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Abstract—Data summarization is an effective ap-
proach to dealing with the “big data” problem. While
data summarization problems traditionally have been
studied is the streaming model, the focus is starting
to shift to distributed models, as distributed/parallel
computation seems to be the only viable way to handle
today’s massive data sets. In this paper, we study ε-
approximations, a classical data summary that, intu-
itively speaking, preserves approximately the density of
the underlying data set over a certain range space. We
consider the problem of computing ε-approximations for
a data set which is held jointly by k players, and give
general communication upper and lower bounds that
hold for any range space whose discrepancy is known.

Keywords-ε-approximations; communication complex-
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I. INTRODUCTION

Data summarization, which makes “big data” small

while preserving important properties of the data, is an

effective approach in many data analytics tasks. While

data summarization problems traditionally have been

studied is the streaming model, the focus is starting

to shift to distributed models, as distributed/parallel

computation seems to be the only viable way to handle

today’s massive data sets. A standard approach for

constructing a summary over a large data set is to

break it into k pieces (often tens of thousands), give

them to many workers, who compute a summary for

each piece (possibly using a streaming algorithm),

and then merge them together. This mergeability is

trivially enjoyed by all the linear sketches, as well

as many non-linear summaries [1]. This standard ap-

proach has a communication cost of k×summary size.

Thus, an interesting question is if this is the best one

can do. It has been shown that for heavy hitters and

the quantiles, with randomization, the communication

cost can be reduced to
√
k×summary size [9], while

no further improvement is possible for coresets [18],
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the distinct count [24] and the F2 problem [23], up to

polylog factors.

In this paper, we study another classical data

summary, ε-approximations, which preserves approx-

imately the density of the underlying data set over a

certain range space (a formal definition will be given

later). In the centralized setting, ε-approximations

have been extensively studied [16], [8], with numerous

applications in data analytics, machine learning, and

computational geometry. In this work, we are inter-

ested in characterizing the communication complexity

of computing ε-approximations from large distributed

data sets. In a nutshell, we show that the standard ap-

proach above is optimal for deterministic algorithms,

while the dependency on k can be reduced with

randomization, and the exact dependency is related

to the discrepancy of the underlying range space.

A. Communication models

We study the multi-party communication complex-

ity in the number-in-hand model, in which each player

gets part of the input and cannot see other players’

data. To solve a problem, the players can exchange

messages with each other. Based on the way the mes-

sages are being exchanged, the following three models

have been studied in the literature, with increasing

power of communication.

Simultaneous message passing model. In the simul-
taneous message passing model (SMP), there is a

coordinator or referee, and each player can only send

one message to the coordinator. After receiving all the

messages, the coordinator should output the answer.

In this model, it is usually assumed that all players

know the common parameters like ε, k (the number

of players), and n (input size).

Message passing model. The message passing model
is a fundamental model has been extensively studied

in distributed computing and other areas [10]. In this

model, every player can send messages to any other

players according to some protocol.

Blackboard model. In the blackboard model, there is

a shared blackboard, and each player will write their
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messages on it, which can be seen by everyone else.

This model corresponds to the situation where there

is a broadcast channel in the communication network.

This model has the strongest communication power,

thus lower bounds proved for the this model also hold

for the other two models.

B. Range space and ε-approximation

Let X be a set of size n and S ⊆ 2X be a family

of subsets of X . In the study of ε-approximations,

we are interested in set systems (X,S) where X is a

set of points in R
d and S is induced by some range

space R (such as all intervals in R
1 or all halfplanes

in R
2), i.e., S = {r ∩ X | r ∈ R}. Let ε ∈ [0, 1]

be a real number. We say that a subset Y ⊆ X is an

ε-approximation of X w.r.t. the range space R if we

have, for all r ∈ R,∣∣∣∣ |Y ∩ r|
|Y | − |X ∩ r|

|X|
∣∣∣∣ ≤ ε. (1)

This means that the fraction of points of Y lying in

r should approximate the fraction of points of X in

r with accuracy no worse than ε. Therefore, an ε-

approximation is considered as a “density-preserving”

sample of X (w.r.t. R), which is a desirable property

in many applications.

The study of ε-approximations has spanned mathe-

matics, learning theory, and computational geometry.

Classical results [22], [13] show that, if the range

space has bounded VC-dimension, a random subset of

size Θ( 1
ε2 ) is an ε-approximation with constant prob-

ability. An interesting fact about ε-approximations is

that their size depends only on ε. Nevertheless, keep

in mind that ε is an additive error to a fraction, so it

should be set quite small; actually, one may consider

ε = 1/
√
n as the most interesting case, as it makes

simple random sampling ineffective and calls for more

careful constructions.

Define approx(ε,X,R) to be the optimal size of an

ε-approximation of X w.r.t. R, and approx(ε,R) =
maxX approx(ε,X,R). We will omit R when it is

clear from the context. For specific range spaces, the

size of ε-approximations can be much smaller than

what is achieved by random sampling. For instance,

for intervals in R
1, we have (trivially) approx(ε) =

Θ( 1ε ); for (axis-parallel) boxes in R
d, approx(ε) =

O( 1ε log
d+1/2 1

ε ) [16], [12]; for halfspaces in R
d,

approx(ε) = Θ(1/ε
2d

d+1 ) [15]. There is a close re-

lationship between approx(ε) and the combinatorial

discrepancy of the underlying range space. We include

a brief introduction to discrepancy below. For a com-

plete treatment on ε-approximations and discrepancy

theory, please refer to the books [16] and [8].

C. Discrepancy

In this section, we give some preliminaries on dis-

crepancy theory, which will be used in our algorithm,

as well as the lower bounds. Let X = {x1, · · · , xn} ⊂
R

d be a set of n points in R
d and R a range space.

