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Abstract—We present a new framework for solving optimiza-
tion problems with a diseconomy of scale. In such problems,
our goal is to minimize the cost of resources used to perform
a certain task. The cost of resources grows superlinearly, as
xq , q ≥ 1, with the amount x of resources used. We define
a novel linear programming relaxation for such problems, and
then show that the integrality gap of the relaxation is Aq , where
Aq is the q-th moment of the Poisson random variable with
parameter 1. Using our framework, we obtain approximation
algorithms for the Minimum Energy Efficient Routing, Minimum
Degree Balanced Spanning Tree, Load Balancing on Unrelated
Parallel Machines, and Unrelated Parallel Machine Scheduling
with Nonlinear Functions of Completion Times problems.

Our analysis relies on the decoupling inequality for nonnega-
tive random variables. The inequality states that

∥∥
n∑

i=1

Xi

∥∥
q
≤ Cq

∥∥
n∑

i=1

Yi

∥∥
q
,

where Xi are independent nonnegative random variables, Yi are
possibly dependent nonnegative random variable, and each Yi

has the same distribution as Xi. The inequality was proved by
de la Peña in 1990. However, the optimal constant Cq was not
known. We show that the optimal constant is Cq = A

1/q
q .

I. INTRODUCTION

In this paper, we study combinatorial optimization problems

with a diseconomy of scale. We consider problems in which

we need to minimize the cost of resources used to accomplish a

certain task. Often, the cost grows linearly with the amount of

resources used. In some applications, the cost is sublinear e.g.,

if we can get a discount when we buy resources in bulk. Such

phenomenon is known as “economy of scale”. However, in

many applications the cost is superlinear. In such cases, we say

that the cost function exhibits a “diseconomy of scale”. A good

example of a diseconomy of scale is the cost of energy used for

computing. Modern hardware can run at different processing

speeds. As we increase the speed, the energy consumption

grows superlinearly. It can be modeled as a function P (s) =
csq of the processing speed s, where c and q are parameters

that depend on the specific hardware. Typically, q ∈ (1, 3] (see

e.g., [2], [20], [37]).

As a running example, consider the Minimum Power Rout-

ing problem studied by Andrews, Anta, Zhang, and Zhao [3].

We are given a graph G = (V,E) and a set of demands

D = {(di, si, ti)}. Our goal is to route di (di ∈ N) units

of demand i from the source si ∈ V to the destination ti ∈ V
such that every demand i is routed along a single path pi (i.e.

The full version of the paper is available at http://arxiv.org/abs/1404.3248.

we want to find an unsplittable multi-commodity flow). We

want to minimize the energy cost. Every link (edge) e ∈ E
uses fe(xe) = cex

q
e units of power, where ce is a scaling

parameter depending on the link e, and xe is the load on e.
The straightforward approach to solving this problem is as

follows. We define a mathematical programming relaxation

that routes demands fractionally. It sends yi,pdi units of

demand via the path p connecting si to ti. We require that∑
p yi,p = 1 for every demand i. The objective function is to

minimize

min
∑
e∈E

cex
q
e = min

∑
e∈E

ce
( ∑
p:e∈p

yi,pdi
)q
,

where xe =
∑

p:e∈p yi,pdi is the load on the link e. This

relaxation can be solved in polynomial time, since the objec-

tive function is convex (for q ≥ 1). But, unfortunately, the

integrality gap of this relaxation is Ω(nq−1) [3]. Andrews et

al. [3] gave the following integrality gap example. Consider

two vertices s and t connected via n disjoint paths. Our goal

is to route 1 unit of flow integrally from s to t. The optimal

solution pays 1. The LP may cheat by routing 1/n units of flow

via n disjoint paths. Then, it pays only n× (1/n)q = n1−q .

For the case of uniform demands, i.e., for the case when

all di = d, Andrews et al. [3] suggested a different objective

function:

min
∑
e∈E

cemax{xqe, dq−1xe}.

The objective function is valid, because in the integral case,

xe must be a multiple of d, and thus xqe ≥ dq−1xe. Andrews

et al. [3] proved that the integrality gap of this relaxation

is a constant. Bampis et al. [9] improved the bound to the

fractional Bell number Aq that is defined as follows: Aq is

the q-th moment of the Poisson random variable P1 with

parameter 1 (see Figure 2 in Appendix A). I.e.,

Aq = E [P q
1 ] =

+∞∑
t=1

tq
e−1

t!
. (1)

For the case of general demands no constant approximation

was known. The best known approximation due to Andrews et

al. [3] was O(k+ logq−1Δ) where k = |D| is the number of

demands and Δ = maxi di is the size of the largest demand

(Theorem 8 in [3]).

In this work, we give an Aq-approximation algorithm for

the general case and thus close the gap between the case

of uniform and non-uniform demands. Our approximation
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algorithm uses a general framework for solving problems with

a diseconomy of scale which we present in this paper. We use

this framework to obtain approximation algorithms for several

other combinatorial optimization problems. We give A
1/q
q -

approximation algorithm for Load Balancing on Unrelated

Parallel Machines (see Section II-B), 2qAq-approximation al-

gorithm for Unrelated Parallel Machine Scheduling with Non-

linear Functions of Completion Times (see the full version of

the paper) and Aq-approximation algorithm for the Minimum

Degree Balanced Spanning Tree problem (see Section II-C).

The best previously known bound for the first problem with

q ∈ [1, 2] was 21/q (see Figure 3 for comparison). The bound

is due to Kumar, Marathe, Parthasarathy and Srinivasan [22].

There were no known approximation guarantees for the latter

problems.

In the analysis, we use the de la Peña decoupling inequal-

ity [26], [27].

