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Abstract—We show that an effective version of Siegel’s
Theorem on finiteness of integer solutions for a specific
algebraic curve and an application of elementary Galois
theory are key ingredients in a complexity classification of
some Holant problems. These Holant problems, denoted
by Holant(f), are defined by a symmetric ternary function
f that is invariant under any permutation of the κ ≥ 3
domain elements. We prove that Holant(f) exhibits a
complexity dichotomy. The hardness, and thus the di-
chotomy, holds even when restricted to planar graphs.
A special case of this result is that counting edge κ-
colorings is #P-hard over planar 3-regular multigraphs
for all κ ≥ 3. In fact, we prove that counting edge κ-
colorings is #P-hard over planar r-regular multigraphs
for all κ ≥ r ≥ 3. The problem is polynomial-time
computable in all other parameter settings. The proof of
the dichotomy theorem for Holant(f) depends on the fact
that a specific polynomial p(x, y) has an explicitly listed
finite set of integer solutions, and the determination of the
Galois groups of some specific polynomials. In the process,
we also encounter the Tutte polynomial, medial graphs,
Eulerian partitions, Puiseux series, and a certain lattice
condition on the (logarithm of) the roots of polynomials.

Keywords-counting problems; dichotomy theorem;
Holant problems; edge coloring;

I. INTRODUCTION

What do Siegel’s Theorem and Galois theory have to

do with complexity theory? In this paper, we show that

an effective version of Siegel’s Theorem on finiteness

of integer solutions for a specific algebraic curve and

an application of elementary Galois theory are key

ingredients in a chain of steps that lead to a com-

plexity classification of some counting problems. More

specifically, we consider a certain class of counting

problems that are expressible as Holant problems with

an arbitrary domain of size κ over 3-regular multigraphs

(i.e. self-loops and parallel edges are allowed), and

prove a dichotomy theorem for this class of problems.

The hardness, and thus the dichotomy, holds even when

restricted to planar multigraphs. Among other things,

the proof of the dichotomy theorem depends on the

following: (A) the specific polynomial

p(x, y) = x5−2x3y−x2y2−x3+xy2+y3−2x2−xy

has only the integer solutions

(x, y) = (−1, 1), (0, 0), (1,−1), (1, 2), (3, 3),
and (B) the determination of the Galois groups of some

specific polynomials. In the process, we also encounter

the Tutte polynomial, medial graphs, Eulerian partitions,

Puiseux series, and a certain lattice condition on the

(logarithm of) the roots of polynomials such as p(x, y).
A special case of this dichotomy theorem is the

problem of counting edge colorings over planar 3-

regular multigraphs using κ colors. In this case, the cor-

responding constraint function is the ALL-DISTINCT3,κ

function, which takes value 1 when all three inputs from

[κ] are distinct and 0 otherwise. We further prove that

the problem using κ colors over r-regular multigraphs

is #P-hard for all κ ≥ r ≥ 3, even when restricted

to planar multigraphs. The problem is polynomial-time

computable in all other parameter settings. This solves

a long-standing open problem.
We give a brief description of the framework of

Holant problems [20], [18], [15], [17]. The problem

Holant(F), defined by a set of functions F , takes as

input a signature grid Ω = (G, π), where G = (V,E) is

a multigraph, π assigns each v ∈ V a function fv ∈ F ,

and fv maps [κ]deg(v) to C for some integer κ ≥ 2.

An edge κ-labeling σ : E → [κ] gives an evaluation∏
v∈V fv(σ |E(v)), where E(v) denotes the incident

edges of v and σ |E(v) denotes the restriction of σ to

E(v). The counting problem on the instance Ω is to

compute

Holant(Ω,F) =
∑

σ:E→[κ]

∏
v∈V

fv
(
σ |E(v)

)
.
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Counting edge κ-colorings over r-regular multigraphs

amounts to setting fv = ALL-DISTINCTr,κ for all v.

We also use Pl-Holant(F) to denote the restriction of

Holant(F) to planar multigraphs.
Holant problems appear in many areas under a variety

of different names. They are equivalent to counting

Constraint Satisfaction Problems (#CSP) [5], [7] with

the restriction that all variables are read twice,1 to the

contraction of a tensor network [21], [31], and to the

partition function of graphical models in Forney nor-

mal form [32], [35] from artificial intelligence, coding

theory, and signal processing. Special cases of Holant

problems include simulating quantum circuits [42], [36],

counting graph homomorphisms [1], [23], [3], [28],

[9], and evaluating the partition function of the edge-

coloring model [1, Section 3.6].
An edge κ-coloring of a graph G is an edge κ-

labeling of G such that any two incident edges have

different colors. A fundamental problem in graph theory

is to determine how many colors are required to edge

color G. The obvious lower bound is Δ(G), the max-

imum degree of the graph. By Vizing’s Theorem [44],

an edge coloring using just Δ(G) + 1 colors always

exists for simple graphs (i.e. graphs without self-loops

or parallel edges). Whether Δ(G) colors suffice depends

on the graph G.
Consider the edge coloring problem over 3-

regular graphs. It follows from the parity condition

(Lemma IV.4) that any graph containing a bridge does

not have an edge 3-coloring. For bridgeless planar

simple graphs, Tait [41] showed that the existence of

an edge 3-coloring is equivalent to the Four-Color

Theorem. Thus, the answer for the decision problem

over planar 3-regular simple graphs is that there is an

edge 3-coloring iff the graph is bridgeless.
Without the planarity restriction, determining if a 3-

