,B,C takes Op|C|p|A| ` |B|qq “
Opnpk`1q{2q time. When k ě 4 is even there is no set C.

Using Lambert’s algorithm [26] (cf. [34]), A and B can be

sorted in Opnk{2 log nq time while performing only Opnk{2q
comparisons. These algorithms can be modeled as k-linear

decision trees, and are therefore optimal in this model by the

2Erickson [19] credits R. Seidel with this 3SUM algorithm.

lower bounds of [19], [5]. However, it was known that all k-

LDT problems can be solved by n-linear decision trees with

depth Opn5 log nq [27], or with depth Opn4 logpnKqq if the

coefficients of the linear function are integers with absolute

value at most K [28]. Unfortunately these decision trees are

not efficiently constructible. The time required to determine

which comparisons to make is exponential in n.

The ZEROTRIANGLE problem was highlighted in a recent

article by Williams and Williams [37]. They did not give any

subcubic algorithm, but did show that a subcubic ZEROTRI-

ANGLE algorithm would have implications for INTEGER3SUM

via an intermediate problem called CONVOLUTION3SUM.

CONVOLUTION3SUM: Given a vector A P R
n, determine

if there exist i, j for which Apiq `Apjq “ Api` jq.
INTEGERCONV3SUM: The same as CONVOLU-

TION3SUM, except that A P t0, . . . , U ´ 1un
and U ď 2w, where w “ Ωplog nq is the machine

word size.

Pǎtraşcu [30] defined the CONVOLUTION3SUM problem

and gave a randomized reduction from INTEGER3SUM to IN-

TEGERCONV3SUM. Williams and Williams [37] gave a reduc-

tion from CONVOLUTION3SUM to ZEROTRIANGLE. Neither

of these reductions is frictionless. Define TI3S , TIC3S , TC3S

and TZT to be the complexities of the various problems

on inputs of length n, or graphs with n vertices. Clearly

TIC3Spnq ď TC3Spnq. The reductions show that for any

k, TI3Spnq “ Opn2{k ` k3 ¨ TIC3Spn{kqq and TC3Spnq “
Op?n ¨TZT p?nqq. Note that even if ZEROTRIANGLE had an

Opn2q-time algorithm (optimal on dense graphs), this would

only give an Opn9{5q bound for INTEGER3SUM.

C. New Results

We give the first subquadratic bounds on both the decision

tree complexity of 3SUM and the algorithmic complexity of

3SUM, which also gives the first deterministic subquadratic

algorithm for INTEGER3SUM.3 Our method leads to similar

improvements to the decision tree complexity of k-LDT when

k ě 3 is odd, but not to the algorithmic complexity of k-LDT.

Refer to Table I for a summary of prior work and our results.

Theorem 1. There is a 4-linear decision tree for 3SUM with
depth Opn3{2?log nq. Furthermore, 3SUM can be solved de-
terministically in Opn2{plog n{ log lognq2{3q time and, using
randomization, in Opn2plog lognq2{ log nq time w.h.p.

Theorem 2. When k ě 3 is odd, there is a p2k ´ 2q-linear
decision tree for k-LDT with depth Opnk{2?log nq.

Theorem 1 refutes the 3SUM conjecture and casts seri-

ous doubts on the optimality of many Opn2q algorithms in

computational geometry. Theorem 1 also answers a question

of Erickson [19] and Ailon and Chazelle [5] about whether

3We assume a simplified Real RAM model. Real numbers are subject to
only two unit-time operations: addition and comparison. In all other respects
the machine behaves like a w “ Oplognq-bit word RAM with the standard
repertoire of unit-time AC0 operations: bitwise Boolean operations, left and
right shifts, addition, and comparison.
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3SUM

trivial n2

new n3{2?logn DEC. TREE

n2
M´

logn
log logn

¯2{3

n2
M

logn
plog lognq2 RAND.

INTEGER3SUM

trivial n2

Seidel (1997) U logU

Baran, Demaine, n2
M´

logn
log logn

¯2

RAND.

and Pǎtraşcu (2005)
n2

M
w

log2 w
RAND.

new n2
M´

logn
log logn

¯2{3

CONVOLUTION3SUM

trivial n2

new n3{2?logn DEC. TREE

n3{2 RAND., DEC. TREE

n2
M

logn
plog lognq2

n2
M

logn
log logn

RAND.

ZEROTRIANGLE

trivial n3

new n5{2?logn DEC. TREE

n5{2 RAND., DEC. TREE

n3
M

logn
plog lognq2

n3
M

logn
log logn

RAND.

m5{4?logm DEC. TREE

m5{4 RAND., DEC. TREE

m3{2
M´

logm
plog logmq2

¯1{4

m3{2
M´

logm
log logm

¯1{4
RAND.

TABLE I
RESULTS IN THE DECISION TREE MODEL ARE INDICATED BY DEC. TREE,

RESULTS USING RANDOMIZATION ARE INDICATED BY RAND. IN THE

ZEROTRIANGLE PROBLEM n AND m ARE THE NUMBER OF VERTICES AND

EDGES WHEREAS IN ALL OTHER PROBLEMS n IS THE LENGTH OF THE

INPUT. IN THE INTEGER3SUM PROBLEM w “ Ωplognq IS THE MACHINE

WORD SIZE AND U ď 2w THE SIZE OF THE UNIVERSE.

pk ` 1q-linear decision trees are more powerful than k-linear

decision trees in solving k-LDT problems. In the case of

k “ 3, they are.

We define a new product of three real-valued matrices called

target-min-plus, which is trivially computable in Opn3q time.

We observe that ZEROTRIANGLE is reducible to a target-min-

plus product, then give subcubic bounds on the decision tree

and algorithmic complexity of target-min-plus. Theorem 3 is

an immediate consequence.