Theorem I.1 (de la Peña [26], [27]). Let Y1, . . . , Yn be jointly
distributed nonnegative (non-independent) random variables,
and let X1, . . . , Xn be independent random variables such
that each Xi has the same distribution as Yi. Then, for every
q ≥ 1,

∥∥ n∑
i=1

Xi

∥∥
q
≤ Cq

∥∥ n∑
i=1

Yi
∥∥
q
, (2)

for some universal constant Cq .

The optimal value of the constant Cq was not known. The

original proof of de la Peña relies on more general inequalities

and does not give specific constants. We give a direct proof

of this inequality. We show that the inequality holds for Cq =

A
1/q
q and moreover this bound is tight.

Theorem I.2. Inequality (2) holds for Cq = A
1/q
q , where Aq

is the fractional Bell number (see Equation (1) and Figure 2)
Moreover, A

1/q
q is the optimal upper bound on Cq .

In Section VI (see Corollary VI.2), we extend this theorem

to negatively associated random variables Xi.

A. General Framework

We now describe the general framework for solving prob-

lems with a diseconomy of scale. We consider optimization

problems with n decision variables y1, . . . , yn ∈ {0, 1}. We

assume that the objective function equals the sum of k terms,

where the j-th term is of the form

cj

( n∑
i=1

dijyi

)qj
,

here cj ≥ 0, dij ≥ 0 and qj ≥ 1 are parameters. The vector

y = (y1, . . . , yn) must satisfy the constraint y ∈ P for some

polytope P ⊂ [0, 1]n. Therefore, the optimization problem can

be written as the following boolean convex program (IP):

min
∑
j∈[k]

cj

( ∑
i∈[n]

dijyi

)qj
(3)

y ∈ P (4)

y ∈ {0, 1}n (5)

We assume that we can optimize any linear function over the

polytope P in polynomial time (e.g., P is defined by poly-

nomially many linear inequalities, or there exists a separation

oracle for P). Thus, if we replace the integrality constraint

(5) with the relaxed constraint y ∈ [0, 1]n (which is redundant,

since P ⊂ [0, 1]n), we will get a convex programming problem

that can be solved in polynomial time (see [11]). However, as

we have seen in the example of Minimum Power Routing, the

integrality gap of the relaxation can be as large as Ω(nq−1).
In this work, we introduce a linear programming relax-

ation of (3)-(5) that has an integrality gap of Aq (where

q = maxj qj) under certain assumptions on the polytope P .

We define auxiliary variables zjS for all S ⊂ [n] and j ∈ [k].
In the integral solution, zjS = 1 if and only if yi = 1 for

i ∈ S and yi = 0 for i /∈ S.

min
∑
j∈[k]

∑
S⊆[n]

cj

(∑
i∈S

dij

)qj

zjS (6)

y ∈ P, (7)∑
S⊆[n]

zjS = 1, ∀j ∈ [k] (8)

∑
S:i∈S

zjS = yi, ∀i ∈ [n], j ∈ [k] (9)

zjS ≥ 0, ∀S ⊆ [n], j ∈ [k] (10)

Remark I.3. In the integral solution, zj′S = zj′′S for all j′

and j′′. The reason why we introduced many copies of the
same integral variable zS to the LP is that the LP above is
easier to solve than the LP with an extra constraint zj′S =
zj′′S .

Optimization problem (6)-(10) is a relaxation of the original

problem (3)-(5). The LP has exponentially many variables. We

show, however, that the optimal solution to this LP can be

found in polynomial time up to an arbitrary accuracy (1+ ε).
We say that y is a (1 + ε)-approximately optimal solution if

the cost of the solution is at most (1 + ε)OPT , where OPT
is the cost of the optimal solution.

Theorem I.4. Suppose that there exists a polynomial time
separation oracle for the polytope P . Then, for every ε and q,
there exists a polynomial time algorithm that finds a (1 + ε)-
approximately optimal solution to LP (6)-(10).

We then prove the following theorem.

Theorem I.5. Let Dj = {i : dij �= 0}. Assume that there
exists a randomized algorithm R that given a y ∈ P , returns
a random integral point R(y) in P ∩ {0, 1}n such that
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1) Pr(Ri(y) = 1) = yi for all i (where Ri(y) is the i-th
coordinate of R(y));

2) Random variables {Ri(y)}i∈Dj are independent or neg-
atively associated (see Section VI for the definition) for
every j.

Then, for every feasible solution (y∗, z∗) to LP (6)-(10), we
have

E

[ ∑
j∈[k]

cj

( ∑
i∈[n]

dijRi(y
∗)
)qj] ≤

≤ Aq

∑
j∈[k]

∑
S⊆[n]

cj

(∑
i∈S

dij

)qj

z∗jS , (11)

where q = maxj qj and Aq is the fractional Bell number
(see (1)). Particularly, since LP (6)-(10) is a relaxation for IP
(3)-(5), if (y∗, z∗) is a (1+ ε)-approximately optimal solution
to LP (6)-(10), then

E

[ ∑
j∈[k]

cj

( ∑
i∈[n]

dijRi(y
∗)
)qj] ≤ (1 + ε)Aq IP,

where IP is the optimal cost of the boolean convex program
(3)-(5).

This theorem guarantees that an algorithm R satisfying con-

ditions (1) and (2) has an approximation ratio of (1 + ε)Aq .

In the next section, Section II, we show how to use the

framework to obtain Aq approximation algorithms for four

different combinatorial optimization problems. Then, in Sec-

tion III, we give an efficient algorithm for solving LP (6)-(10).

In Section IV, we prove the main theorem – Theorem I.5. The

proof easily follows from the decoupling inequality, which we

prove in Section V. Finally, in Section VII, we describe some

generalizations of our framework.