regular (simple) graph has an edge 3-coloring is NP-

complete [30]. This hardness extends to finding an edge

κ-coloring over κ-regular (simple) graphs for all κ ≥
3 [33]. However, these reductions are not parsimonious,

and, in fact, it is claimed that no parsimonious reduction

exists unless P = NP [46, p. 118]. The counting

complexity of this problem has remained open.
We prove that counting edge colorings over planar

regular multigraphs is #P-hard.2

1Without this restriction, #CSPs are a special case of Holant
problems.

2Vizing’s Theorem is for simple graphs. In Holant problems as well
as counting complexity such as graph homomorphism or #CSP, one
typically considers multigraphs (i.e. self-loops and parallel edges are
allowed). However, our hardness result for counting edge 3-colorings
over planar 3-regular multigraphs also holds for simple graphs. See
Theorem 4.9 in [11].

Theorem I.1. #κ-EDGECOLORING is #P-hard over
planar r-regular multigraphs for all κ ≥ r ≥ 3.

See Theorem IV.8 for the proof when κ = r. Theo-

rem 4.20 in [11] considers κ > r.

The techniques we develop to prove Theorem I.1 nat-

urally extend to a class of Holant problems with domain

size κ ≥ 3 over planar 3-regular multigraphs. Functions

such as ALL-DISTINCT3,κ are symmetric, which means

that they are invariant under any permutation of its three

inputs. But ALL-DISTINCT3,κ has another invariance—

it is invariant under any permutation of the κ domain

elements. We call the second property domain invari-
ance.

A ternary function that is both symmetric and domain

invariant is specified by three values, which we denote

by 〈a, b, c〉. The output is a when all inputs are the same,

c when all inputs are distinct, and b when two inputs

are the same but the third input is different.

We prove a dichotomy theorem for such functions

with complex weights.

Theorem I.2. Suppose κ ≥ 3 is the domain size and
a, b, c ∈ C. Then either Holant(〈a, b, c〉) is computable
in polynomial time or Pl-Holant(〈a, b, c〉) is #P-hard.
Furthermore, given a, b, c, there is a polynomial-time
algorithm that decides which is the case.

See Theorem 10.1 in [11] for an explicit listing of the

tractable cases. Note that counting edge κ-colorings

over 3-regular multigraphs is the special case when

〈a, b, c〉 = 〈0, 0, 1〉.
There is only one previous dichotomy theorem for

higher domain Holant problems [19]. The important

difference is that the present work is for general domain

size κ ≥ 3 while the previous result is for domain size

κ = 3. When restricted to domain size 3, the result

in [19] assumes that all unary functions are available,

while this dichotomy does not assume that; however it

does assume domain invariance. Dichotomy theorems

for an arbitrary domain size are generally difficult to

prove. The Feder-Vardi Conjecture for decision Con-

straint Satisfaction Problems (CSP) is still open [27]. It

was a major achievement to prove this conjecture for

domain size 3 [4]. The #CSP dichotomy was proved

after a long series of work [6], [5], [3], [22], [2], [15],

[8], [12], [24], [29], [13], [7].

Our proof of Theorem I.2 has many components, and

a number of new ideas are introduced in this proof. We

discuss some of these ideas and give an outline of our

proof in Section II.
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II. PROOF OUTLINE AND TECHNIQUES

As usual, the difficult part of a dichotomy theorem is

to carve out exactly the tractable problems in the class,

and prove all the rest #P-hard. A dichotomy theorem

for Holant problems has the additional difficulty that

some tractable problems are only shown to be tractable

under a holographic transformation, which can make the

appearance of the problem rather unexpected. For exam-

ple, we show [11] that Holant(〈−3−4i, 1,−1+2i〉) on

domain size 4 is tractable. Despite its appearance, this

problem is intimately connected with a tractable graph

homomorphism problem defined by the Hadamard ma-

trix

[ 1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

]
. In order to understand all problems

in a Holant problem class, we must deal with such

problems. Dichotomy theorems for graph homomor-

phisms and for #CSP do not have to deal with as

varied a class of such problems, since they implicitly

assume all EQUALITY functions are available and must

be preserved. This restricts the possible transformations.