Theorem 3. The decision tree complexity of ZEROTRIAN-

GLE is Opn5{2?log nq on n-vertex graphs and its ran-
domized decision tree complexity is Opn5{2q w.h.p. There
is a deterministic ZEROTRIANGLE algorithm running in
Opn3plog lognq2{ log nq time and a randomized algorithm
running in Opn3 log log n{ log nq time w.h.p.

Any m-edge graph contains Opm3{2q triangles which can be

enumerated in Opm3{2q time, so ZEROTRIANGLE can clearly

be solved in Opm3{2q time as well. We improve this bound

for all m.

Theorem 4. The decision tree complexity of ZEROTRIANGLE

on m-edge graphs is Opm5{4?logmq and, using randomiza-
tion, Opm5{4q w.h.p. The ZEROTRIANGLE problem can be
solved in Opm3{2{plogm{plog logmq2q1{4q time deterministi-
cally or Opm3{2{plogm{ log logmq1{4q w.h.p.

By invoking the Williams-Williams reduction [37], our

ZEROTRIANGLE algorithms give subquadratic bounds on the

complexity of CONVOLUTION3SUM. By designing CON-

VOLUTION3SUM algorithms from scratch we can obtain

speedups comparable to those of Theorem 3.

Theorem 5. The decision tree complexity of CONVOLU-

TION3SUM is Opn3{2?log nq and its randomized decision
tree complexity is Opn3{2q w.h.p. The CONVOLUTION3SUM

problem can be solved in Opn2plog lognq2{ log nq time deter-
ministically, or in Opn2 log logn{ log nq time w.h.p.

Due to the antiquated page limits imposed on us, complete

proofs of Theorems 2, 3, 4, and 5 do not appear in this

extended abstract. Refer to [23].

D. An Overview

All of our algorithms borrow liberally from Fredman’s 1976

articles on the decision tree complexity of pmin,`q-matrix

multiplication [21] and the complexity of sorting X`Y [20].

Throughout the paper we shall refer to the ingenious observa-

tion that a` b ă c` d iff a´ c ă d´ b as Fredman’s trick.

In order to shave off polyplog nq factors in runtime we apply

the bichromatic domination technique invented by Chan [14]

and developed further by Bremner, Chan, Demaine, Erickson,

Hurtado, Iacono, Langerman, Pǎtraşcu, and Taslakian [11].

In Section II we review a number of useful lemmas due to

Fredman [20], Buck [12], and Chan [14] about sorting with

partial information, the complexity of hyperplane arrange-

ments, and the complexity of dominance reporting in R
d. In

Section III we review a standard Opn2q-time 3SUM algorithm
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and in Section IV we present an Õpn3{2q-depth decision tree

for 3SUM. Subquadratic algorithms for 3SUM are presented in

Section V. Section VI presents new bounds on the decision tree

and algorithmic complexity of ZEROTRIANGLE. Section VII

concludes with some open problems.

II. USEFUL LEMMAS

Fredman [20] considered the problem of sorting a list of n
numbers known to be arranged in one of Π ď n! permutations.

When Π is sufficiently small the list can be sorted using a

linear number of comparisons.

Lemma 6. (Fredman 1976 [20]) A list of n numbers whose
sorted order is one of Π permutations can be sorted with
2n` log Π pairwise comparisons.

Throughout the paper rN s denotes the first rN s natural

numbers t0, . . . , rN s ´ 1u, where N may or may not be

an integer. We apply Lemma 6 to the problem of sorting

Cartesian sums. Given lists A “ paiqiPrns and B “ pbiqiPrns
of distinct numbers, define A ` B “ tai ` bj | i, j P rnsu.
We often regard A ` B as an |A| ˆ |B| matrix (which may

contain multiple copies of the same number) or as a point in

the 2n-dimensional space R
2n, whose coordinates are named

x1, . . . , xn, y1, . . . , yn. The points in R
2n that agree with a

fixed permutation of A` B form a convex cone bounded by

the
`
n2

2

˘
hyperplanes H “ txi` yj ´ xk ´ yl | i, j, k, l P rnsu.

The sorted order of A ` B is encoded as a sign vector

t´1, 0, 1upn
2

2 q depending on whether pA,Bq lies on, above,

or below a particular hyperplane in H . Therefore the number

of possible sorted orders of A ` B is exactly the number of

regions (of all dimensions) defined by the arrangement H .

(Regions of dimension less than 2n correspond to instances in

which some numbers appear multiple times.)

Lemma 7. (Buck 1943 [12]) Consider the partition of space
defined by an arrangement of m hyperplanes in R

d. The
number of regions of dimension k ď d is at most

`
m

d´k

˘ ´`
m´d`k

0

˘` `
m´d`k

1

˘` ¨ ¨ ¨ ` `
m´d`k

k

˘¯

and the number of regions of all dimensions is Opmdq.
In one of our algorithms we will construct the hyper-

plane arrangement explicitly. Edelsbrunner, O’Rourke, and

Seidel [18] proved that the natural incremental algorithm takes

Opmdq time (linear in the size of the arrangement), but any

trivial mOpdq-time algorithm suffices in our application. The

hyperplane arrangements we use correspond to fragments of

the Cartesian sum A ` B. Lemma 8 is a direct consequence

of Lemmas 6 and 7.

Lemma 8. Let A “ paiqiPrns and B “ pbiqiPrns be two lists
of numbers and let F Ď rns2 be a set of positions in the nˆn

grid. The number of realizable orders of pA`Bq|F def“ tai `
bj | pi, jq P F u is O

´`|F |
2

˘2n¯
and therefore pA ` Bq|F can

be sorted with at most 2|F |` 2n log |F |`Op1q comparisons.

It is sometimes convenient to assume that the elements of a

Cartesian sum are distinct, even though numbers may appear

multiple times. Lemma 9 illustrates one way to break ties

consistently. The proof is straightforward.