II. APPLICATIONS

In this section, we show applications of our general tech-

nique. We start with the problem discussed in the introduction

– Energy Efficient Routing. Recall, that Andrews et al. [3]

gave an O(k + logq−1Δ)-approximation algorithm for this

problem where k = |D| and Δ = maxi∈D di (Theorem 8 in

[3]). We give an Aq-approximation algorithm.

A. Energy Efficient Routing

We write a standard integer program. Each variable yi,e ∈
{0, 1} indicates whether the edge e is used to route the flow

from si to ti. Below, Γ+(u) denotes the set of edges outgoing

from u; Γ−(u) denotes the set of edges incoming to u.

min
∑
e∈E

ce

(∑
i∈D

diyi,e

)qe

(12)

∑
e∈Γ+(u)

yi,e =
∑

e∈Γ−(u)
yi,e, ∀i, u ∈ V \ {si, ti} (13)

∑
e∈Γ+(si)

yi,e = 1, ∀i (14)

∑
e∈Γ−(ti)

yi,e = 1, ∀i (15)

yi,e ∈ {0, 1}, ∀i, e ∈ E (16)

Using Theorem I.4, we obtain an almost optimal fractional

solution (y, z) of LP relaxation (6)-(10) of IP (12)-(16). We

apply randomized rounding in order to select a path for each

demand. Specifically, for each demand i ∈ D, we consider the

standard flow decomposition into paths: In the decomposition,

each path p connecting si to ti has a weight λi,p ∈ R
+.

For every edge e,
∑

p:e∈p λi,p = diyi,e; and
∑

p λi,p = di.
For each i, the approximation algorithm picks one path p
connecting si to ti at random with probability λi,p/di, and

routes all demands from si to pi via p. Thus, the algorithm

always obtains a feasible solution.

We verify that the integral solution corresponding to this

combinatorial solution satisfies the conditions of Theorem I.5.

Let Ri,e(y) be the integral solution, i.e., let Ri,e(y) = 1 if

the edge e is chosen in the path connecting si and ti. First,

Ri,e(y) = 1 if the path connecting si and ti contains e, thus

Pr(Ri,e(y) = 1) =
∑
p:e∈p

λi,p/di = yi,e.

Second, the paths for all demands are chosen independently.

Each Ri,e(y) depends only on paths that connect si to ti. Thus

all random variables Ri,e(y) (for a fixed e) are independent.

Therefore, by Theorem I.5, the cost of the solution obtained

by the algorithm is bounded by (1+ ε)Aq OPT , where OPT
is the cost of the optimal solution to the integer program which

is exactly equivalent to the Minimum Energy Efficient Routing

problem.

B. Load Balancing on Unrelated Parallel Machines

We are given n jobs and m machines. The processing

time of the job j ∈ [n] assigned to the machine i ∈ [m]
is pij ≥ 0. The goal is to assign jobs to machines to

minimize the �q-norm of machines loads. Formally, we par-

tition the set of jobs into into m sets S1, . . . , Sm to mini-

mize
(∑

i∈[m](
∑

j∈Si
pij)

q
)1/q

. This is a classical scheduling

problem which is used to model load balancing in practice1.

It was previously studied by Azar and Epstein [6] and by

Kumar, Marathe, Parthasarathy and Srinivasan [22]. Particular,

for q ∈ (1, 2] the best known approximation algorithm has

performance guarantee 21/q [22] (Theorem 4.4). We give

1A slight modification of the problem, where the objective is
min

∑
i∈[m](

∑
j∈Si

pij)
q , can be used for energy efficient scheduling.

Imaging that we need to assign n jobs to m processors/cores so that all jobs
are completed by a certain deadline D. We can run processors at different
speeds si. To meet the deadlines we must set si = D−1

∑
j∈Si

pij . The

total power consumption is proportional to D × ∑m
i=1 s

q
i = D1−q ×∑m

i=1

(∑
j∈Si

pij
)q

. For this problem, our algorithm gives Aq approxi-
mation.

573573



q
√
Aq-approximation algorithm substantially improving upon

previous results (see Figure 3).

We formulate the unrelated parallel machine scheduling

problem as a boolean nonlinear program:

min
∑
i∈[m]

( ∑
j∈[n]

pijxij
)q

(17)

∑
i∈[m]

xij = 1, ∀j ∈ [n] (18)

xij ∈ {0, 1}, ∀i ∈ [m], j ∈ [n] (19)

Using Theorem I.4, we obtain an almost optimal fractional

solution (x, z) of the LP relaxation (6)–(10) corresponding

to the IP (17)–(19). We use the straightforward randomized

rounding: we assign each job j to machine i with probability

xij . We claim that, by Theorem I.5, the expected cost of our

integral solution is upper bounded by Aq times the value of

the fractional solution (x, z). Indeed, the probability that we

assign a job j to machine i is exactly equal to xij ; and we

assign job j to machine i independently of other jobs. That

implies that our approximation algorithm has a performance

guarantee of q
√
Aq for the �q-norm objective.

C. Degree Balanced Spanning Tree Problem

We are given an undirected graph G = (V,E) with edge

weights we ≥ 0. The goal is to find a spanning tree T
minimizing the objective function

f(T ) =
∑
v∈V

⎛
⎝ ∑

e∈δ(v)∩T
we

⎞
⎠

q

, (20)

where δ(v) is the set of edges in E incident to the vertex v.

For q = 2, a more general problem was considered before in

the Operations Research literature [5], [23], [25], [28] under

the name of Adjacent Only Quadratic Spanning Tree Problem.