A coloring is any mapping χ : X → {−1,+1}. The

(combinatorial) discrepancy of the set system (X,R)
is defined as

disc(X,R) = min
χ

max
r∈R

|χ(r)|, (2)

where χ(r) =
∑

x∈X∩r χ(x). Intuitively, it finds

the best coloring such that the two colors in every

range of R are as balanced as possible. For example,

if R is the family of all intervals in R
1, the best

coloring is to order the points of X and then color

them alternatively, which gives disc(X,R) = 1. The

discrepancy of the range space R considers the worst

case over all point sets X of a given size n, i.e.,

disc(n,R) = max
|X|=n

disc(X,R). (3)

We will omit R when it is clear from the con-

text. The discrepancy for many range spaces have

been extensively studied. Notable results include: for

intervals in R
1, disc(n) = 1; for boxes in R

d,

disc(n) = O(logd+1/2 n) [12]; for halfspaces in R
d,

disc(n) = Θ(n
d−1
2d ) [15]. The bounds on the size

of ε-approximations mentioned above are actually

all derived from these discrepancy bounds through

a standard procedure [16]. In general, if disc(n) =
O(logτ n) for some constant τ , then approx(ε) =
O( 1ε log

τ 1
ε ); if disc(n) = O(nτ ), then approx(ε) =

O(1/ε1/(1−τ)).
The discrepancy as defined in (2) considers the

worst range r of R. The notion of an “average

discrepancy” has also been studied, which is often

helpful in lower bound proofs. Let m be the number

of distinct subsets that can be defined by R on X .

When X is given, we abuse the notation slightly

by also using R = {r1, · · · , rm} to denote these

subsets of X induced by the ranges of R. We order

X and R arbitrarily, and let A be the incidence

matrix of (X,R), which is the m × n matrix with

columns corresponding to the points of X and rows

corresponding to R, and has entry aij = 1 iff xj is

in ri. Interpreting the coloring χ as a vector, the lp-
discrepancy of (X,R) is defined as

discp(X,R) = min
χ∈{−1,+1}n

||Aχ||p
m1/p

.

Thus disc(X,R) = disc∞(X,R). It should be clear

that disc1(X,R) ≤ disc2(X,R) ≤ disc∞(X,R).
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An α-partial coloring is any mapping χ : X →
{−1, 0,+1} satisfying ||χ||1 ≥ α|X|. We can simi-

larly define the α-partial lp-discrepancy as

discαp (X,R) = min
χ∈{−1,0,+1}n,||χ||1≥αn

||Aχ||p
m1/p

.

The α-partial lp-discrepancy for a range space

R is defined similarly as in (3): discαp (n,R) =
max|X|=n disc

α
p (X,R). To construct a good full col-

oring, a general method is to first get a good partial

coloring, then recursively apply the method to the

points that have not been colored. So the gap between

the full coloring discrepancy and partial discrepancy

is usually not significant. The following lemma can

be easily proved using this idea.

Lemma I.1. For any range space R, any constant
α and p ≥ 1, discp(n) = O(log n · discαp (n)). If
discαp (n) = poly(n), then discp(n) = O(discαp (n)).

Finally, we need another version of coloring where

we relax χ(x) to be real numbers instead of {−1,+1}.
We call a point x heavy if |χ(x)| ≥ 1. A coloring χ
is α-heavy, if it is a mapping χ : X → R, such that

there are at least α|X| points in X that are heavy. The

α-generalized lp-discrepancy is

rdiscαp (X,R) = min
α-heavy χ

||Aχ||p
m1/p

.

We omit R when the context is clear; we also omit

α when α = 1 and omit p when p =∞.

D. Our results

In our setting, the point set X is partitioned arbi-

trarily into k pieces and each player possesses one,

and the goal is to compute an ε-approximation (for a

certain range space) using minimum communication.

Based on known results, there are two straightfor-

ward ways to solve this problem. The first one is

to draw a random sample of size O(1/ε2) over the

whole data set, which can be easily implemented

with communication cost O(1/ε2).1 Another way is

the standard “merging” approach mentioned at the

beginning of the paper, which has communication cost

O(k · approx(ε)). It is deterministic if the players’

time cost to compute the local ε-approximations is

not a concern. The detailed bounds for various range

spaces are listed in Table I, and they remain the best

deterministic bounds for these cases.

Our first result is a randomized algorithm in the

SMP model to compute an ε-approximation for any

1We assume k < 1/ε2 in this paper. When k > 1/ε2, the bound
can be either O(k) or O(1/ε2) depending on some subtleties in
the model formulation, e.g., whether the players need to be notified
when the protocol starts/ends, but in either case, random sampling
is already the optimal solution for our problem.

range space, which has communication cost better

than both methods above. The algorithm works for

any range space R, with its communication cost

depending on disc(n,R). The general relationship is

described in Theorem II.1, while we have listed the

explicit bounds for some common range spaces in

Table I. For example, for halfspaces in R
d, the com-

munication cost of our algorithm is Õ(k
1

d+1 /ε
2d

d+1 ) =

Õ(k
1

d+1 · approx(ε)). This is obviously better than

the deterministic bound O(k · approx(ε)); it is also

better than the random sampling bound O(1/ε2) when

k ≤ 1/ε2, the parameter range we are interested in.

The bulk of the paper studies lower bound methods,

which yield almost tight lower bounds for many

interesting range spaces, up to polylog factors. The

lower bounds hold in the blackboard model, and

actually hold for computing any data structure that

allows one to estimate
|X∩r|
|X| for any r ∈ R as in

(1) within ε accuracy, which may not be a subset of

points of X as required by the strict definition of an

ε-approximation. The lower bounds use information-

theoretical arguments, and the bounds are in terms of

bits (note that the upper bounds are in terms of the

number of points transmitted). But we note that all the

lower bound constructions use points drawn from a d-

dimensional grid [u]d for u = (k/ε)O(1). In this case,

the gap between the upper and lower bounds is thus

polylog(k/ε) since it takes d log u bits to represent a

point.