After isolating a set of tractable problems, our #P-

hardness results in both Theorem I.1 and Theorem I.2

are obtained by reducing from evaluations of the Tutte

polynomial over planar graphs. A dichotomy is known

for such problems (Theorem IV.1).

The chromatic polynomial, a specialization of the

Tutte polynomial, is concerned with vertex colorings.

On domain size κ, one starting point of our hardness

proofs is the chromatic polynomial, which contains the

problem of counting vertex colorings using at most κ
colors. By the planar dichotomy for the Tutte polyno-

mial, this problem is #P-hard for all κ ≥ 3.

Another starting point for our hardness reductions

is the evaluation of the Tutte polynomial at an integer

diagonal point (x, x), which is #P-hard for all x ≥ 3 by

the same planar Tutte dichotomy. These are new starting

places for reductions involving Holant problems. These

problems were known to have a so-called state-sum

expression (Lemma IV.3), which is a sum over weighted

Eulerian partitions. This sum is not over the original

planar graph but over its directed medial graph, which

is always a planar 4-regular graph (Figure 1). We show

that this state-sum expression is naturally expressed as a

Holant problem with a particular quaternary constraint

function (Lemma IV.6).

To reduce from these two problems, we execute the

following strategy. First, we attempt to construct the

unary constraint function 〈1〉, which takes value 1 on all

κ inputs. Second, we attempt to interpolate all succinct

binary signatures assuming that we have 〈1〉. (See

Section III for the definition of a succinct signature.)

Lastly, we attempt to construct a ternary signature

with a special property assuming that all these binary

signatures are available. At each step, there are some

problems specified by certain signatures 〈a, b, c〉 for

which our attempts fail. In such cases, we directly obtain

a dichotomy without the help of additional signatures.

Below we highlight some of our proof techniques.

Interpolation within an orthogonal subspace: We

develop the ability to interpolate when faced with some

nontrivial null spaces inherently present in interpolation

constructions. In any construction involving an initial

signature and a recurrence matrix, it is possible that the

initial signature is orthogonal to some row eigenvectors

of the recurrence matrix. Previous interpolation results

always attempt to find a construction that avoids this.

In the present work, this avoidance seems impossible.

We prove an interpolation result that can succeed in

this situation to the greatest extent possible. We prove

that one can interpolate any signature provided that it

is orthogonal to the same set of row eigenvectors, and

the relevant eigenvalues satisfy a lattice condition.

Satisfy lattice condition via Galois theory: A key

requirement for this interpolation to succeed is the

lattice condition (Definition V.1), which involves the

roots of the characteristic polynomial of the recurrence

matrix. We use Galois theory to prove that our construc-

tions satisfy this condition. If a polynomial has a large

Galois group, such as Sn or An, and its roots do not

all have the same complex norm, then we show that its

roots satisfy the lattice condition.

Effective Siegel’s Theorem via Puiseux series: We

need to determine the Galois groups for an infinite

family of polynomials, one for each domain size. If

these polynomials are irreducible, then we can show

they all have the full symmetric group as their Galois

group, and hence fulfill the lattice condition. We suspect

that these polynomials are all irreducible but are unable

to prove it.

A necessary condition for irreducibility is the absence

of any linear factor. This infinite family of polynomials,

as a single bivariate polynomial in (x, κ), defines an

algebraic curve, which has genus 3. By a well-known

theorem of Siegel [39], there are only a finite number

of integer values of κ for which the corresponding

polynomial has a linear factor. However this theorem

and others like it are not effective in general. There are

some effective versions of Siegel’s Theorem that can

be applied to the algebraic curve, but the best general

effective bound is over 1020,000 [45] and hence cannot

be checked in practice. Instead, we use Puiseux series in
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Section V to show that this algebraic curve has exactly

five explicitly listed integer solutions.

Eigenvalue Shifted Triples: For a pair of eigenval-

ues, the lattice condition is equivalent to the statement

that the ratio of these eigenvalues is not a root of

unity. A sufficient condition is that the eigenvalues have

distinct complex norms. We prove three results, each

of which is a different way to satisfy this sufficient

condition. Chief among them is the technique we call

an Eigenvalue Shifted Triple (EST). In an EST, we

have three recurrence matrices, each of which differs

from the other two by a nonzero additive multiple of

the identity matrix. Provided these two multiples are

linearly independent over R, we show at least one of

these matrices has eigenvalues with distinct complex

norms. (However determining which one succeeds is

a difficult task; but we need not know that).