A related problem, known as Degree Bounded Spanning Tree,

recieved a lot of attention in Theoretical Computer Science

[33], [16]. We are not aware of any previous work on Degree

Balanced Spanning Tree Problem.

Let xe be a boolean decision variable such that xe = 1
if we choose edge e ∈ E to be in our solution (tree) T .

We formulate our problem as the following convex boolean

optimization problem

min
∑
v∈V

⎛
⎝ ∑

e∈δ(v)
wexe

⎞
⎠

q

x ∈ B(M)

xe ∈ {0, 1}, ∀e ∈ E,
where B(M) is the base polymatroid polytope of the graphic

matroid in graph G. We refer the reader to Schrijver’s

book [30] for the definition of the matroid. Using Theorem I.4,

we obtain an almost optimal fractional solution x∗ of LP

relaxation (6)-(10) corresponding to the above integer problem.

Following Calinescu et al. [7], we define the continuous

extension of the objective function (20) for any fractional

solution x′

F (x′) =
∑
S⊆[n]

f(S)
∏
e∈S

x′e
∏
e�∈S

(1− x′e),

i.e. F (x′) is equal to the expected value of the objective

function (20) for the set of edges sampled independently at

random with probabilities x′e, e ∈ E. The function F cannot

be computed exactly, but it can be approximated up to any

factor (1 + ε) via sampling. By Theorem I.5, we get the

bound F (x∗) ≤ Aq · LP ∗, where LP ∗ is the value of the

LP relaxation (6)–(10) on the fractional solution x∗.
The rounding phase of the algorithm implements the pipage

rounding technique [1] adopted to polymatroid polytopes by

Calinescu et al. [7]. Calinescu et al. [7] showed that given

a matroid M and a fractional solution x ∈ B(M), one can

efficiently find two elements, or two edges in our case, e′

and e′′ such that the new fractional solution x̃(ε) defined as

x̃e′(ε) = xe′ + ε, x̃e′′(ε) = xe′′ − ε and x̃e(ε) = xe for

e /∈ {e′, e′′} is feasible in the base polymatroid polytope for

small positive and for small negative values of ε.
They also showed that if the objective function f(S) is sub-

modular then the function of one variable F (x̃(ε)) is convex.

In our case, the objective function f(S) is supermodular which

follows from a more general folklore statement.

Fact II.1. The function f(S) = g(
∑

i∈S wi) is supermodular
if wi ≥ 0 for i ∈ [n] and g(x) is a convex function of one
variable.

Therefore, the function F (x̃(ε)) is concave. Hence, we

can apply the pipage rounding directly: We start with the

fractional solution x∗. At every step, we pick e′ and e′′

(using the algorithm from [7]) and move to x̃(ε) with ε =
ε1 = −min{xe′ , 1 − xe′′} or ε = ε2 = min{1 − xe′ , xe′′}
whichever minimizes the concave function F (x̃(ε)) on the

interval [ε1, ε2]. We stop when the current solution x̃ is

integral.

At every step, we decrease the number of fractional vari-

ables xe by at least 1. Thus, we terminate the algorithm in

at most |E| iterations. The value of the function F (x̃) never

increases. So the cost of the final integral solution is at most

the cost of the initial fractional solution x∗, which, in turn, is

at most Aq · LP ∗.
Note, that we have not used any special properties of graphic

matroids. The algorithm from [7] works for general matroids

accessible through oracle calls. So we can apply our technique

to more general problems where the objective is to minimize

a function like (20) subject to base matroid constraints.

III. PROOF OF THEOREM I.4

We now give an efficient algorithm for finding (1 + ε)
approximately optimal solution to LP (6)-(10).

Proof of Theorem I.4: We first transform our instance

to make all dij’s integral and polynomially bounded in nk/ε.
This can be done using the standard scaling technique: round
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down all dij to be multiples of ε′ = dε/(3kqn), where d =
max dij . By doing so we may decrease the optimal value of

the program by a factor of at most (1+ε). Then, we rescale all

dij by 1/ε′ to make them integral. So, from now on, we will

assume that all dij are integral and polynomially bounded.

Observe that for every y ∈ P , there exists a z such that the

pair (y, z) is a feasible solution to LP (6)-(10). For example,

one such z is defined as zjS =
∏

i∈S yi
∏

i/∈S(1 − yi). Of

course, this particular z may be suboptimal. However, it turns

out, as we show below, that for every y, we can find the

optimal z efficiently. Let us denote the minimal cost of the

j-th term in (6) for a given y ∈ P by Fj(y). That is, Fj(y) is

the cost of the following LP. The variables of the LP are zjS .

The parameters y ∈ P and j ∈ [k] are fixed.

min
∑
S⊆[n]

(∑
i∈S

dij

)qj

zjS (21)

∑
S⊆[n]

zjS = 1 (22)

∑
S:i∈S

zjS = yi, ∀i ∈ [n] (23)

zjS ≥ 0, ∀S ⊆ [n] (24)

Now, LP (6)-(10) can be equivalently rewritten as (below y is

the variable).

min
∑
j∈[k]

Fj(y) (25)

y ∈ P (26)

The functions Fj(y) are convex2. In Lemma III.1 (see below),

we prove that LP (21)-(24) can be solved in polynomial time,

and thus the functions Fj(y) can be computed efficiently. The

algorithm for finding Fj(y) also returns a subgradient of Fj

at y. Hence, the minimum of convex problem (25)-(26) can

be found using the ellipsoid method. Once the optimal y∗ is

found, we find z∗ by solving LP (21)-(24) for y∗.

Lemma III.1. There exists a polynomial time algorithm for
computing Fj and finding a subgradient of Fj .