We provide both deterministic and randomized

lower bounds. We first relate deterministic lower

bounds to the partial l1-discrepancy discα1 (n) of the

underlying range space (Theorem III.1). However,

since the l1-discrepancy is still not well understood

(there is only the trivial lower bound discα1 (n) =
Ω(1)), this method yields a rather weak lower bound

of Ω(k/ε). We then link the deterministic lower bound

to the partial generalized l∞-discrepancy rdisc(n)
(Theorem IV.2), via a new deterministic direct-sum

result. This leads to tight deterministic lower bounds,

in particular for halfspaces.

For randomized lower bounds, we also provide two

connections to discrepancy theory, one to the (partial)

l2-discrepancy (Theorem III.8) and the other to the

(partial) generalized l∞-discrepancy (Theorem IV.4).

Comparing these two relationships with the upper

bound in Theorem II.1, one can notice that the

statements are the essentially the same (modulo log

factors), except that disc(n) is replaced by disc2(n)
and rdisc(n), respectively. As lower bounds on the

l2-discrepancy and generalized discrepancy have been

well studied, this allows us to derive almost tight lower

bounds for the range spaces in Table I.
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approx(ε) Deterministic Randomized
O Ω O Ω

Intervals in R
1 1/ε k/ε k/ε

√
k
ε

√
log 1

ε

√
k/ε

Boxes in R
d 1

ε
logd+

1
2 1

ε
k
ε
logd+

1
2 1

ε
k
ε
log 1

ε

√
k
ε

logd+1 1
ε

√
k
ε

log 1
ε

for d = 2, 3, 4;√
k
ε

log
d−3
2 1

ε
for all d

Halfspaces in R
d 1/ε

2d
d+1 k/ε

2d
d+1 k/ε

2d
d+1 k

1
d+1 /ε

2d
d+1 · log d

d+1 1
ε

k
1

d+1 /ε
2d

d+1

Table I
THE K-PARTY COMMUNICATION COMPLEXITY FOR COMPUTING -APPROXIMATIONS. THE UPPER BOUNDS ARE IN TERMS OF THE

NUMBER OF POINTS COMMUNICATED AND THE LOWER BOUNDS ARE IN TERMS OF BITS.

E. Related work

Discrepancy theory, including ε-approximations, is

a well-studied topic [16], [8]. There are efficient

algorithms to construct ε-approximations for range

spaces with bounded VC-dimension in the centralized

setting [8]. For most interesting range spaces, optimal

ε-approximations now can be computed in polynomial

time due to recent breakthrough results on constructive

discrepancy minimization [4], [14]. Recently, it has

also been studied in the streaming model [21], [3],

[1]. However, the communication complexity of com-

puting ε-approximations in a distributed environment

is largely an unexplored area. For the simplest range

space, intervals in R
1, the ε-approximation problem is

equivalent to the ε-approximate quantiles problems.

For this problem, we previously gave an algorithm

in the simultaneous message passing model with

communication cost O(
√
k
ε log 1

ε ) words [9]; while

Woodruff and Zhang [23] proved a randomized lower

bound of Ω(
√
k
ε ) bits. The results presented here

match these results for the approximate quantiles

problem, but are much more general, as they hold for

any range space for which the discrepancy is known.

II. THE UPPER BOUND

In this section we give a general randomized al-

gorithm for any range space R based on the upper

bound of disc(n,R). We first rewrite the definition of

ε-approximations (1) as∣∣∣∣|Y ∩ r| · |X||Y | − |X ∩ r|
∣∣∣∣ ≤ ε|X|,

which implies that if we give a weight
|X|
|Y | to each

element in Y , the size of X∩r can be estimated within

an additive error ε|X| for all r ∈ R. For a range r,

when call
∣∣∣|Y ∩ r| · |X||Y | − |X ∩ r|

∣∣∣ the error of Y on

r. Then Y is an ε-approximation of X if its error is at

most ε|X| for all r ∈ R. We allow duplicated points

in X and Y ; they are treated as different points but

sharing the same coordinates.

The Algorithm. Our algorithm works in the simulta-

neous message passing model. Let X be partitioned

into k subsets with player i holding Ii. Let ni = |Ii|
and n =

∑
i ni. We assume that disc(n) ≤ O(

√
n),

which is a reasonable assumption since this holds for

any range space with bounded VC-dimension [16].

Every player i will run the following algorithm to

compute a subset of Ii, and sends it to the coordinator.

Without loss of generality we assume |Ii| is a power

of 2. Each player i reduces its point set Ii iteratively,

every time by half. We first color Ii using a coloring

χ such that |χ(r)| = O(disc(|Ii|)) for all r and

|χ−1(−1)| = |χ−1(+1)|.2 Then randomly pick one

of the two classes χ−1(−1) and χ−1(+1). Let I1i be

the picked subset, and we recursively apply the same

procedure on I1i . We repeat the procedure for λ times,

and let Iλi be the final subset. The value of λ will be

determined through our analysis.

In the end, the coordinator receives k subsets

Iλ1 , · · · , Iλk . We will show that their union forms an ε-

approximation of X with at least constant probability.

Note that this may not give an ε-approximation of the

optimal size, but this can be easily fixed by asking the

coordinator to run a centralized algorithm to compute

an optimal-size ε-approximation on the union of the

k subsets. This would give a (2ε)-approximation of

X .

Analysis. The analysis of the algorithm is given in the

full version, which is based on the following intuition.