Lemma 9. Let A “ paiq and B “ pbiq be two lists of
numbers. Define a1i “ pai, i, 0q and b1j “ pbj , 0, jq. The
Cartesian sum A1 ` B1 is totally ordered, and is a linear
extension of the partially ordered A`B. (Addition over tuples
is pointwise addition; tuples are ordered lexicographically.
The tuple pu, v, wq can be regarded as a representation of
a real number u ` ε1v ` ε2w where ε1 " ε2 are sufficiently
small so as not to invert strictly ordered elements of A`B.)

Given a set P of red and blue points in R
d, the bichro-

matic dominating pairs problem is to enumerate every pair

pp, qq P P 2 such that p is red, q is blue, and p is greater than

q at each of the d coordinates. A natural divide and conquer

algorithm [29, p. 366] runs in time linear in the output size and

Opn logd nq. Chan [14] provided an improved analysis when

d is logarithmic in n. For the sake of completeness we give a

short proof of Lemma 10 in Appendix A.

Lemma 10. (Chan [14]) Given a set P Ď R
d of red and blue

points, it is possible to return all bichromatic dominating pairs
pp, qq P P 2 in time linear in the output size and cdε |P |1`ε. Here
ε P p0, 1q is arbitrary and cε “ 2ε{p2ε ´ 1q.

We typically invoke Lemma 10 with ε “ 1{2, cε « 3.42,
and d “ δ log n, where δ ą 0 is sufficiently small to make

the running time subquadratic, excluding the time allotted to

reporting the output.

III. THE QUADRATIC 3SUM ALGORITHM

We shall review a standard Opn2q algorithm for the three-

set version of 3SUM and introduce some terminology used

in Sections IV and V. We are given sets A,B,C Ă R and

must determine if there exists a P A, b P B, c P C such that

a`b`c “ 0. For each c P C the algorithm searches for ´c in

the Cartesian sum A`B. Each search takes Op|A|`|B|q time,

for a total of Op|C|p|A| ` |B|qq. We view A` B as being a

matrix whose rows correspond to A and columns correspond

to B, both listed in increasing order.

1. Sort A and B in increasing order as Ap0q . . . Ap|A|´1q
and Bp0q . . . Bp|B| ´ 1q.

2. For each c P C,

2.1. Initialize loÐ 0 and hiÐ |B| ´ 1.

2.2. Repeat:

2.2.1. If ´c “ Aploq ` Bphiq, report witness

“pAploq, Bphiq, cq” and continue.

2.2.2. If ´c ă Aploq ` Bphiq then decrement hi, other-

wise increment lo.

2.3. Until lo “ |A| or hi “ ´1.

3. If no witnesses were found report “no witnesses.”

Note that when a witness is discovered in Step 2.2.1 the

algorithm continues to search for more witnesses involving c.
Since the elements in each row and each column of the A`B
matrix are distinct, it does not matter whether we increment
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lo or decrement hi after finding a witness. We choose to

increment lo in such situations; this choice is reflected in

Lemma 11 and its applications in Sections V-C and V-E.

Define the contour of x, CONTOURpx,A ` Bq, to be the

sequence of positions plo, hiq encountered while searching for

x in A`B. When A`B is understood from context we will

write it as CONTOURpxq. If A`B is viewed as a topographic

map, with the lowest point in the NW corner and highest point

in the SE corner, CONTOURpxq represents the path taken by

an agent attempting to stay as close to altitude x as possible,

starting in the NE corner (at position p0, |B| ´ 1q) and ending

when it falls off the western or southern side of the map.

Lemma 11 is straightforward.

Lemma 11. Every occurrence of x in A ` B lies on
CONTOURpxq. Let y “ pA`Bqpi, jq be any element of A`B.
Then y ą x iff either pi, jq lies strictly below CONTOURpxq
or both pi, jq and pi, j ´ 1q lie on CONTOURpxq. Similarly,
y ď x iff either pi, jq lies strictly above CONTOURpxq or both
pi, jq and pi` 1, jq lie on CONTOURpxq.

IV. A SUBQUADRATIC 3SUM DECISION TREE

Recall that we are given a set A Ă R of reals and must

determine if there exist a, b, c P A summing to zero. We

first state the algorithm, then establish its correctness and

efficiency.

1. Sort A in increasing order as Ap0q . . . Apn´1q. Partition

A into rn{gs groups A0, . . . , Arn{gs´1 of size at

most g, where Ai
def“ tApigq, . . . , Appi ` 1qg ´

1qu and Arn{gs´1 may be smaller. The first and

last elements of Ai are minpAiq “ Apigq and

maxpAiq “ Appi` 1qg ´ 1q.
2. Sort D

def“ Ť
iPrn{gs pAi ´Aiq “ ta ´ a1 | a, a1 P

Ai for some iu.
3. For all i, j P rn{gs, sort Ai,j

def“ Ai`Aj “ ta` b | a P
Ai and b P Aju using the sorted order on D.

4. For k from 1 to n,

4.1. Initialize lo Ð 0 and hi Ð tk{gu to be the group

index of Apkq.
4.2. Repeat:

4.2.1. If ´Apkq P Alo,hi, report “witness found” and

halt.

4.2.2. If maxpAloq`minpAhiq ą ´Apkq then decrement

hi, otherwise increment lo.

4.3. Until hi ă lo.

5. Report “no witnesses” and halt.

With appropriate modifications this algorithm also solves

the three-set version of 3SUM, where the input is A,B,C Ă
R.