Proof: We need to solve LP (21)-(24). We write the dual

LP. We introduce a variable ξ for constraint (22) and variables

ηi for constraints (23).

max ξ +
∑
i

ηiyi (27)

ξ +
∑
i∈S

ηi ≤
(∑

i∈S
dij

)qj
, ∀S ⊂ [n] (28)

The LP has exponentially many constraints. However, finding

a violated constraint is easy. To do so, we guess B∗ =∑
i∈S∗ dij for the set S∗ violating the constraint. That is

2If z∗ and z∗∗ are the optimal solutions for vectors y∗ and y∗∗, then
λz∗ + (1 − λ)z∗∗ is a feasible solution for λy∗ + (1 − λ)y∗∗. Hence,
Fj(λy

∗ + (1− λ)y∗∗) ≤ λFj(y
∗) + (1− λ)Fj(y

∗∗). See the full version
of the paper for more details.

possible, since all dij are polynomially bounded, and so is

B∗. Then we solve the maximum knapsack problem

max
S⊆[n]

∑
i∈S

ηi

∑
i∈S

dij = B∗

using the standard dynamic programming algorithm and obtain

the optimal set S. The knapsack problem is polynomially

solvable, since B∗ is polynomially bounded. If ξ+
∑

i∈S ηi ≤
(B∗)qj , then constraint (28) is violated for the set S; otherwise

all constraints (28) are satisfied.

Let (ξ∗, η∗) be the optimal solution of the dual LP. The

value of the function Fj(y) equals the objective value of the

dual LP. A subgradient of Fj at y is given by the equation

ỹ 
→ ξ∗ +
∑
i

η∗i ỹi. (29)

This is a subgradient of Fj , since (ξ∗, η∗) is a feasible solution

of the dual LP for every ỹ (note that constraint (28) does not

depend on y), and, hence, (29) is a lower bound on Fj(ỹ).

IV. PROOF OF THEOREM I.5

In this section, we prove the main theorem – Theorem I.5.

Proof of Theorem I.5: The theorem easily follows from

the decoupling inequality (Theorem I.2 and Corollary VI.2).

Consider a feasible solution (y∗, z∗) to IP (3)-(5). We prove

inequality (11) term by term. That is, for every j we show

that

E

[( ∑
i∈Dj

dijRi(y
∗)
)qj] ≤ Aqj

∑
S⊆[n]

⎛
⎝ ∑

i∈S∩Dj

dij

⎞
⎠

qj

z∗jS .

(30)

Recall that Dj = {i : dij �= 0}. Above, we dropped terms

with i /∈ Dj , since if i /∈ Dj , then dij = 0.

Fix a j ∈ [n]. Define random variables Yi for i ∈ Dj as

follows: Pick a random set S ⊂ [n] with probability zjS , and

let Yi = dij if i ∈ S, and Yi = 0 otherwise. Note that random

variables Yi are dependent. We have

Pr(Yi = dij) =
∑
S:i∈S

Pr(S) =
∑
S:i∈S

z∗jS = y∗i .

It is easy to see that

E

[( ∑
i∈[n]

Yi

)qj]
=

∑
S⊆[n]

(∑
i∈S

dij

)qj
zjS .

The right hand side is simply the definition of the expectation

on the left hand side. Now, let Xi = dij Ri(y
∗) for i ∈ Dj .

Note that by conditions of the theorem, Pr(Xi = dij) =
y∗i = Pr(Yi = dij) (by condition (1)). Thus, each Xi has

the same distribution as Yi. Furthermore, Xi’s are independent

or negatively associated (by condition (2)). Therefore, we can

apply the decoupling inequality

E

[( ∑
i∈Dj

Xi

)qj] ≤ AqjE

[( ∑
i∈Dj

Yi

)qj]
.
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The left hand side of the inequality equals the left hand side

of (30), the right hand side of the inequality equals the right

hand side of (30). Hence, inequality (30) holds.

V. DECOUPLING INEQUALITY

In this section, we prove the decoupling inequality (Theo-

rem I.2) with the optimal constant Cq = A
1/q
q .

Theorem I.2. Let Y1, . . . , Yn be jointly distributed nonnegative
(non-independent) random variables, and let X1, . . . , Xn be
independent random variables such that each Xi has the same
distribution as Yi. Then, for every q ≥ 1,

∥∥ n∑
i=1

Xi

∥∥
q
≤ A

1/q
q

∥∥ n∑
i=1

Yi
∥∥
q
,

where Aq is the fractional Bell number which equals the q-
th moment of the Poisson random variable with parameter 1
(see (1)). The constant A

1/q
q is the optimal constant.

Proof: We first show that we cannot replace Aq with

a smaller constant. Consider the following example. Let

Y
(n)
i , i ∈ [n] be random variables taking value 1 with probabil-

ity 1/n, and 0 with probability 1−1/n. We generate Y
(n)
i ’s as

follows. We pick a random j ∈ [n] and let Yj = 1 and Yi = 0

for i �= j. Random variables X
(n)
i are i.i.d. Bernoulli random

variables with E[X
(n)
i ] = 1/n. Then, the sum

∑n
i=1 Y

(n)
i

always equals 1, and ‖∑n
i=1 Y

(n)
i ‖q = 1. As n → ∞, the

sum
∑n

i=1X
(n)
i converges in distribution to a Poisson random

variable with parameter 1. Thus, ‖∑n
i=1X

(n)
i ‖q → A

1/q
q , and,

hence, the constant A
1/q
q cannot be improved.

Our proof is motivated by the example above. We prove the

result for discrete finite random variables. The general case

can be obtained using a standard argument by approximating

random variables Y1, . . . , Yn with discrete random variables3.