E Pluribus Unum: When the ratio of a pair of

eigenvalues is a root of unity, it is a challenge to ef-

fectively use this failure condition. Direct application of

this cyclotomic condition is often of limited use. We in-

troduce an approach that uses this cyclotomic condition

effectively. A direct recursive construction involving

these two eigenvalues only creates a finite number of

different signatures. We reuse all of these signatures in

a multitude of new interpolation constructions, one of

which we hope will succeed. If the eigenvalues in all of

these constructions also satisfy a cyclotomic condition,

then we obtain a more useful condition than any of the

previous cyclotomic conditions. This idea generalizes

the anti-gadget technique [14], which only reuses the

“last” of these signatures.

Local holographic transformation: One reason to

obtain all succinct binary signatures is for use in the

gadget construction known as a local holographic trans-

formation. This construction mimics the effect of a

holographic transformation applied on a single signa-

ture. In particular, using this construction, we attempt to

obtain a succinct ternary signature of the form 〈a, b, b〉,
where a �= b. This signature turns out to have some

magical properties in the Bobby Fischer gadget, which

we discuss next.

Bobby Fischer gadget: Typically, any combinato-

rial construction for higher domain Holant problems

produces very intimidating looking expressions that are

nearly impossible to analyze. In our case, it seems nec-

essary to consider a construction that has to satisfy mul-

tiple requirements involving at least nine polynomials.

However, we are able to combine the signature 〈a, b, b〉,
where a �= b, with a succinct binary signature of our

choice in a special construction that we call the Bobby
Fischer gadget. This gadget is able to satisfy seven

conditions using just one degree of freedom. This ability

to satisfy a multitude of constraints simultaneously in

one magic stroke reminds us of some unfathomably

brilliant moves by Bobby Fischer, the chess genius

extraordinaire.

III. PRELIMINARIES

In this paper, we investigate some complex-weighted

Holant problems on domain size κ ≥ 3. A constraint

function, or signature, of arity n, maps from [κ]n → C.

For consideration of models of computation, functions

take complex algebraic numbers.

Graphs (called multigraphs in Section I) may have

self-loops and parallel edges. A graph without self-loops

or parallel edges is a simple graph. A signature grid
Ω = (G, π) of Holant(F) consists of a graph G =
(V,E), where π assigns each vertex v ∈ V and its

incident edges with some fv ∈ F and its input variables.

We say Ω is a planar signature grid if G is planar, where

the variables of fv are ordered counterclockwise. The

Holant problem on instance Ω is to evaluate

Holant(Ω;F) =
∑
σ

∏
v∈V

fv(σ |E(v)),

a sum over all edge labelings σ : E → [κ], where E(v)
denotes the incident edges of v and σ |E(v) denotes the

restriction of σ to E(v).
A function fv can be represented by listing its values

in lexicographical order as in a truth table, which is a

vector in Cκdeg(v)

, or as a tensor in (Cκ)⊗ deg(v). In this

paper, we consider symmetric signatures. An example

of a symmetric signature is the EQUALITY signature =r

of arity r. A Holant problem is parametrized by a set

of signatures.

Definition III.1. Given a set of signatures F , we define
the counting problem Holant(F) as:

Input: A signature grid Ω = (G, π);
Output: Holant(Ω;F).

The problem Pl-Holant(F) is defined similarly using a

planar signature grid. Replacing a signature f ∈ F by

a constant multiple cf , where c �= 0, does not change

the complexity of Holant(F). It introduces a global

nonzero factor to Holant(Ω;F). We follow the usual

conventions about polynomial time Turing reduction

≤T .

We say a signature f is realizable or constructible
from a signature set F if there is a gadget with some

dangling edges such that each vertex is assigned a

signature from F , and the resulting graph, when viewed
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as a black-box signature with inputs on the dangling

edges, is exactly f . If f is realizable from a set F ,

then we can freely add f into F while preserving the

complexity.

Formally, such a notion is defined by an F-gate [15],

[16]. An F-gate is similar to a signature grid (G, π) for

Holant(F) except that G = (V,E,D) is a graph with

some dangling edges D. The dangling edges define ex-

ternal variables for the F-gate. (See Figure 3 for an ex-

ample.) We denote the regular edges in E by 1, 2, . . . ,m
and the dangling edges in D by m+1, . . . ,m+n. Then

we can define a function Γ for this F-gate as

Γ(y1, y2, . . . , yn) =∑
x1,x2,...,xm∈[κ]

H(x1, x2, . . . , xm, y1, y2, . . . , yn),

where (y1, . . . , yn) ∈ [κ]n denotes a labeling on the

dangling edges and H(x1, . . . , xm, y1, . . . , yn) denotes

the value of the signature grid on a labeling of all

edges in G, which is the product of evaluations at all

vertices. We also call this function Γ the signature of

the F-gate. An F-gate is planar if the underlying graph

G is a planar graph, and the dangling edges, ordered

counterclockwise corresponding to the order of the input

variables, are in the outer face in a planar embedding. A

planar F-gate can be used in a planar signature grid as

if it is just a single vertex with the particular signature.