A. Efficiency of the Algorithm

Step 1 requires n log n comparisons. One can clearly exe-

cute Step 2 using Op|D| log |D|q comparisons. By Lemmas 6

and 7, Step 2 actually only requires Opn log n ` |D|q “
Opn log n`gnq comparisons to sort D. Using Fredman’s trick,

Step 3 requires no comparisons at all, given the sorted order

on D. (If a, a1 P Ai and b, b1 P Aj , a ` b ă a1 ` b1 holds iff

a´ a1 ă b1 ´ b.) For each iteration of the outer loop (Step 4)

there are at most rn{gs iterations of the inner loop (Step 4.2)

since each iteration ends by either incrementing lo or decre-

menting hi. In Step 4.2.1 we can determine whether ´Apkq
is in Alo,hi with a binary search, in log |Alo,hi| “ logpg2q
comparisons. In total the number of comparisons is on the

order of n log n` gn`pn2 log gq{g, which is Opn3{2?log nq
when g “ ?n log n.

B. Correctness of the Algorithm

The purpose of the outer loop (Step 4) is to find a, b P A,

for which a, b ď Apkq and a ` b ` Apkq “ 0. This is

tantamount to finding indices lo, hi for which a P Alo, b P Ahi,

and ´Apkq P Alo,hi. We maintain the loop invariant that

if there exist a, b for which a ` b ` Apkq “ 0, then both

a and b lie in Alo, Alo`1, . . . , Ahi. Suppose the algorithm

has not halted in Step 4.2.1, that is, there are no solutions

with a P Alo, b P Ahi. If maxpAloq ` minpAhiq ą ´Apkq
then there can clearly be no solutions with b P Ahi since

b ě minpAhiq, so decrementing hi preserves the invariant.

Similarly, if maxpAloq ` minpAhiq ă ´Apkq then there can

be no solutions with a P Alo since a ď maxpAloq, so

incrementing lo preserves the invariant. If it is ever the case

that hi ă lo then, by the invariant, no solutions exist.

C. Algorithmic Implementation

This 3SUM algorithm can be implemented to run in

Opn2 log nq time while performing only Opn3{2 log nq com-

parisons. Using any optimal sorting algorithm Steps 1–3 can

be executed in Opgn logpgnq`pn{gq2¨g2 log gq “ Opn2 log nq
time while using Opgn logpgnqq comparisons. Now the boxes

tAi,ju have been explicitly sorted, so the binary searches in

Step 4.2.1 can be executed in Oplog gq time per search. The to-

tal running time is Opn2 log nq and the number of comparisons

is now minimized when g “ ?n, for a total of Opn3{2 log nq
comparisons. We do not know of any polynomial time 3SUM

algorithm that performs Opn3{2?log nq comparisons.

V. SOME SUBQUADRATIC 3SUM ALGORITHMS

In our 3SUM decision tree, sorting D (Step 2) is a

comparison-efficient way to accomplish Step 3, but it only

lets us deduce the sorted order of the boxes tAi,ju. It does

not give us a useful representation of these sorted orders,

namely one that lets us implement each comparison of the

binary search in Step 4.2.1 in Op1q time. In this section

we present several methods for sorting the boxes based on

bichromatic dominating pairs, as in Chan [14] and Bremner

et al. [11]; see Lemma 10. The total time spent performing

binary searches in Step 4.2.1 will be Opn2 log g{gq, so our

goal is to make g as large as possible, provided that the cost

of sorting the boxes is of a lesser order.

As a warmup we give, in Section V-A, a rela-

tively simple subquadratic 3SUM algorithm running in

O
`
n2plog lognq3{2{plog nq1{2˘ time. In Section V-B we
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present a more sophisticated algorithm, some of whose pa-

rameters can be selected either deterministically or randomly.

Sections V-C and V-E give two parameterizations of the al-

gorithm, which lead to an O
`
n2plog logn{ log nq2{3˘ time de-

terministic 3SUM algorithm and an O
`
n2plog lognq2{ log n˘-

time randomized 3SUM algorithm.

A. A Simple Subquadratic 3SUM Algorithm

Choose the group size to be g “ Θpalog n{ log lognq.
The algorithm enumerates every permutation π : rg2s Ñ rgs2,

where π “ pπr, πcq is decomposed into row and column

functions πr, πc : rg2s Ñ rgs. By definition π is the correct

sorting permutation iff Ai,jpπptqq ă Ai,jpπpt ` 1qq for all

t P rg2´1s.4 Since Ai,j “ Ai`Aj this inequality can also be

written Aipπrptqq`Ajpπcptqq ă Aipπrpt`1qq`Ajpπcpt`1qq.
By Fredman’s trick this is equivalent to saying that the (red)

point pj dominates the (blue) point qi, where

pj “
`
. . . , Ajpπcpt` 1qq ´Ajpπcptqq, . . .

˘
qi “

`
. . . , Aipπrptqq ´Aipπrpt` 1qq, . . . ˘.

We find all such dominating pairs. By Lemma 10 the time

to report red/blue dominating pairs, over all pg2q! invocations

of the procedure, is O
´
pg2q!cg2´1

ε p2n{gq1`ε ` pn{gq2
¯

, the

last term being the total size of the outputs. For ε “ 1{2 and

g “ 1
2

a
log n{ log logn the first term is negligible. The total

running time is therefore Oppn{gq2q for dominance reporting

and Opn2 log g{gq “ O
`
n2plog lognq3{2{plog nq1{2˘ for the

binary searches in Step 4.2.1.

Since there are at most g8g realizable permutations of

Ai,j , not pg2q! (see Lemma 8 and Fredman [20]), we could

possibly shave off another
?
log logn factor by setting g “

Θp?log nq. However, with a bit more work it is possible to

save polyplog nq factors, as we now show.

B. A Faster 3SUM Algorithm

To improve the running time of the simple algorithm we

must sort larger boxes. Our approach is to partition the blocks

into layers and sort each layer separately. So long as each layer

has size Θplog nq, the cost of red/blue dominance reporting

will be negligible. The main difficulty is that the natural

boundaries between layers are unknown and different for each

of the blocks in tAi,ju.
Let P Ă rgs2 be a set of p positions in the gˆg grid that in-

cludes the corner positions p0, 0q and pg´1, g´1q. How we se-

lect the remaining p´2 positions in P will be addressed later.