Consider the finite probability space (Ω,Pr) on which

the random variables Y1, . . . Yn are defined. Without loss of

generality we may assume that Ω = Y1 × · · · × Yn, where Yi

is the range of the random variable Yi. Then every elementary

event is a vector ω = (y1, . . . , yn) ∈ Y1 × · · · × Yn. The

probability of the event ω = (y1, . . . , yn) equals

Pr(ω) = Pr(Y1 = y1, . . . , Yn = yn).

Let fi(ω) be the i-th coordinate of ω (or, more generally, the

value the random variable Yi takes when the elementary event

ω ∈ Ω occurs).

Let χω be the indicator random variable of the event

ω. Then,
∑n

i=1 Yi =
∑

ω∈Ω
∑n

i=1 χωfi(ω). Each random

variable χω is a Bernoulli random variable with parameter

Pr(ω) i.e. Pr(χω = 1) = Pr(ω). The random variables χω

are dependent: one and only one χω equals 1 for any random

outcome. As in the example above, we want to replace χω’s

3In this paper, we only use the discrete version of this inequality.

with independent copies ψω and, then, show that

∥∥ ∑
ω∈Ω

ψω

n∑
i=1

fi(ω)
∥∥
q
≤ A1/qq

∥∥ ∑
ω∈Ω

χω

n∑
i=1

fi(ω)
∥∥
q

≡ ∥∥ n∑
i=1

Yi
∥∥
q
.

For technical reasons, we consider Poisson random variable

instead of Bernoulli random variables. For each ω ∈ Ω, we

define n+1 independent random variables P i
ω, i ∈ [n] and Pω

on a new probability space Ω′. Each P i
ω and Pω is a Poisson

random variable with parameter λω = Pr(ω). Then, E[P i
ω] =

E[Pω] = Pr(ω).
We prove the following inequalities that imply the theorem.

1.
∥∥ n∑

i=1

Xi

∥∥
q
≤ ∥∥ ∑

ω∈Ω

n∑
i=1

fi(ω)P
i
ω

∥∥
q
;

2. ‖
∑
ω∈Ω

n∑
i=1

fi(ω)P
i
ω

∥∥
q
≤ ‖

∑
ω∈Ω

n∑
i=1

fi(ω)Pω

∥∥
q
;

3. ‖
∑
ω∈Ω

n∑
i=1

fi(ω)Pω

∥∥
q
≤ A1/qq ‖

n∑
i=1

Yi
∥∥
q
.

We split the proof into three main lemmas.

Lemma V.1. Inequality 1 holds.

Proof: We prove by induction on n the following inequal-

ity: for every B ≥ 0,

∥∥B +

n∑
i=1

Xi

∥∥
q
≤ ∥∥B +

∑
ω∈Ω

n∑
i=1

fi(ω)P
i
ω

∥∥
q
.

For n = 0 this inequality trivially holds. For n ≥ 1, we write

∥∥B +
n∑

i=1

Xi

∥∥q

q
= E

[(
B +

n∑
i=1

Xi

)q]

= EXn
E

[(
(B +Xn) +

n−1∑
i=1

Xi

)q | Xn

]

≤ EXn
E

[(
(B +Xn) +

n−1∑
i=1

∑
ω∈Ω

fi(ω)P
i
ω

)q | Xn

]

= E

[(
(B +Xn) +

n−1∑
i=1

∑
ω∈Ω

fi(ω)P
i
ω

)q]
.

Here, we used the inductive hypothesis with B∗ = B +Xn.

Let

Sn−1 =
n−1∑
i=1

∑
ω∈Ω

fi(ω)P
i
ω.

We need to show that

E

[(
B + Sn−1 +Xn

)q] ≤ E

[(
B + Sn−1 +

∑
ω∈Ω

fn(ω)P
n
ω

)q]
.

We condition on Sn−1 and prove that this inequality holds for

every fixed value S′n−1 of the random variable Sn−1. Note

that Xn and Pn
ω are independent from Sn−1. Let B◦ = B +
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S′n−1. Since Xn and Yn are identically distributed, we can

replace Xn with Yn. Thus, the inequality above follows from

the inequality

E

[(
B◦ + Yn

)q] ≤ E

[
(B◦ +

∑
ω∈Ω

fn(ω)P
n
ω

)q]
.

Define a linear function l : R
Ω → R and a non-linear

function g : RΩ → R as follows: for v ∈ R
Ω (the coordinates

of v are indexed by ω ∈ Ω),

l(v) = Bq
◦ +

∑
ω∈Ω

(
(fn(ω) +B◦)q −Bq

◦
)
vω;

g(v) = (B◦ +
∑
ω∈Ω

fn(ω)vω)
q.

Note that if exactly one coordinate of v equals 1, and all

other coordinates equal 0, then l(v) = g(v). By Lemma V.2

(see below), if all coordinates of v are nonnegative integers

then g(v) ≥ l(v). Let χω be the indicator random variable

of the elementary event ω; and χ ∈ R
Ω be the vector with

coordinates χω . Observe that for any random outcome, exactly

one coordinate of χ equals 1. Hence, l(v) = g(v). Then,

(B◦ + Yn)
q ≡ (B◦ +

∑
ω∈Ω

fn(ω)χω)
q = g(χ) = l(χ).

For χ = (χω) and Pn = (Pn
ω ), we have

E

[(
B◦ +Xn

)q]
= E

[(
B◦ + Yn

)q]
= E

[
l(χ)

]
= l(E[χ]);

and

E

[(
B◦ +

∑
ω∈Ω

fn(ω)P
n
ω

)q]
= E[g(Pn)] ≥ E[l(Pn)]

= l(E[Pn]).