For 1 ≤ j ≤ λ, let Δj
i = 2j−1(2|Iji ∩ r| − |Ij−1

i ∩
r|). Then the final error of using the union of the

Iλi ’s to approximate X on r is
∑k

i=1

∑λ
j=1 Δ

j
i . We

observe that the Δj
i ’s are random variables with mean

0 and absolute value bounded by the discrepancy of

the coloring. Then, we can apply a tail bound on the

probability that their sum does not deviate from 0 too

much. Some technicalities have to be taken care of

because the Δj
i ’s are not independent, though.

Theorem II.1. For any range space R with bounded
VC-dimension, if disc(n)2 is concave and t is any

2We assume there is an r ∈ R that contains the entire X , which
is true for all natural geometric range spaces. Then the restriction
|χ−1(−1)| = |χ−1(+1)| will increase the discrepancy by at most
a constant factor.
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value that satisfies t
disc(t) = Ω

(
1

ε
√
k
·
√
log 1

εδ

)
, then

there is an algorithm in the simultaneous message
passing model that computes an ε-approximation for
any input X with respect to R with probability 1− δ,
and the communication cost is O(tk).

To apply this theorem, given a range space, we

should set t to the smallest value satisfying the above

requirement. In case disc(t) is not yet known, it can

be replaced by any upper bound. The reader can easily

verify the results in Table I by plugging in the known

discrepancy upper bounds.

Remarks. Our algorithm actually adopts the same

framework as the standard algorithm to compute an

ε-approximation [16]. The only difference is that,

while we retain χ−1(−1) or χ−1(+1) randomly, the

standard algorithm just picks one arbitrarily. In the

RAM model, making random choices does not help;

what we show here through our analysis is that these

random choices significantly reduce the communica-

tion complexity, and they are necessary as suggested

by our deterministic lower bounds. Similar ideas have

also been used in designing randomized streaming

algorithms for computing ε-approximations [21], [1],

but no deterministic lower bounds are known in the

streaming model.

III. LOWER BOUNDS VIA lp-DISCREPANCY

In this section, we give deterministic and ran-

domized lower bounds techniques based on lp-

discrepancy. The deterministic lower bound uses l1-

discrepancy, while the randomized lower bounds use

l2-discrepancy.

A. Our techniques

Our lower bounds follow a common framework.

For some parameter t, set Y to be a set of t points

with the largest discrepancy, i.e., the discrepancy of

(Y,R) matches that of R. The particular form of

discrepancy will vary in different lower bounds. It is

easy to see that Y should not have duplicated points.

Let R|Y = {r1, . . . , rm} be the distinct ranges in R
defined on Y . The input of each player i is a subset

xi ⊆ Y , and we write xi in vector form xi ∈ {0, 1}t
(assuming an arbitrary ordering of the points in Y ).

Let x = x1 + · · ·+xk denote the whole input set, for

which we need to compute an ε-approximation. Note

that x could contain duplicated points, and duplicity

is considered. Let n = |x|, which is at most tk. Our

lower bounds use information-theoretical arguments

and hold for computing any data structure that allows

one to estimate |x ∩ r| for any r ∈ R with additive

error εn.

Clearly there are totally 2tk possible inputs. Let

Π be any deterministic protocol computing an ε-

approximation in the blackboard model. It is well-

known [11] that Π partitions the set of all possible

inputs into a set of combinatorial rectangles P =
{ρ1, ρ2, · · · , ρh}. Each rectangle ρj is a Cartesian

product ρj = B1 ×B2 × · · · ×Bk, where Bi ⊆
{0, 1}t is a subset of all possible inputs for player i.
For all the inputs in the same rectangle, the transcripts

of the protocol are exactly the same, in other words,

the protocol cannot distinguish these inputs. In partic-

ular, the outputs over a rectangle are the same, thus

any correct Π should produce a rectangle partitioning

such that all inputs in any rectangle share a common

correct output. The communication cost of Π is at

least log |P | bits. A randomized protocol is just a

distribution of a set of deterministic protocol.

For deterministic complexity, it is enough to prove

that, under certain conditions, any correct determin-

istic protocol computing an ε-approximation must

produce a partitioning P with at least 2Ω(tk) rect-

angles. Let ρ = B1 × B2 × · · · × Bk be any

combinatorial rectangle in the partition induced by

a correct deterministic protocol, the size of which is

|ρ| = |B1| · |B2| · · · · · |Bk|. We will show |ρ| ≤ 2tk/2,

thus the communication cost of the protocol is at least

log(2tk/|ρ|) = Ω(tk). As all the inputs in a rectangle

share the same output, we define the error in a

rectangle ρ as maxx,x′∈ρ maxr∈R ||x ∩ r| − |x′ ∩ r|| .
It is easy to see that any correct protocol cannot have a

rectangle with error larger than 2εn ≤ 2εtk. We will

prove that the error in a rectangle with size greater

than 2tk/2 will be too large. To do so, we begin with

the observation that a rectangle of size at least 2tk/2

must have Ω(k) long sides, where a long side i means

|Bi| ≥ 2t/4. Then we show that, for a long side Bi,

there must be xi, x
′
i ∈ Bi that are far away in terms

of the Hamming distance. The Hamming distance is

then related to the α-partial discrepancy of R, which

shows that xi, x
′
i will cause a large error for some r.

However, the Ω(k) players corresponding to the long

sides may not share the same r, so we cannot add the

errors up. This is where the 	1-discrepancy comes to

the rescue, which corresponds to the “average” error

over all ranges, which can be added up over the Ω(k)
players. We formalize the above intuition and give the

full proof of the following theorem in the full version.

Theorem III.1. For any range space R, any deter-
ministic protocol Π that solves the 1

3t · disc1/641 (t)-
approximation problem for R must communicate at
least Ω(tk) bits in the blackboard model.