For each pl,mq P P , consider CONTOURpAi,jpl,mq, Ai,jq,
that is, the path in rgs2 taken by the standard 3SUM algorithm

of Section III when searching for Ai,jpl,mq inside Ai,j .

Clearly CONTOURpAi,jpl,mqq goes through position pl,mq.
For any two pl,mq, pl1,m1q P P , CONTOURpAi,jpl,mqq and

CONTOURpAi,jpl1,m1qq may intersect in several places (see

Figure 1) though they never cross. According to Lemma 11,

4Without loss of generality we can assume Ai,j is totally ordered. See
Lemma 9.

250 272 362 368 372 385 416 546 549 606

289 311 401 407 411 424 455 585 588 645

299 321 411 417 421 434 465 595 598 655

311 333 423 429 433 446 477 607 610 667

325 347 437 443 447 460 491 621 624 681

331 353 443 449 453 466 497 627 630 687

363 385 475 481 485 498 529 659 662 719

384 406 496 502 506 519 550 680 683 740

412 434 524 530 534 547 578 708 711 768

415 437 527 533 537 550 581 711 714 771

Fig. 1. A tripartition of a block defined by two contours (search paths).
The contours of the elements at positions (3,5) and (8,6) are blue and yellow,
respectively, and their intersection is green.

the two contours define a tripartition pR,S, T q of the positions

of rgs2 into three regions, where

Ai,jpRq Ă p´8, Ai,jpl,mqs
Ai,jpSq Ă pAi,jpl,mq, Ai,jpl1,m1qq
Ai,jpT q Ă rAi,jpl1,m1q, 8q.

Here Ai,jpXq “ tAi,jpxq | x P Xu for a subset X Ď rgs2.

Note that pR,S, T q is fully determined by the shapes of the

contours, not the specific contents of Ai,j .5 See Figure 2(a)

for an illustration.

A contour is defined by at most 2g´1 comparisons between

the search element and elements of the block. Suppose that

τ “ pτr, τcq is purported to be CONTOURpAi,jpl,mqq, that

is, τp0q “ pτrp0q, τcp0qq “ p0, g ´ 1q is the starting position

of plo, hiq and τpt ` 1q P τptq ` tp1, 0q, p0,´1qu depending

on whether lo is incremented or hi is decremented after the

pt`1qth comparison. The contour ends at the first t‹ for which

τpt‹q “ pg, ¨q or p¨,´1q depending on whether the search for

Ai,jpl,mq falls off the southern or western boundary of Ai,j .

Clearly τ is the correct contour if and only if

Ai,jpl,mq ă Ai,jpτptqq when τpt` 1q “ τptq ` p0,´1q
Ai,jpl,mq ą Ai,jpτptqq when τpt` 1q “ τptq ` p1, 0q

for every t P rt‹s, excluding the t for which τptq “ pl,mq
since in this case we have equality: Ai,jpl,mq “ Ai,jpl,mq.
Restating this, τ is the correct contour if the (red) point pj
dominates the (blue) point qi, defined as

pj “ p . . . , σptq pAjpτcptqq ´Ajpmqq , . . . q
qi “ p . . . , σptq pAiplq ´Aipτrptqqq , . . . q ,

where σptq P t1,´1u is the proper sign:

σptq “
"

1 when τpt` 1q “ τptq ` p0,´1q, and

´1 when τpt` 1q “ τptq ` p1, 0q.
The coordinate t for which τptq “ pl,mq is, of course, omitted

from pj and qi, so both vectors have length at most 2g ´ 2.

Call a pair pτ, τ 1q of contours legal if

(i) Whenever τ and τ 1 do not intersect, τ is above τ 1.

5We continue to assume that ties are broken to make Ai,j totally ordered.
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(ii) There are two pl,mq, pl1,m1q P P such that τ contains

pl,mq and τ 1 contains pl1,m1q.
(iii) Let pR,S, T q be the tripartition of rgs2 defined by pτ, τ 1q,

where S are those positions lying strictly between pl,mq
and pl1,m1q. Then P X S “ H and |S| ď s, where s is

a parameter to be determined.

Let us clarify criterion (iii). It states that if Ai,j is any specific
box for which τ abd τ 1 are correct contours of Ai,jpl,mq and

Ai,jpl1,m1q, the number of positions pl2,m2q P rgs2 for which

Ai,jpl2,m2q P pAi,jpl,mq, Ai,jpl1,m1qq is at most s, and no

such position appears in P .

Our algorithm enumerates every legal pair pτ, τ 1q of con-

tours, at most 24g in total. Let pl,mq, pl1,m1q P P be the

points lying on τ, τ 1 and pR,S, T q be the tripartition of rgs2
defined by pτ, τ 1q. For each pτ, τ 1q the algorithm enumerates

every realizable permutation π : r|S|s Ñ S of the elements at

positions in S. By Lemma 8 there are O
´`

s
2

˘2g¯ ă 24g log s

such permutations, which can be enumerated in Op24g log sq
time. For each pτ, τ 1, πq we create red points tpjujPrn{gs and

blue points tqiuiPrn{gs in R
4g`s´5 such that pj dominates qi iff

τ “ CONTOURpAi,jpl,mqq and τ 1 “ CONTOURpAi,jpl1,m1qq
are the correct contours (w.r.t. Ai,j) and π is the correct sorting

permutation of Ai,jpSq. The first 4g´4 coordinates encode the

correctness of τ and τ 1 and the last s´ 1 coordinates encode

the correctness of π.

According to Lemma 10, the time to report all dominating

pairs is Opppn{gq2`24g ¨24g log s ¨ pcεq4g`s´5p2n{gq1`εq. The

first term is the output size, since by criterion (iii) of the

definition of legal, at most p´1 pairs are reported for each of

the prn{gsq2 boxes. There are 24g24g log s choices for pτ, τ 1, πq
and the dimension of the point set is at most 4g ` s´ 5, but

could be smaller if the contours happen to be short or |S| ă s.