However, E[χω] = Pr(ω) = E[Pn
ω ]. Hence, E[χ] = E[Pn],

and

E

[(
B◦ +Xn

)q] ≤ E

[(
B◦ +

∑
ω∈Ω

fn(ω)P
n
ω

)q]
.

This finishes the proof.

Lemma V.2. If all coordinates of v are nonnegative integers
then g(v) ≥ l(v).

Proof: Suppose that g(v) ≥ l(v) for some v. Fix a coordi-

nate ω∗ ∈ Ω, and let ṽω = vω for ω �= ω∗ and ṽω∗ = vω∗ +1.

That is, ṽ alters from v only in the coordinate ω∗. We show that

g(ṽ) ≥ l(ṽ). Consider the function h(t) = (t+ fn(ω
∗))q− tq .

This function is increasing for t ≥ 0:

h′(t) =
(
(t+ fn(ω

∗))q − tq)′
= q

(
(t+ fn(ω

∗))q−1 − tq−1) > 0.

We have

g(ṽ)− g(v) = h
(
B◦ +

∑
ω∈Ω

fn(ω)vω
) ≥ h(B◦)

= (B◦ + fn(ω
∗))q −Bq

◦ = l(ṽ)− l(v).
Hence, g(ṽ) ≥ l(ṽ).

For the zero vector v = 0, g(v) = l(v). We can reach any

nonnegative integer vector v, if we start from the zero vector

and increment by 1 one coordinate at a time. Thus, g(v) ≥ l(v)
for all nonnegative integer vectors v.

Lemma V.3. Inequality 2 holds.

We prove a slightly more general statement.

Lemma V.4. Let P i
j , Pj be independent nonnegative random

variables (for i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}), let f ij be a
sequence of nonnegative real numbers; and let B ∈ R

+ be a
nonnegative real number. Suppose that each P i

j has the same
distribution as Pj and q ≥ 1. Then

E

[(
B +

m∑
j=1

n∑
i=1

f ijP
i
j

)q]
≤ E

[(
B +

m∑
j=1

n∑
i=1

f ijPj

)q]
.

To get Lemma V.3 we apply Lemma V.4 with f ij = fi(ωj),
P i
j = P i

ωj
, B = 0, where ω1, . . . , ωm is an arbitrary ordering

of elementary events in Ω.

Proof: We prove Lemma V.4 by induction on m. For

m = 0, the inequality trivially holds. Denote Fj =
∑n

i=1 f
i
j .

We need to prove that

E

[(
B +

m∑
j=1

n∑
i=1

f ijP
i
j

)q]
≤ E

[(
B +

m∑
j=1

FjPj

)q]
.

Write

E

[(
B +

m∑
j=1

n∑
i=1

f ijP
i
j

)q]
=

= EE

[((
B +

n∑
i=1

f imP
i
m

)
+

m−1∑
j=1

n∑
i=1

f ijP
i
j

)q

| P 1
m, . . . , P

n
m

]

≤ EE

[((
B +

n∑
i=1

f imP
i
m

)
+

m−1∑
j=1

FjPj

)q

| P 1
m, . . . , P

n
m

]

= E

[((
B +

n∑
i=1

f imP
i
m

)
+

m−1∑
j=1

FjPj

)q]
.

Here, we used the inductive hypothesis with B∗ =
(
B +∑n

i=1 f
i
mP

i
m

)
. Denote by B◦ the random variable B +∑m−1

j=1 FjPj . Then,

E

[(
B +

m∑
j=1

n∑
i=1

f ijP
i
j

)q]
≤ E

[(
B◦ +

n∑
i=1

f imP
i
m

)q]
.

Using convexity of the function t 
→ tq for q ≥ 1, we get

(
B◦ +

n∑
i=1

f imP
i
m

)q

=
( n∑

i=1

f im
Fm

(
B◦ + FmP

i
m

))q

≤
n∑

i=1

f im
Fm

(
B◦ + FmP

i
m

)q

.
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Each term (B◦+FmP
i
m) is distributed as (B◦+FmPm), hence

E[(B◦ + FmP
i
m)

q] = E[(B◦ + FmPm)
q], and

E

[(
B +

m∑
j=1

n∑
i=1

f ijP
i
j

)q]
≤ E

[(
B◦ +

n∑
i=1

f imPm

)q]

≤
n∑

i=1

f im
Fm

E
[
(B◦ + FmP

i
m)

q
]

= E
[
(B◦ + FmPm)

q
]

= E

[(
B +

m∑
j=1

FjPj

)q]
.

This concludes the proof.

Lemma V.5. Inequality 3 holds.

Proof: Let

P =
∑
ω∈Ω

Pω.

The random variable P has the Poisson distribution with pa-

rameter 1, since random variables Pω, ω ∈ Ω, are independent

and
∑

ω E[Pω] =
∑

ω Pr(ω) = 1. We have

∥∥ ∑
ω∈Ω

n∑
i=1

fi(ω)Pω

∥∥q

q
= E

[( ∑
ω∈Ω

n∑
i=1

fi(ω)Pω

)q]
(31)

=
∞∑
k=1

E

[( ∑
ω∈Ω

n∑
i=1

fi(ω)Pω

)q

| P = k
]
· Pr(P = k)

=
∞∑
k=1

E

[( ∑
ω∈Ω

n∑
i=1

fi(ω)
Pω

k

)q

| P = k
]
· (kq · Pr(P = k)

).

Using convexity of the function t 
→ tq for q ≥ 1, we upper

bound each term in the sum as follows:

E

[( ∑
ω∈Ω

n∑
i=1

fi(ω)
Pω

k

)q

| P = k
]
≤

≤ E

[ ∑
ω∈Ω

Pω

k

( n∑
i=1

fi(ω)
)q

| P = k
]

=
∑
ω∈Ω

E

[Pω

k
| P = k

]
·
( n∑

i=1

fi(ω)
)q

.