Since for any range space, disc
1/64
1 (t) = Ω(1) is

a trivial lower bound, the above theorem yields an
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Ω(k/ε) lower bound for all range spaces by setting

t = Ω(1/ε). However, as l1-discrepancy lower bounds

are still not well understood, Theorem III.1 currently

does not yield higher lower bounds.

To prove randomized lower bounds, by Yao’s mini-

max principle, we only need to prove the distributional

complexity for some hard input distribution. We pick

an Y to maximize the discrepancy (the l2-discrepancy

now) of (Y,R) with |Y | = t for some t. The input of

each player i is a random subset xi ∈ Y , and the

goal is to compute an ε-approximation for (x,R),
where x = x1 + · · · + xk. The (still deterministic)

algorithm is required to solve the ε-approximation

problem with constant probability (with respect to the

random input).

Our hard distribution is simply the uniform distribu-

tion. More precisely, thinking of xi as a binary vector

in {0, 1}t, each player independently sets each entry

of xi to 1 or 0 with equal probability. For deterministic

complexity, we only need to find two inputs in a

large rectangle such that they cannot share the same

output. However, to lower bound the distributional

communication complexity, we need to show that a

constant fraction of all inputs in a large rectangle

cannot be answered correctly, which is more difficult.

Our approach is, instead of analyzing the maximum

error, we will analyze the variance of the number

of points in each range. We use l2-discrepancy to

lower bound the variance of the range counts, and

argue that in a large rectangle, there must exist one

range such that the number of points in this range

cannot concentrate around its expectation, then at least

a constant fraction of the inputs cannot be answered

correctly. Similar variance arguments have been used

in [23] to prove the information cost of a simpler

problem. We next give the details of the proof for

randomized lower bounds.

B. Randomized lower bound via l2-discrepancy

As before we set n = |x|, m = |R|Y | and A the

incidence matrix of the range space (Y,R|Y ). Let us

fix a rectangle ρ = B1 × B2 × · · · × Bk. Note that

conditioned on x ∈ ρ, the distribution of xi is uniform

in Bi, which follows from the fact that the distribution

of x is uniform and ρ is a combinatorial rectangle. Let

Ei =
1
|Bi|

∑
xi∈Bi

Axi be an m-dimensional vector,

which can be viewed as the average of Axi over all

xi in the set Bi. Let di also be an m-dimensional

vector such that di,j =
∑

xi∈Bi
((Axi)j−Ei,j)

2. Note

that
∑

xi∈Bi
||Axi −Ei||22 =

∑m
j=1 di,j . We have the

following lemma.

Lemma III.2. For any rectangle ρ = B1×B2×· · ·×

Bk of size at least 2tk/2, we have

max
j∈[m]

k∑
i=1

1

|Bi| · di,j ≥
k

18
· (disc1/642 (Y,R))2.

We first prove the following technical lemma.

Lemma III.3. If |Bi| ≥ 2t/4, then∑
x∈Bi

||Ax− Ei||22 ≥
|Bi|m

6
· (disc1/642 (Y,R))2.

Proof: For any two vectors x, y ∈ Bi, if their

Hamming distance HD(x, y) ≥ t/64, we have

||Ax−Ay||2 = ||A(x− y)||2 ≥
√
m · disc1/642 (Y,R),

as x − y is a 1/64-partial coloring. By triangle

inequality,

||Ax− Ei||2 + ||Ay − Ei||2 ≥ ||Ax−Ay||2
≥ √

m · disc1/642 (Y,R)

which implies ||Ax − Ei||22 + ||Ay − Ei||22 ≥ m
2 ·

(disc
1/64
2 (Y,R))2.

By a simple counting argument, we know that, if

the size of Bi is at least 2t/4, then for any vector

x ∈ Bi, almost all other vectors in Bi have Hamming

distance at least t/64 from x. Thus we can easily pick

|Bi|/3 pairs of (x, y) with HD(x, y) ≥ t/64, so∑
x∈Bi

||Ax− E||22 ≥ |Bi|
3
· m
2
· (disc1/642 (Y,R))2

=
|Bi|m

6
· (disc1/642 (Y,R))2.

Proof of Lemma III.2: By Lemma III.3, if |Bi| ≥
2t/4 we have 1

|Bi|
∑m

j=1 di,j ≥ m
6 · (disc1/642 (Y,R))2.

By an averaging argument, there are at least k/3
such i’s, which implies

∑m
j=1

∑k
i=1

1
|Bi| · di,j ≥

mk
18 ·(disc1/642 (Y,R))2. Then the lemma follows using

an averaging argument.

Suppose j achieves the maximum in Lemma III.2.

For any i, let Yij be a random variable, which is

defined as Yij = (Ax)j where x ∈R Bi, i.e., the

number of points in rj when the underlying set is

chosen uniformly from Bi. Put Yj =
∑k

i=1 Yij . Since

our input distribution is uniform, it easily follows

from the combinatorial rectangle property that the

random variables Y1j , Y2j , · · · , Ykj are independent.

Thus Lemma III.2 actually gives a lower bound on

Var[Yj ], the variance of Yj , since Var[Yi,j ] =
1
|Bi| ·di,j .

Corollary III.4. For any rectangle ρ = B1 × B2 ×
· · · ×Bk of size at least 2tk/2, we have

max
j∈[m]

Var[Yj ] ≥ k

18
· (disc1/642 (Y,R))2.
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Then we can use an anti-concentration inequality

(Lemma III.6) to prove that Yj cannot concentrate

around its expectation. Let w = maxr∈R |Y ∩ r|. We

have the following anti-concentration lemma.