Using the idea of planar F-gates, we can reduce

one planar Holant problem to another. Suppose g is

the signature of some planar F-gate. Then we obtain

Pl-Holant(F ∪ {g}) ≤T Pl-Holant(F), by replacing

every appearance of g by the F-gate. Since the signature

of the F-gate is g, the Holant values for these two

signature grids are identical.

Our main results are about symmetric signatures

(i.e. signatures that are invariant under any permutation

of inputs). However, we also need some asymmetric

signatures in our proofs. When a gadget has an asym-

metric signature, we place a diamond on the edge

corresponding to the first input. The remaining inputs

are ordered counterclockwise around the vertex. (See

Figure 3 for an example.)

An arity r signature on domain size κ is fully

specified by κr values. However, some special cases

can be defined using far fewer values. Consider the

signature ALL-DISTINCTr,κ of arity r on domain size

κ that outputs 1 when all inputs are distinct and 0
otherwise. We also denote this signature by ADr,κ. In

addition to being symmetric, it is also invariant under

any permutation of the κ domain elements. We call the

second property domain invariance. The signature of an

F-gate in which all signatures in F are domain invariant

is itself domain invariant.

Definition III.2 (Succinct signature). Let τ =
(P1, P2, . . . , P�) be a partition of [κ]r listed in some
order. We say that f is a succinct signature of type τ
if f is constant on each Pi. A set F of signatures is
of type τ if every f ∈ F has type τ . We denote a
succinct signature f of type τ by 〈f(P1), . . . , f(P�)〉,
where f(P ) = f(x) for any x ∈ P .

Furthermore, we may omit 0 entries. If f is a succinct
signature of type τ , we also say f is a succinct signature

of type τ ′ with length �′, where τ ′ lists �′ parts of the
partition τ and we write f as 〈f1, f2, . . . , f�′〉, provided
all nonzero values f(Pi) are listed. When using this
notation, we will make it clear which zero entries have
been omitted.

For example, a symmetric signature in the Boolean

domain (i.e. κ = 2) has been denoted in previous

work [10] by [f0, f1, . . . , fr], where fw is the output

on inputs of Hamming weight w. This corresponds to

the succinct signature type (P0, P1, . . . , Pr), where Pw

is the set of inputs of Hamming weight w.

We prove a dichotomy theorem for Pl-Holant(f)
when f is a succinct ternary signature of type τ3 on

domain size κ ≥ 3. For κ ≥ 3, the succinct signature

of type τ3 = (P1, P2, P3) is a partition of [κ]3 with

Pi = {(x, y, z) ∈ [κ]3 : |{x, y, z}| = i} for 1 ≤ i ≤ 3.

The notation {x, y, z} denotes a multiset and |{x, y, z}|
denotes the number of distinct elements in it. Succinct

signatures of type τ3 are exactly the symmetric and

domain invariant ternary signatures. In particular, the

succinct ternary signature for AD3,κ is 〈0, 0, 1〉.
IV. COMPLEXITY OF COUNTING EDGE COLORINGS

Here we prove that counting edge κ-colorings over

planar r-regular graphs is #P-hard provided κ = r ≥ 3.

For the proof when κ > r ≥ 3, see Theorem 4.20

in [11]. We reduce from evaluating the Tutte polynomial

of a planar graph at the positive integer points on the

diagonal x = y. For x ≥ 3, evaluating the Tutte

polynomial of a planar graph at (x, x) is #P-hard.

Theorem IV.1 (Theorem 5.1 in [43]). For x, y ∈ C,
evaluating the Tutte polynomial at (x, y) is #P-hard
over planar graphs unless (x − 1)(y − 1) ∈ {1, 2}
or (x, y) ∈ {(1, 1), (−1,−1), (ω, ω2), (ω2, ω)}, where
ω = e2πi/3. In each exceptional case, the computation
can be done in polynomial time.

To state the connection with the diagonal of the Tutte

polynomial, we need to consider Eulerian subgraphs in

directed medial graphs. We say a graph is an Eulerian
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(a) (b) (c)

Figure 1: A plane graph ((a)), its directed medial graph ((c)), and both superimposed ((b)).

(di)graph if every vertex has even degree (resp. in-

degree equal to out-degree), but connectedness is not

required. Now recall the definition of a medial graph

and its directed variant.

Definition IV.2 (cf. Section 4 in [25]). For a connected
plane graph G (i.e. a planar embedding of a connected
planar graph), its medial graph Gm has a vertex on
each edge of G and two vertices in Gm are joined by
an edge for each face of G in which their corresponding
edges occur consecutively.

The directed medial graph �Gm of G colors the faces
of Gm black or white depending on whether they
contain or do not contain, respectively, a vertex of G.
Then the edges of the medial graph are directed so that
the black face is on the left.