Fixing ε “ 1{2, if g log s and g ` s are both Oplog nq (with

a sufficiently small leading constant) the running time of the

algorithm will be dominated by the time spent reporting the

output.

Call a box Ai,j bad if the output of the dominating pairs

algorithm fails to determine its sorted order. The only way a

box can be bad is if an otherwise legal pτ, τ 1q with tripartition

pR,S, T q were correct for Ai,j but failed to be legal because

|S| ą s, leaving the sorted order of Ai,jpSq unknown.

If all boxes are not bad we can search for x P R in

Ai,j in Oplog gq time using binary search, as follows. Each

box Ai,j was associated with a list of p ´ 1 triples of the

form pτ, τ 1, πq returned by the dominating pairs algorithm,

one for each pair of successive elements in Ai,jpP q. The

first step is to find the predecessor of x in Ai,jpP q, that

is, to find the consecutive pl,mq, pl1,m1q P P for which

Ai,jpl,mq ď x ă Ai,jpl1,m1q. Let pτ, τ 1, πq be the triple

associated with pl,mq, pl1,m1q and pR,S, T q be the tripartition

of pτ, τ 1q. Each legal, realizable pτ, τ 1, πq is encoded as a bit

string with length 4gp1 ` log sq, which must fit comfortably

in one machine word. Before executing the algorithm proper

we build, in opnq time, a lookup table indexed by tuples

pτ, τ 1, π, rq that contains the location in rgs2 of the element

(a)

(b)

Fig. 2. Illustrations of tripartitions defined by two contours in a r15sˆ r15s
grid. Top: the blue and red locations are in P . Two possible contours are
indicated by blue and red paths. They define a tripartition pR,S, T q with S
marked in gray. Bottom: P is chosen to include two corner locations and an
evenly spaced q ˆ q grid. Any tripartition pR,S, T q defined by a legal pair
of contours has P X S “ H, implying that |S| ď 2g2{pq` 1q. An example
of an S nearly achieving that size is marked in gray.

with rank r in S, sorted according to π. Using this lookup

table it is straightforward to perform a binary search for x in

Ai,jpSq, in Oplog |S|q “ Oplog gq time.

C. A Randomized Parameterization of the Algorithm

Throughout let δ ą 0 be a sufficiently small constant. In

the randomized implementation of our algorithm we choose

g “ s “ δ lnn{ ln lnn and p “ 2` 3δ lnn. The points p0, 0q
and pg ´ 1, g ´ 1q must be in P and the remaining 3δ lnn
points are chosen uniformly at random. With these parameters
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the probability of a box being bad is sufficiently low to keep

the expected cost per search Oplog gq.
Lemma 12. The probability a particular box is bad is at most
1{g.

Proof: Let π be the sorted order for some box Ai,j . The

probability Ai,j is bad is precisely the probability that there

are s ` 1 consecutive elements (according to π) that are not

included in P . The probability that this occurs for a particular

set of s ` 1 elements is less than p1 ´ pp ´ 2q{g2qs`1 ă
e´pp´2qps`1q{g2 ă e´3 ln lnn ă 1{g3. By a union bound over

all g2 ´ ps ` 1q sets of s ` 1 consecutive elements, the

probability Ai,j is bad is at most 1{g.

The expected time per search is therefore Oplog gq `
1{g ¨ Opgq “ Oplog gq. By linearity of expectation the

expected total running time is Opppn{gq2 ` n2plog gq{gq “
Opn2plog log nq2{ log nq.
Remark 1. We could have set the parameters differently and

achieved the same running time. For example, setting g “ p “
Θplog n{ log lognq and s “ Θplog nq would also work. The

advantage of keeping s “ Oplog n{ log log nq is simplicity:

we can afford to enumerate all s! permutations of S Ă rgs2
rather than explicitly construct a hyperplane arrangement in

order to enumerate only those realizable permutations of S.

D. High Probability Bounds

The running time of the algorithm may deviate from its

expectation with non-negligible probability since the badness
events for the boxes tAi,ju can be strongly positively corre-

lated. The easiest way to obtain high probability bounds is

simply to choose L “ c log n random point sets tPlulPrLs,
estimate the cost of the algorithm under each point set,

then execute the algorithm under the point set with the best

estimated cost. The first step is to run a truncated version of the

algorithm in order to determine which queries will be asked

in Step 4.2.1. Rather than answer the query ´Apkq P Ai,j we

simply record the triple pk, i, jq in a list Q to be answered later.

The running time of the algorithm under Pl is Opn2plog gq{gq
plus g times the number of bad triples in Q, that is, those

pk, i, jq for which Ai,j is bad according to Pl.

Let εl be the true fraction of bad triples in Q according

to Pl and ε̂l be the estimate of εl obtained by the following

procedure. Sample M “ cg2 lnn elements of Q uniformly

at random and for each, test whether the given block is bad

according to Pl by sorting its elements, in Opg2 log gq time.

If X is the number of blocks discovered to be bad, report the

estimate ε̂l “ X{M . By a standard version of the Chernoff

bound6 we have

Prp|ε̂l ´ εl| ą 1{gq
“ Prp|X ´ EpXq| ąM{gq ă 2e´2pM{gq2{M “ 2n´2c.

6If X is the number of successes in n independent Bernoulli trials, PrpX ą
EpXq ` tq and PrpX ă EpXq ` tq are both upper bounded by e´2t2{n.
See [17, Thm. 1.1].