We observe that E[Pω | P = k] = k Pr(ω), which follows

from the following well known fact (see e.g., Feller [14],

Section IX.9, Problem 6(b), p. 237).

Fact V.6. Suppose P1 and P2 are independent Poisson random
variables with parameters λ1 and λ2. Then, for every k ∈ N,

E
[
P1 | P1 + P2 = k

]
=

λ1
λ1 + λ2

k.

In our case, P1 = Pω , P2 =
∑

ω′ �=ω Pω′ , P1 + P2 = P .

Therefore, we have

E

[( ∑
ω∈Ω

n∑
i=1

fi(ω)
Pω

k

)q

| P = k
]
≤

∑
ω∈Ω

Pr(ω)
( n∑

i=1

fi(ω)
)q .

Plugging this inequality in (31), we obtain the desired bound

∥∥ ∑
ω∈Ω

n∑
i=1

fi(ω)Pω

∥∥q

q
≤

≤
∑
ω∈Ω

Pr(ω)
( n∑

i=1

fi(ω)
)q

·
∞∑
k=1

kq · Pr(P = k)

= E

[( n∑
i=1

Yi
)q] · E[P q

]
=

∥∥ n∑
i=1

Yi
∥∥q

q
· ‖P‖qq.

VI. NEGATIVELY ASSOCIATED RANDOM VARIABLES

The decoupling inequality (2) can be extended to negatively
associated random variables X1, . . . , Xn. The notion of neg-

ative association is defined as follows.

Definition VI.1 (Joag-Dev and Proschan [21]). Random vari-
ables X1, . . . , Xn are negatively associated if for all disjoint
sets I, J ⊂ [n] and all non-decreasing functions f : RI → R

and g : RJ → R the following inequality holds:

E [f(Xi, i ∈ I) · g(Xj , j ∈ J)] ≤
≤ E [f(Xi, i ∈ I)] · E [g(Xj , j ∈ J)] .

Shao [31] showed that if X1, . . . , Xn are negatively as-

sociated random variables, and X∗1 , . . . , X
∗
n are independent

random variables such that each X∗i is distributed as Xi, then

for every convex function h : R→ R,

E [h(X1 + · · ·+Xn)] ≤ E [h(X∗1 + · · ·+X∗n)] .

As an immediate corollary, for h(x) = xq (where q ≥ 1), we

have ∥∥ n∑
i=1

Xi

∥∥
q
≤ ∥∥ n∑

i=1

X∗i
∥∥
q
.

Therefore, the following corollary of Theorem I.2 holds.

Corollary VI.2. Let Y1, . . . , Yn be jointly distributed nonneg-
ative (non-independent) random variables, and let X1, . . . , Xn

be negatively associated random variables such that each Xi

has the same distribution as Yi. Then, for every q ≥ 1,

∥∥ n∑
i=1

Xi

∥∥
q
≤ A

1/q
q

∥∥ n∑
i=1

Yi
∥∥
q
,

where Aq is the fractional Bell number.

VII. GENERALIZATIONS

We can extend our results to a more general class of

objective functions. Using our framework, we can solve com-

binatorial optimization problems with the objective function∑
j∈[k]

fj
( ∑
i∈[n]

dijyi
)
, (32)

where fj’s are arbitrary increasing convex functions satisfying

fj(0) = 0. In this case, the approximation ratio equals

A{f} = E[a{f}(P1)], where P1 is a Poisson random variable
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with parameter 1, and the function a{f}(t) is defined as

a{f}(t) = max{fj(tx)/fj(x) : x > 0, j ∈ [k]} for t ∈ N.

Note, that for f(s) = csq , af (t) = tq in Theorem I.2.

Similarly, we can solve maximization problems with the

objective function (32) if fj’s are arbitrary non-decreasing

concave functions satisfying fj(0) = 0. The approxima-

tion ratio equals B{f} = E[b{f}(P1)], where b{f}(t) =
min{fj(tx)/fj(x) : x > 0, j ∈ [k]} for t ∈ N. It is

not hard to see that B{f} ≥ (e − 1)/e. Indeed, in the

worst case, b{f}(t) = 1 for t ≥ 1 and b{f}(t) = 0 for

t = 0, then E[b{f}(P1)] = Pr(P1 ≥ 1) = 1 − 1/e. This

happens e.g., for the function f(s) = min{s, 1}. Note that the

approximation ratio of (e − 1)/e ≈ 0.632 for maximization

problems of this form was previously known (see Calinescu

et al. [7]). However, for some concave functions f we get a

better approximation. For example, for f(s) =
√
s, we get an

approximation ratio of B√s ≈ 0.773.
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APPENDIX A

FIGURES

q = 1 1.25 1.5 1.75 2

Aq = 1 1.163 1.373 1.645 2

Fig. 1. The values of Aq for some q ∈ [1, 2]. All values are rounded up to
three decimal places.
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Fig. 2. Graph of Aq for q ∈ [1, 2]. Note that the function q �→ Aq is convex; A1 = 1 and A2 = 2. Thus, Aq ≤ q for q ∈ [1, 2].
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Fig. 3. Approximation factor of our algorithm for Load Balancing on Unrelated Parallel Machines – A
1/q
q – is plotted in red (below). Approximation factor

of the algorithm due to Kumar, Marathe, Parthasarathy and Srinivasan [22] – 21/q – is plotted in blue (above). The function A
1/q
q can be well approximated

by the linear function 1 + (
√
2− 1)(q − 1) in the interval q ∈ [1, 2].
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