See Figure 1 for an example. Notice that the directed

medial graph is always a planar 4-regular graph. Now

we can give the connection with the diagonal of the

Tutte polynomial. A monochromatic vertex is a vertex

with all its incident edges having the same color.

Lemma IV.3 (Equation (17) in [25]). Suppose G is a
connected plane graph and �Gm is its directed medial
graph. For κ ∈ N, let C(�Gm) be the set of all edge
κ-labelings of �Gm so that each (possibly empty) set of
monochromatic edges forms an Eulerian digraph. Then

κT(G;κ+ 1, κ+ 1) =
∑

c∈C(�Gm)

2m(c), (1)

where m(c) is the number of monochromatic vertices in
the coloring c.

The Eulerian partitions in C(�Gm) have the property

that the subgraphs induced by each partition do not

intersect (or crossover) each other due to the orientation

of the edges in the medial graph. We call the counting

problem defined by the sum on the right-hand side of (1)

as counting weighted Eulerian partitions over planar 4-

regular graphs. This problem also has an expression as

a Holant problem using a succinct signature. To define

this succinct signature, it helps to know the following

basic result about edge colorings.

When the number of available colors coincides with

the regularity parameter of the graph, the cuts in any

coloring satisfy a well-known parity condition. The par-

ity condition we state here follows from a more general

parity argument (see (1.2) and the Parity Argument on

page 95 in [40]).

Lemma IV.4 (Parity Condition). Let G be a κ-regular
graph and consider a cut C in G. For any edge κ-
coloring of G, c1 ≡ c2 ≡ · · · ≡ cκ (mod 2), where ci
is the number of edges in C colored i.

Consider all quaternary {ADκ,κ}-gates on domain

size κ ≥ 3. These gadgets have a succinct signature of

type τcolor = (P 1 1
1 1

, P 1 2
1 2

, P 1 2
2 1

, P 1 1
2 2

, P 1 4
2 3

, P0), where

P 1 1
1 1

= {(w, x, y, z) ∈ [κ]4 | w = x = y = z},
P 1 2

1 2
= {(w, x, y, z) ∈ [κ]4 | w = x �= y = z},

P 1 2
2 1

= {(w, x, y, z) ∈ [κ]4 | w = y �= x = z},
P 1 1

2 2
= {(w, x, y, z) ∈ [κ]4 | w = z �= x = y},

P 1 4
2 3

= {(w, x, y, z) ∈ [κ]4 | w, x, y, z are distinct},
P0 = [κ]4 − P 1 1

1 1
− P 1 2

1 2
− P 1 2

2 1
− P 1 1

2 2
− P 1 4

2 3
.

Any quaternary signature of an {ADκ,κ}-gate is con-

stant on the first five entries of τcolor since ADκ,κ is

domain invariant. Using Lemma IV.4, we can show that

the entry corresponding to P0 is 0.

Lemma IV.5. Suppose κ ≥ 3 is the domain size and
let F be a quaternary {ADκ,κ}-gate with succinct
signature f of type τcolor. Then f(P0) = 0.

By Lemma IV.5, we denote a quaternary signa-

ture f of an {ADκ,κ}-gate by the succinct signature

〈f(P 1 1
1 1
), f(P 1 2

1 2
), f(P 1 2

2 1
), f(P 1 1

2 2
), f(P 1 4

2 3
)〉 of type

τcolor, which has the entry for P0 omitted. When κ = 3,

P 1 4
2 3

is empty and we define its entry in the succinct

signature to be 0.
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N1 N2

Ns

Ns+1

Figure 2: Recursive construction to interpolate 〈2, 1, 0, 1, 0〉. Vertices assigned the signature of the gadget in Figure 3.

Lemma IV.6. Let G be a connected plane graph and
let Gm be the medial graph of G. Then

κT(G;κ+ 1, κ+ 1) = Pl-Holant(Gm; 〈2, 1, 0, 1, 0〉),
where the Holant problem has domain size κ and
〈2, 1, 0, 1, 0〉 is a succinct signature of type τcolor.

Proof: Let f = 〈2, 1, 0, 1, 0〉. By Lemma IV.3, we

only need to prove that∑
c∈C(�Gm)

2m(c) = Pl-Holant(Gm; f), (2)

where the notation is from Lemma IV.3.

Each c ∈ C(�Gm) is also an edge κ-labeling of Gm.