By Lemma 12, Epεlq ď 1{g for each l, so by Markov’s

inequality PrpminlPLtεlu ď 2{gq ě 1´ 2´L “ 1´n´c. With

high probability, each ε̂l deviates from εl by at most 1{g, so

the running time of the algorithm will be within a constant

factor of its expectation with probability 1 ´ Opn´cq. The

time to pick the best point set Pl‹ , l‹ being argminlPrLstε̂lu,
is OpLMg2 log gq “ oplog6 nq. We could set L and M
as high as n{polylogpnq, making the probability that the

algorithm deviates from its expectation exponentially small,

expp´n{ polylogpnqq.
E. A Deterministic Parameterization of the Algorithm

We achieve a subquadratic worst-case 3SUM algorithm

by choosing g, s, p, and P such that no block can be bad.

Fix g “ pδ log nq2{3plog lognq1{3 and p “ 2 ` q2 ă
pδ log nq2{3plog lognq4{3 for an integer q to be determined.

Aside from the two obligatory points, P contains an evenly

spaced qˆq grid in rgsˆrgs. Setting Δ “ r g`1
q`1 s, P is defined

as follows. See Figure 2(b).

P “ �p0, 0q, pg ´ 1, g ´ 1q(
Y �pkΔ´ 1, lΔ´ 1q | where 1 ď k, l ď q

(
.

We now argue that no box can be bad if s “ 2gpΔ´1q. For

any legal pair of contours pτ, τ 1q with tripartition pR,S, T q,
no element of P can be contained in S. That is, in any

row (or column) containing elements of P , the width (or

height) of the band S is at most Δ ´ 1. Since both τ and

τ 1 are monotone paths in rgs2 (non-decreasing by row, non-

increasing by column), we always have |S| ă 2gpΔ ´ 1q ă
2g2{pq ` 1q ă 2δ log n. See Figure 2(b) for a worst-case

example. For δ sufficiently small the overhead for reporting

dominating pairs will be negligible. The overall running time

is therefore Opn2plog gq{gq “ Opn2{plog n{ log log nq2{3q.
VI. ZERO TRIANGLES

We consider a matrix product called target-min-plus that

subsumes the pmin,`q-product (aka distance product) and the

ZEROTRIANGLE problem of [37]. Given real matrices A P
pR Y t8uqrˆs, B P pR Y t8uqsˆt, and a target matrix T P
pRY t´8,8uqrˆt, the goal is to compute C “ epA,B, T q,
where

Cpi, jq “ min
�
Api, kq `Bpk, jq | k P rss

and Api, kq `Bpk, jq ě T pi, jq (
as well as the matrix of witnesses, that is, the k (if any) for

which Cpi, jq “ Api, kq ` Bpk, jq. This operation reverts to

the pmin,`q-product when T pi, jq “ ´8. It can also solve

ZEROTRIANGLE on a weighted graph G “ pV,E,wq by set-

ting A,B, and T as follows. Let Api, jq “ Bpi, jq “ wpi, jq,
where wpi, jq def“ 8 if pi, jq R E, and let T pi, jq “ ´wpi, jq if

pi, jq P E and 8 otherwise. If Cpi, jq “ T pi, jq then there is

a zero weight triangle containing pi, jq and the witness matrix

gives the third corner of the triangle.

The trivial target-min-plus algorithm runs in Oprstq time

and performs the same number of comparisons. We can
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compute the target-min-plus product using fewer comparisons

using Fredman’s trick.

Theorem 13. The decision-tree complexity of the target-min-
plus product of three nˆ n matrices is Opn5{2?log nq. This
product can be computed in Opn3plog lognq2{ log nq time.

Proof: We first show that the target-min-plus product

epA,B, T q can be determined with Oppr ` tqs2 ` rt log sq
comparisons, where A,B, and T are r ˆ s, s ˆ t, and r ˆ t
matrices, respectively. Begin by sorting the set

D “ �
Api, kq ´Api, k1q, Bpk1, jq ´Bpk, jq | i P rrs, j P rts,

and k, k1 P rss (.
By Lemma 8 the number of comparisons required to sort D is

Op|D|` pr` tqs logprstqq “ Oppr` tqs2`pr` tqs logprstqq.
We can now deduce the sorted order on

Spi, jq “ tApi, kq `Bpk, jq | k P rssu,
for any pair pi, jq P rrs ˆ rts, and can therefore find

Cpi, jq “ minpSpi, jqXrT pi, jq,8qq with a binary search over

Spi, jq using log s additional comparisons. The total number of

comparisons is Oppr` tqs2`rt log sq. Note that this provides

no improvement when A and B are square, that is, when

r “ s “ t “ n. Following Fredman [21] we partition A and

B into rectangular matrices and compute their target-min-plus

products separately.

Choose a parameter g and partition A into A0, . . . , Arn{gs´1

and B into B0, . . . , Brn{gs´1 where A� contains columns

	g, . . . , p	 ` 1qg ´ 1 of A and B� contains the correspond-

ing rows of B. For each 	 P rn{gs, compute the target-

min-plus product C� “ epA�, B�, T q and set Cpi, jq “
min�Prn{gspC�pi, jqq. This algorithm performs Oppn{gq¨png2`
n2 log nqq comparisons to compute tC�u�Prn{gs and n2pn{gq
comparisons to compute C. When g “ ?n log n the number

of comparisons is Opn5{2?log nq.
To compute the product efficiently we use the geometric

dominance approach of Chan [14] and Bremner et al. [11].