Lemma III.5. If the size of the rectangle ρ is at least
2tk/2 and k

18 · (disc1/642 (Y,R))2 ≥ 40000w2, then

Pr[Yj ≥ E[Yj ] +
√
k · disc1/642 (Y,R)] ≥ c, and

Pr[Yj ≤ E[Yj ]−
√
k · disc1/642 (Y,R)] ≥ c,

for a sufficiently small constant c > 0.

Proof: To prove the lemma, we will use the

following anti-concentration inequality (see [17]).

Lemma III.6. Let X be as sum of independent
random variables, each attaining values in [0, 1], and
σ =

√
Var[X] ≥ 200. Then for all t ∈ [0, σ2

100 ], we
have

Pr[X ≥ E[X] + t] ≥ ce−t2/3σ2

for a sufficiently small constant c > 0.

To use Lemma III.6, we first scale each Yij such

that Yij ∈ [0, 1]. Since w = maxr∈R |Y ∩ r| is an

upper bound of Yij . We set Y ′ij = Yij/w, and Y ′j =
Yj/w, then Var[Y ′j ] = Var[Yj ]/w

2. We have already

shown in Corollary III.4 that

Var[Y ′j ] = Var[Yj ]/w
2 ≥ k

18w2
· (disc1/642 (Y,R))2.

Since Yj is the sum of independent random variables,

which follows from the combinatorial rectangle prop-

erty and our input distribution, Y ′j is also the sum of

independent random variables, each attaining values

in [0, 1], and we can directly apply Lemma III.6. So

when Var[Yj ]/w
2 ≥ 40000, we have

Pr

[
Y ′j ≥ E[Y ′j ] +

√
k

w
· disc1/642 (Y,R)

]
≥ c

for a sufficiently small constant c ≤ 1, which is

equivalent to the first part of the lemma. The second

part can be proved similarly. We just replace each Y ′ij
with 1− Y ′ij , and Y ′j with k − Y ′j .

Recall that Y is a set of size t such that

disc
1/64
2 (Y,R) = disc

1/64
2 (t). We are ready to prove

our randomized communication lower bound.

Lemma III.7. If w2 ≤ k
β (disc

1/64
2 (t))2 for large

enough constant β, any algorithm solving the ε-
approximation problem for R where ε ≤ disc

1/64
2 (t)

t
√
k

with probability at least 1 − c/2 must communicate
Ω(tk) bits, for a sufficiently small constant c.

Proof: By Yao’s minimax principle [25], we

only need to prove a lower bound for the distribu-

tional complexity, i.e., the communication complexity

of any deterministic protocol which will output a

correct ε-approximation with probability 1 − c/2,

where the probability is over the input distribution.

We know every deterministic protocol partitions all

possible inputs into a set of combinatorial rectangles.

If there is a rectangle in this partition with size at

least 2tk/2, then a constant fraction of the inputs in

this rectangle cannot be answered correctly. This is

because the approximation error allowed is at most

εkt =
√
k·disc1/642 (t), and by Lemma III.5, the output

can not be a ε-approximation for at least c fraction

of the inputs in this rectangle. Let σ be the total

measure of rectangles of size at least 2tk/2, then the

error probability is at least σc. Hence, σ ≤ 1/2. This

implies that the total number of rectangles is at least

2tk−1/2tk/2 = 2tk/2−1, from which it follows that the

communication cost of the deterministic protocol is at

least log 2tk/2−1 = Ω(tk) bits.

The above lower bound can be more effectively

used when have a good bound on w. For a gen-

eral range space, we only have w ≤ t. So replace

the condition w2 ≤ k
β (disc

1/64
2 (t))2 with t2 ≤

k
β (disc

1/64
2 (t))2, i.e., t

disc
1/64
2 (t)

≤
√

k
β . We set t such

that t

disc
1/64
2 (t)

= 1
ε
√
kβ

, which then simplifies the

condition to k ≥ 1/ε. Note that this means ε =
disc

1/64
2 (t)

t
√
kβ

which satisfies the condition in Lemma III.7

for β ≥ 1.

Theorem III.8. Given any range space R, if t is
a value satisfying t

disc
1/64
2 (t)

= 1
ε
√
kβ

for some large

constant β, and if k ≥ 1/ε, any algorithm solving the
ε-approximation problem for R with probability 1− c
must communicate Ω(kt) bits for sufficiently small c.

The annoying assumption k ≥ 1/ε in the above

theorem roots from the anti-concentration inequality

(Lemma III.6) having a restriction on the range of

the individual random variables. In our case, the Yij’s

can attain any value in [0, t]. We are able to get rid

of the assumption using a different technique and get

the following result, the proof of which is given in the

full version of the paper.

Theorem III.9. Given any range space R, if t is a
value satisfying t

disc
1/64
2 (t)

= 1
ε
√
kβ

for some constant

β, and if k < 1/ε, any algorithm solving the ε-
approximation problem for R with constant probabil-
ity must communicate Ω(kt− k · approx(εk/2)) bits.

Applications. For intervals in R
1, we have the trivial

bounds disc
1/64
2 (t) = Ω(1) and approx(ε) = O(1/ε).

Then the theorems above yield the communication

lower bound of Ω(
√
k/ε). This matches the lower
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bound recently proved in [23], but our proof is ele-

mentary, while the proof of [23] needs the machinery

of information complexity [7], [5]. For boxes in R
d,

the highest l2-discrepancy lower bound known today

is disc2(t) = Ω(log(d−1)/2 t) [20], thus disc
1/64
2 (t) =

Ω(log(d−3)/2 t) by Lemma I.1. The current best upper

bound on approx(ε) is O( 1ε log
d+1/2 1

ε ) [16], [12]. So

we have the following communication lower bounds.