At each vertex v ∈ V (�Gm), the four incident edges are

assigned at most two distinct colors by c. If all four

edges are assigned the same color, then the constraint f
on v contributes a factor of 2 to the total weight. This

is given by the value in the first entry of f . Otherwise,

there are two different colors, say x and y. Because the

orientation at v in �Gm is cyclically “in, out, in, out”,

the coloring around v can only be of the form xxyy or

xyyx. These correspond to the second and fourth entries

of f . Therefore, every term in the summation on the

left-hand side of (2) appears (with the same nonzero

weight) in the summation Pl-Holant(Gm; f).
It is also easy to see that every nonzero term in

Pl-Holant(Gm; f) appears in the sum on the left-hand

side of (2) with the same weight of 2 to the power of the

number of monochromatic vertices. In particular, any

coloring with a vertex that is cyclically colored xyxy
for different colors x and y does not contribute because

f(P 1 2
2 1
) = 0.

By Theorem IV.1 and Lemma IV.6, the problem

Pl-Holant(〈2, 1, 0, 1, 0〉) is #P-hard.

Corollary IV.7. Suppose κ ≥ 3 is the domain size. Let
〈2, 1, 0, 1, 0〉 be a succinct quaternary signature of type
τcolor. Then Pl-Holant(〈2, 1, 0, 1, 0〉) is #P-hard.

With this connection established, we can now show

that counting edge colorings is #P-hard over planar

regular graphs when the number of colors and the

regularity parameter coincide.

Figure 3: Quaternary gadget f used in the interpolation

construction below. All vertices are assigned ADκ,κ.

The bold edge represents κ− 2 parallel edges.

Theorem IV.8. #κ-EDGECOLORING is #P-hard over
planar κ-regular graphs for all κ ≥ 3.

Proof: Let κ be the domain size of all Holant

problems in this proof and let 〈2, 1, 0, 1, 0〉 be a succinct

quaternary signature of type τcolor. We reduce from

Pl-Holant(〈2, 1, 0, 1, 0〉) to Pl-Holant(ADκ,κ), which

denotes the problem of counting edge κ-colorings in

planar κ-regular graphs as a Holant problem. Then by

Corollary IV.7, we conclude that Pl-Holant(ADκ,κ) is

#P-hard.

Consider the gadget in Figure 3, where the bold edge

represents κ−2 parallel edges. We assign ADκ,κ to both

vertices. Up to a nonzero factor of (κ− 2)!, this gadget

has the succinct quaternary signature f = 〈0, 1, 1, 0, 0〉
of type τcolor. Consider the recursive construction in

Figure 2. All vertices are assigned the signature f . Let

fs be the succinct quaternary signature of type τcolor

for the sth gadget of the recursive construction. Then

f1 = f and fs =Msf0, where

M =

[
0 κ−1 0 0 0
1 κ−2 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

]
and f0 =

[
1
0
0
1
0

]
.

The signature f0 is simply the succinct quaternary

signature of type τcolor for two parallel edges. We can

express M via the Jordan decomposition M = PΛP−1,

where

P =

[
1 1−κ 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 −1 0
0 0 0 0 1

]

and Λ = diag(κ−1,−1, 1,−1, 1). Then for t = 2s, we
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have

ft = P

[
κ−1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

]t

P−1

[
1
0
0
1
0

]

= P

[
x 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
P−1

[
1
0
0
1
0

]
=

[
y+1
y
0
1
0

]
,

where x = (κ− 1)t and y = x−1
κ .

Consider an instance Ω of Pl-Holant(〈2, 1, 0, 1, 0〉)
on domain size κ. Suppose 〈2, 1, 0, 1, 0〉 appears n times

in Ω. We construct from Ω a sequence of instances Ωt

of Pl-Holant(f) indexed by t, where t = 2s with s ≥ 0.

We obtain Ωt from Ω by replacing each occurrence of

〈2, 1, 0, 1, 0〉 with the gadget ft.
As a polynomial in x = (κ − 1)t, Pl-Holant(Ωt; f)

is independent of t and has degree at most n with

integer coefficients. Using our oracle for Pl-Holant(f),
we can evaluate this polynomial at n+1 distinct points

x = (κ − 1)2s for 0 ≤ s ≤ n. Then via polynomial

interpolation, we can recover the coefficients of this

polynomial efficiently. Evaluating this polynomial at

x = κ + 1 (so that y = 1) gives the value of

Pl-Holant(Ω; 〈2, 1, 0, 1, 0〉), as desired.

V. DOSE OF AN EFFECTIVE SIEGEL’S THEOREM

We jump into the middle of our proof for Theo-

rem I.2. Consider the polynomial p(x, y) ∈ Z[x, y]
defined by

p(x, y) = x5−(2y+1)x3−(y2+2)x2+y(y−1)x+y3.

We consider y = κ + 1 as an integer parameter

y ≥ 4, and treat p(x, y) as an infinite family of quintic

polynomials in x with integer coefficients. We want to

show that the roots of all these quintic polynomials

satisfy the lattice condition. (For κ ∈ {3, 4}, we need

alternative proofs.)

Definition V.1. Fix some � ∈ N. We say that
λ1, λ2, . . . , λ� ∈ C − {0} satisfy the lattice condition

if for all x ∈ Z� − {0} with
∑�

i=1 xi = 0, we have

�∏
i=1

λxi
i �= 1.