Choose a parameter g “ Θplog n{ log lognq and partition A
into n ˆ g matrices tA�u and B into g ˆ n matrices tB�u.
For each 	 P rn{gs and permutation π : rgs Ñ rgs we will

find those pairs pi, jq P rns2 for which π is the sorted order

on tA�pi, kq ` B�pk, jq | k P rgsu. Such a triple satisfies

the inequality A�pi, πpkqq `B�pπpkq, jq ă A�pi, πpk ` 1qq `
B�pπpk ` 1q, jq, for all k P rg ´ 1s. By Fredman’s trick this

is equivalent to saying that the (red) point

p . . . , A�pi, πpk ` 1qq ´A�pi, πpkqq, . . . q
dominates the (blue) point

p . . . , B�pπpkq, jq ´B�pπpk ` 1q, jq, . . . q
in each of the g´ 1 coordinates. By Lemma 10 the total time

for all rn{gs ¨ g! invocations of the dominance algorithm is

Oppn{gq ¨ g! ¨ cg´1
ε p2n{gq1`εq plus the output size, which is

precisely n2rn{gs. For ε “ 1{2 and g “ Θplog n{ log lognq

the running time is Opn3{gq. We can now compute the target-

min-plus product C� “ epA�, B�, T q in Opn2 log gq time by

iterating over all pi, jq P rns2 and performing a binary search

to find the minimum element in tA�pi, kq ` B�pk, jq | k P
rgsuXrT pi, jq,8q. Since C “ epA,B, T q contains the point-

wise minima of tC�u, the total time to compute the target-min-

plus product is Opn3plog gq{gq “ Opn3plog lognq2{ log nq.
The

?
log n factor in the decision tree complexity of target-

min-plus comes from the binary searches, n{g searches per

pair pi, jq P rns2. If the searches were sufficiently correlated

(either for fixed pi, jq or fixed 	) then there would be some

hope that we could evade the information theoretic lower

bound of Ωplog gq per search. Using random sampling we

form a hierarchy of rectangular target-min-plus products such

that the solutions at one level gives a hint for the solutions at

the next lower level. The cost of finding the solution, given

the hint from the previous level, is Op1q in expectation. The

same approach lets us shave off another log log n factor off

the algorithmic complexity of target-min-plus. Refer to [23]

for proof of Theorem 14.

Theorem 14. The randomized decision tree complexity of the
target-min-plus product of three nˆn matrices is Opn5{2q. It
can be computed in Opn3 log logn{ log nq time w.h.p.

VII. CONCLUSIONS AND OPEN PROBLEMS

The original applications of the 3SUM conjecture were to

prove conditional Ωpn2q lower bounds on both the decision

tree complexity and algorithmic complexity of geometric

problems. Our results refute the conjecture (very strongly in

the case of decision tree complexity) and therefore reopen

several fundamental questions in computational geometry. For

example, what is the (algebraic) decision tree complexity of

detecting three colinear points in a subset of R
2? Is there a

subquadratic algorithm for this problem?
The most intriguing open question is whether 3SUM has

a truly subquadratic algorithm, or even one running in time

Opn2{2plognqδq, for some δ ą 0. The geometric dominance

approach we use seems incapable of obtaining more than a

polyplog nq-speedup, but there is hope that techniques em-

ployed in Williams’s pmin,`q-product algorithm [35] can be

repurposed to solve 3SUM and its cousins, such as the target-
min-plus product defined in Section VI.
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[31] M. Pǎtraşcu and R. Williams. On the possibility of faster SAT
algorithms. In Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1065–1075, 2010.

[32] L. Roditty and V. Vassilevska Williams. Fast approximation algorithms
for the diameter and radius of sparse graphs. In Proceedings 45th ACM
Symposium on Theory of Computing (STOC), pages 515–524, 2013.

[33] M. A. Soss, J. Erickson, and M. H. Overmars. Preprocessing chains
for fast dihedral rotations is hard or even impossible. Comput. Geom.,
26(3):235–246, 2003.

[34] W. L. Steiger and I. Streinu. A pseudo-algorithmic separation of lines
from pseudo-lines. Info. Proc. Lett., 53(5):295–299, 1995.

[35] R. Williams. Faster all-pairs shortest paths via circuit complexity.
In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing (STOC), pages 664–673, 2014.

[36] V. Vassilevska Williams and R. Williams. Subcubic equivalences
between path, matrix and triangle problems. In Proc. 51th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 645–
654, 2010.

[37] V. Vassilevska Williams and R. Williams. Finding, minimizing, and
counting weighted subgraphs. SIAM J. Comput., 42(3):831–854, 2013.

APPENDIX

We shall review a standard divide and conquer dominat-

ing pairs algorithm [29, p. 366] and give a short proof of

Lemma 10 due to Chan [14].

We are given n red and blue points in P Ă R
d, at least

one of each color, and wish to report all pairs pp, qq where

p “ ppiqiPrds is red, q “ pqiqiPrds is blue and pi ě qi for each

i P rds. When d “ 0 the algorithm simply reports every pair

of points, so assume d ě 1. Find the median h on the last

coordinate in Opnq time [10] and partition P into disjoint sets

PL, PR of size at most rn{2s, where

PL Ă tp P P | pd´1 ď hu
PR Ă tp P P | pd´1 ě hu.

Furthermore, there cannot be a red p P PL and blue q P PR

such that pd´1 “ qd´1 “ h. At this point all dominating

pairs are in PL, or PR, or have one point in each, in which

case the blue point is necessarily in PL and the red in PR.

We make three recursive calls to find dominating pairs of each

variety. The first two calls are on rn{2s points in R
d. The third

recursive call is on all blue points in PL and all red points in

PR; after stripping their last coordinate they lie in R
d´1.

Excluding the cost of reporting the output, the running time

of this algorithm is bounded by Tdpnq, defined inductively as

T0pnq “ Tdp1q “ 0

Tdpnq “ 2Tdpn{2q ` Td´1pnq ` n.

We prove by induction that Tdpnq ď cdεn
1`ε ´ n, a bound

which holds in all base cases. Assuming the claim holds for

all smaller values of d and n,

Tdpnq ď 2
`
cdε pn{2q1`ε ´ n{2˘` `

cd´1
ε n1`ε ´ n

˘` n

“ `
cdε {2ε ` cd´1

ε

˘
n1`ε ´ n

“ p1{2ε ` 1{cεq ¨ cdεn1`ε ´ n

“ cdεn
1`ε ´ n {By defn. of cε “ 2ε{p2ε ´ 1q.}
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