Corollary III.10. Any randomized algorithm solv-
ing the ε-approximation problem for d-dimensional
boxes must communicate Ω(

√
k
ε · log(d−3)/2 1

ε ) bits
if k ≥ 1/ε. For k < 1/ε, the lower bound is
Ω(
√
k
ε · log(d−3)/2 1

ε − 1
ε · logd+1/2 1

ε ).

Note that the 1
ε · logd+1/2 1

ε term is insignifi-

cant as long as k ≥ logd+4 1
ε . For halfspaces in

R
d, we have disc2(t) = Ω(t1/2−1/2d) [2], thus

disc
1/64
2 (t) = Ω(t1/2−1/2d) by Lemma I.1. Also since

approx(ε) = 1/ε2d/(d+1), we get a lower bound of

Ω(k1/(d+1)/ε2d/(d+1)).

IV. LOWER BOUNDS VIA GENERALIZED

DISCREPANCY

A. Our techniques

We obtain our lower bounds through a reduction

from t independent instances of a primitive problem,

the 1-bit problem, to the ε-approximation problem.

Then we prove direct-sum theorems, both determinis-

tic and randomized, for the former. Recall that for a

primitive problem which has complexity C, a direct-

sum theorem states that the complexity of solving t
independent instances of this problem simultaneously

is Ω(tC). However, for deterministic algorithms, the

natural requirement, which is that the algorithm should

be correct on all instances, turns out to be too strong

for the reduction to work. So we have to use a relaxed

requirement that the algorithm only needs to solve an

arbitrary 1−α fraction of the t instances correctly, for

some small constant α. For randomized algorithms,

we use the usual requirement that the algorithm is

correct with constant probability for each of the t
instances.

In the 1-bit problem, each player gets one bit, and

their goal is to estimate their sum within additive

error Δ, where Δ = Θ(k) for deterministic algo-

rithms and Δ = Θ(
√
k) for randomized algorithms.

It has been shown that the information complexity

of the randomized 1-bit problem is Ω(k) [23]. Then

the standard direct-sum arguments using information

complexity [5], [6] will give us a direct-sum theorem

for the randomized 1-bit problem. There are, however,

no effective tools for proving deterministic direct-

sum theorems. Our strategy is to first prove a lemma

concerning the width of a set of large subsets in the t-
dimensional hypercube. The geometric interpretation

of the lemma is that, for any 	 subsets of the t-
dimensional hypercube with non-negligible measures,

there must be a direction y ∈ {−1,+1}t such that

the sum of the widths of these sets in this direction

is Ω(	
√
t). Note that the largest width of any set is√

t. To show this, the main tool we used is a well-

known isoperimetric inequality of the t-dimensional

hypercube with the Hamming metric.

Once we have the direct-sum theorem, we use the

following idea to build the connection between com-

munication complexity and generalized discrepancy.

We fix a range space (Y,R), with |Y | = t. Let

Π be a deterministic protocol which computes an

ε/2-approximation for the range space (Y,R), with

ε = rdiscα(Y,R)
5t . We will show that such a protocol can

be used to solve the deterministic direct-sum problem

with t independent instances. It seems that this is only

possible when rdiscα(Y,R) = O(1), since the error

allowed in Π is εkt = k·rdiscα(Y,R)
5 . So we can only

set t to be a constant, which would not give us a good

lower bound. Our idea is to use discrepancy. We show

that if, on the contrary, Π cannot recover a constant

fraction of answers within error O(k), then the error

will be amplified through discrepancy. More precisely,

there will be at least one range r ∈ R, for which the

error made by Π is large than εtk, which contradicts

the correctness of Π. The idea for the randomized case

is similar.

B. Deterministic lower bounds

We first define the deterministic problem more

formally. In the deterministic version of the 1-bit

problem, each player gets one bit, and their goal is

to estimate the sum of their bits within additive error

k/4. We will use DSEk to denote this problem. It

is not hard to see the communication complexity of

DSEk is Ω(k). The direct-sum problem DSEt
k,α is

defined as follows. Each player gets an t-bit input xi.

Let z =
∑k

i=1 xi. The goal is to estimate an arbitrary

(1 − α) fraction of zj’s within error k/4. Note that

we do not need to solve all the t copies of the 1-

bit problem, but only to solve an arbitrary constant

fraction of them. We have the following lower bound.

Lemma IV.1. For any k, t and small enough con-
stant α, the deterministic communication complexity
of DSEt

k,α is Ω(tk) bits.

Before proving the above lemma, we first show

how to use this to prove a theorem which relates

deterministic communication complexity of the ε-

approximation problem to generalized discrepancy.
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Theorem IV.2. Given range space R, constant ε and
k, if t is a value satisfying t

rdiscα(t) = 1
5ε for some

constant d, any deterministic algorithm solving the
ε-approximation problem for R must communicate
Ω(tk) bits.

Proof: As before, we fix a range space (Y,R),
where |Y | = t and R = {r1, · · · , rm}. The input

of each player i is a subset xi ⊆ Y , and we also

use xi ∈ {0, 1}t and r� ∈ {0, 1}t as vectors. Let

A be the incidence matrix of this range space. We

want to compute an ε-approximation of the multiset

X = x1 + · · ·+ xk.

Let Π be a deterministic protocol which computes

an ε/2-approximation for the range space (Y,R), with

ε = rdiscα(Y,R)
5t . We will show that such an protocol

can be used to solve DSEt
k,α. Let y1, · · · , yk ∈ {0, 1}t

be the input of DSEt
k,α. To solve this problem using

protocol Π, we first set xi = yi for 1 ≤ i ≤ k, then

run Π on the input x1, · · · , xk. We further define z to

be a t-dimensional vector such that z =
∑

i xi and ξ

be a m-dimension vector such that ξ� =
∑k

i=1 |r�∩xi|
for each r� ∈ R, i.e., ξ� is the number of points of

X in the range r�, and it is easy to see ξ = Az.