We suspect that for any integer y ≥ 4, p(x, y) is in

fact irreducible over Q as a polynomial in x. We can

show that this is a sufficient condition for the roots of

p(x, y) to satisfy the lattice condition for any integer

y ≥ 4. When considering y as an indeterminate, the

bivariate polynomial p(x, y) is irreducible over Q and

the algebraic curve defined by it has genus 3, so by

Theorem 1.2 in [37], p(x, y) is reducible over Q for at

most a finite number of y ∈ Z.
We know of just five values of y ∈ Z for which

p(x, y) is reducible as a polynomial in x:

p(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(x− 1)(x4 + x3 + 2x2 − x+ 1) y = −1
x2(x3 − x− 2) y = 0

(x+ 1)(x4 − x3 − 2x2 − x+ 1) y = 1

(x− 1)(x2 − x− 4)(x2 + 2x+ 2) y = 2

(x− 3)(x4 + 3x3 + 2x2 − 5x− 9) y = 3.

These five factorizations also give five integer solutions

to p(x, y) = 0. It is a well-known theorem of Siegel [39]

that an algebraic curve of genus at least 1 has only

a finite number of integral points. For this curve of

genus 3, Faltings’ Theorem [26] says that there can

be only a finite number of rational points. However

these theorems are not effective in general. There are

some effective versions of Siegel’s Theorem that can be

applied to our polynomial, but the best effective bound

that we can find is over 1020,000 [45] and hence cannot

be checked in practice.
However, it is shown in the next lemma that in fact

these five are the only integer solutions. In particular,

for any integer y ≥ 4, p(x, y) does not have a linear

factor in Z[x]. The following proof is based on a key

auxiliary function g2(x, y) =
y2

x + y − x2 + 1 due to

Aaron Levin [34]. We thank Aaron and also thank Bjorn

Poonen [38] who suggested a similar proof.

Lemma V.2. The only integer solutions to p(x, y) = 0
are (1,−1), (0, 0), (−1, 1), (1, 2), and (3, 3).

Proof sketch: Clearly these five points are solu-

tions to p(x, y) = 0. Let (a, b) ∈ Z2 be a solution to

p(x, y) = 0 with a �= 0. We claim a | b2. By definition

of p(x, y), clearly a | b3. If p is a prime that divides

a, then let ordp(a) = e and ordp(b) = f be the exact

orders with which p divides a and b respectively. Then

f ≥ 1 since 3f ≥ e and our claim is that 2f ≥ e. Sup-

pose for a contradiction that 2f < e. From p(a, b) = 0,

we have a2(a3 − 2ab− a− b2 − 2) = −b3 − ab(b− 1).
The order with respect to p of the left-hand side is

ordp
(
a2(a3 − 2ab− a− b2 − 2)

) ≥ ordp
(
a2

)
= 2e.

Since p is relatively prime to b− 1, ordp (ab(b− 1)) =
e + f > 3f , and therefore the order of the right-hand

side with respect to p is ordp
(−b3 − ab(b− 1)

)
=

ordp(b
3) = 3f. However, 2e > 3f , a contradiction.

This proves the claim.
Now consider the functions g1(x, y) = y − x2 and

g2(x, y) =
y2

x + y − x2 + 1. Whenever (a, b) ∈ Z2 is a

solution to p(x, y) = 0 with a �= 0, g1(a, b) and g2(a, b)
are integers. We compute the Puiseux series expansions
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y1(x) for x ∈ R, y2(x) for x > 0, and y3(x) for x > 0,

where

y1(x) = x2 + 2x−1 + 2x−2 − 6x−4 − 18x−5 +O(x−6),

y2(x) = x3/2 − 1

2
x+

1

8
x1/2 − 65

128
x−1/2 − x−1

− 1471

1024
x−3/2 − x−2 +O(x−5/2), and

y3(x) = − x3/2 − 1

2
x− 1

8
x1/2 +

65

128
x−1/2 − x−1

+
1471

1024
x−3/2 − x−2 +O(x−5/2),

to obtain asymptotic approximations to the roots of

these polynomials with y expanded as a Puiseux series

of x. These series converge to the actual roots of p(x, y)
for large x. The basic idea of the proof—called Runge’s

method—is that, for example, when we substitute y2(x)
in g2(x, y), we get g2(x, y2(x)) = O(x−1/2), where

the multiplier in the O-notation is bounded both above

and below by a nonzero constant in absolute value.

Thus for large x, this cannot be an integer. However,

for integer solutions (x, y) of p(x, y), this must be an

integer. We prove that |x| > 16 suffices to show this for

each asymptotic approximation. For |x| ≤ 16, one can

directly check that there are no other integer solutions.
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