After running the protocol we got a vector ξ′ such

that ||ξ−ξ′||∞ ≤ εkt/2. Given ξ′ we find an arbitrary

z′ such that ||Az′ − ξ′||∞ ≤ εkt/2 (there must exists

one, as z is valid). By triangle inequality, we have

||Az −Az′||∞ ≤ εkt (4)

We next show that

|{j| |zj − z′j | > k/4}| ≤ αt. (5)

Suppose this is not true, then 4(z−z′)/k is a α-heavy

coloring, and ||4A(z−z′)/k||∞ ≥ rdisc(Y,R), which

implies that

||A(z − z′)||∞ ≥ k · rdisc(Y,R)/4 = 5εtk/4 > εtk,

which is a contradiction to (4). So (5) holds, and z′ is

a valid answer to DSEt
k,α. Since z′ can be computed

after running Π without further communication, the

communication complexity of Π is at least Ω(tk).

Proof of Lemma IV.1: Let ρ = B1 × B2 ×
· · · × Bk be a combinatorial rectangle and define

|ρ| = |B1| · |B2| · · · · · |Bk| as the size of ρ. Let

ρ be the largest rectangle in any correct protocol Π.

We will show |ρ| ≤ 2(1−α)tk for some small enough

constant, then the communication cost of the protocol

is at least log(2tk/|ρ|) = Ω(tk). Let x, x′ ∈ ρ be

any two inputs in the rectangle, and we define the t-
dimensional vectors z, z′ as above, i.e., z =

∑k
i=1 xi.

We will show that in any rectangle ρ of size larger

than 2(1−α)tk, there must be two inputs x, x′ ∈ ρ

such that |{j | |zj − z′j | > k/4}| = Ω(t), which

means the rectangle partition induced by any correct

deterministic protocol cannot contain such a rectangle.

We first prove the following key lemma we will use.

The geometric interpretation of the lemma is that, for

any 	 subsets of the t-dimensional hypercube with

non-negligible measures, there must be a direction

y ∈ {−1,+1}t such that the sum of the widths of

these sets in this direction is Ω(	
√
t). Note that the

largest width of any set is
√
t. The proof is given in

the full version.

Lemma IV.3. Let B1, · · · , B� be a collection of 	
subsets of the t-dimension hypercube {−1, 1}t satis-
fying |Bi| ≥ 2(1−β)t for small enough constant β,
then there exists a vector y ∈ {−1, 1}t and a set
of vectors xi, x

′
i ∈ Bi for 1 ≤ i ≤ 	, such that

|∑�
i=1(xi − x′i) · y| ≥ Ω(	t), where x · y denotes

the inner product of x, y.

Let us focus on a rectangle ρ = B1×B2×· · ·×Bk

of size 2(1−β/2)tk. Using an averaging argument, we

can easily show that the number of i’s such that |Bi| ≥
2(1−β)t is at least βk for any small enough constant.

W.l.o.g, we assume |Bi| ≥ 2(1−β)t for 1 ≤ i ≤ βk.

For each element xi in Bi, we transform it into an

element x̂i of {−1,+1}t by replacing each 0 with −1.

Now using Lemma IV.1, we have
∑k

i=1(x̂i− x̂′i) ·y ≥
Ω(kt), for some y ∈ {−1,+1}t and some xi, x

′
i ∈ Bi

(for i > βk we just set xi = x′i). It is observed that

xi − x′i = (x̂i − x̂′i)/2, thus

k∑
i=1

(xi − x′i) · y ≥ Ω(kt). (6)

Now we got two inputs x, x′ ∈ ρ, where x =
x1x2 · · ·xk and x′ = x′1x

′
2 · · ·x′k. Define z =

∑
i xi

and z′ =
∑

i x
′
i. By (6), we have (z−z′) ·y ≥ Ω(kt).

Since y ∈ {−1,+1}, it follows that ||z − z′||1 ≥
(z − z′) · y ≥ Ω(kt). The absolute value of each

entry of the vector z − z′ is at most k, then by an

averaging argument, we have that |{j | |zj − z′j | >
k/4}| ≥ αt, for small enough α. So z, z′ cannot be

in the same rectangle induced by a correct protocol.

Since we proved that there are such a pair of inputs

in any rectangle ρ of size at least 2(1−β/2)tk, we

conclude that the communication complexity is at

least log(2tk/2(1−β/2)tk) = βtk/2 = Ω(tk).
It was known [19] that, for boxes in R

2,

rdiscα∞(t) = Ω(log t) for any constant 0 < α ≤
1. Plugging this result into Theorem IV.2 yields a

better lower bound of Ω(k log(1/ε)/ε). The lower

bound proved in [2] for halfspaces actually holds

for the generalized discrepancy for any constant α,

i.e. rdiscα∞(t) = Ω(t1/2−1/2d) for d-dimensional
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halfspaces. Applying Theorem IV.2, we got optimal

deterministic lower bounds for halfspaces, which is

Ω( k
ε2d/(d+1) ).

C. Randomized lower bounds

Applying similar ideas as in the deterministic case

together with information complexity arguments, we

get the following analogous result for randomized

protocols, the proof of which is given in the full

version.

Theorem IV.4. Given range space R, if t is a value
satisfying t

rdisc1/6(t)
= 1

2ε
√
k
, any algorithm solving

the ε-approximation problem for R with constant
probability must communicate Ω(kt) bits.

Roth [19] showed that, for boxes in R
2,

rdiscα∞(n) = Ω(log n) for any constant 0 < α ≤ 1.

Plugging this result into Theorem IV.4 yields a better

lower bound for d = 2, 3, 4 than the one derived from

Theorem III.8, as listed in Table I.
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