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Abstract—We present the first single pass algorithm for
computing spectral sparsifiers of graphs in the dynamic semi-
streaming model. Given a single pass over a stream containing
insertions and deletions of edges to a graph G, our algorithm
maintains a randomized linear sketch of the incidence matrix
into dimension O( 1

ε2
n polylog(n)). Using this sketch, the al-

gorithm can output a (1± ε) spectral sparsifier for the graph
with high probability.

While O( 1
ε2
n polylog(n)) space algorithms are known for

computing cut sparsifiers in dynamic streams [1], [2], and
spectral sparsifiers in insertion-only streams [3], prior to our
work, the best known single pass algorithm for maintaining
spectral sparsifiers in dynamic streams required sketches of
dimension Ω( 1

ε2
n5/3) [4].

To achieve our result, we show that, using a coarse sparsifier
of G and a linear sketch of G’s incidence matrix, it is possible
to sample edges by effective resistance, obtaining a spectral
sparsifier of arbitrary precision. Sampling from the sketch
requires a novel application of �2/�2 sparse recovery, a natural
extension of the �0 methods used for cut sparsifiers in [1].
Recent work of [5] on row sampling for matrix approximation
gives a recursive approach for obtaining the required coarse
sparsifiers.

Under certain restrictions, our approach also extends to the
problem of maintaining a spectral approximation for a general
matrix A�A given a stream of updates to rows in A.

Keywords-streaming; sketching; spectral sparsification;
sparse recovery; dimensionality reduction

I. INTRODUCTION

A. The Dynamic Semi-Streaming Model

When processing massive graph datasets arising from

social networks, web topologies, or interaction graphs, com-

putation may be as limited by space as it is by runtime. To

cope with this issue, one might hope to apply techniques

from the streaming model of computation, which restricts

algorithms to few passes over the input and space polyloga-

rithmic in the input size. Streaming algorithms have been

studied extensively in various application domains – see

[6] for an overview. However, the model has proven too

restrictive for many graph algorithms. For example, testing

s− t connectivity requires Ω(n) space [7].

Thus, the less restrictive semi-streaming model, in which

the algorithm is allowed Õ(n) space [8], has received sig-

nificant attention in recent years. In this model, a processor

receives a stream of edges over a fixed set of n nodes.

Ideally, the processor should only have to perform a single

pass (or few passes) over the edge stream, and the processing

time per edge, as well as the time required to output the final

answer, should be small.

In the dynamic semi-streaming model, the graph stream

may include both edge insertions and deletions [9]. This

extension captures the fact that large graphs are unlikely to

be static. Dynamic semi-streaming algorithms allow us to

quickly process general updates in the form of edge inser-

tions and deletions to maintain a small-space representation

of the graph from which we can later compute a result.

Sometimes the dynamic model is referred to as the insertion-
deletion model, in contrast to the more restrictive insertion-
only model.

Work on semi-streaming algorithms in both the dynamic

and insertion-only settings is extensive. Researchers have

tackled connectivity, bipartiteness, minimum spanning trees,

maximal matchings, and spanners among other problems [1],

[8]–[11]. In [12], McGregor surveys much of this progress

and provides a more complete list of citations.

B. Streaming Sparsification

First introduced by Benczúr and Karger [13], a cut
sparsifier of a graph G is a weighted subgraph with

only O( 1
ε2n polylog(n)) edges that preserves the total edge

weight over every cut in G to within a (1± ε) multiplicative

factor. Cut sparsifiers can be used to compute approxima-

tions for minimum cut, sparsest cut, maximum flow, and a

variety of other problems. In [14], Spielman and Teng intro-

duce the stronger spectral sparsifier, a weighted subgraph

whose Laplacian spectrally approximates the Laplacian of

G. In addition to maintaining the cut approximation of

Benczúr and Karger, spectral sparsifiers can be used to

approximately solve linear systems over the Laplacian of G,

and to approximate effective resistances, spectral clusterings,

random walk properties, and a variety of other computations.

The problem of computing graph sparsifiers in the stream-

ing model has received a lot of attention. Ahn and Guha give

the first single pass, insertion-only algorithm for cut sparsi-

fiers [15]. Kelner and Levin give a single pass, insertion-only

algorithm for spectral sparsifiers [3]. This algorithm stores

a sparse graph: edges are added as they are streamed in

and, when the graph grows too large, it is resparsified. The

construction is very clean, but inherently does not extend

to the dynamic model since, to handle edge deletions, we
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need more information than just a sparsifier itself. Edges

eliminated to create an intermediate sparsifier may become

critically important later if other edges are deleted, so we

need to maintain information that allows recovery of such

edges.

Ahn, Guha, and McGregor make a very important insight

in [9], demonstrating the power of linear graph sketches in

the dynamic model. They present the first dynamic algo-

rithm for cut sparsifiers, which initially required O( 1
ε2n

1+γ)
space and O(1/γ) passes over the graph stream. How-

ever, the result was later improved to a single pass and

O( 1
ε2n polylog(n)) space [1], [2]. Our algorithm extends

the sketching and sampling approaches from these papers to

the spectral problem.

In [4], the authors show that linear graph sketches that

capture connectivity information can be used to coarsely

approximate spectral properties and they obtain spectral

sparsifiers using O( 1
ε2n

5/3 polylog(n)) space in the dy-

namic setting. However, they also show that their coarse

approximations are tight, so a new approach is required

to obtain spectral sparsifiers using just O( 1
ε2n polylog(n))

space. They conjecture that a dynamic algorithm for doing

so exists. The development of such an algorithm is also

posed as an open question in [12]. A two-pass algorithm for

constructing a spectral sparsifier in the dynamic streaming

model using O
(

1
ε2n

1+o(1)
)

space is presented in [16]. The

approach is very different from ours: it leverages a reduction

from spanner constructions to spectral sparsification pre-

sented in [17]. It is not known if this approach extends to a

space efficient single pass algorithm.

C. Our Contribution

Our main result is an algorithm for maintaining a small

graph sketch from which we can recover a spectral sparsifier.

For simplicity, we present the algorithm in the case of

unweighted graphs. However, in Section VI, we show that it

is easily extended to weighted graphs, as long as an edge’s

weight is specified when it is deleted. This model matches

what is standard for dynamic cut sparsifiers [1], [2].

Theorem 1 (Main Result). There exists an algorithm that,
for any ε > 0, processes a list of edge insertions and
deletions for an unweighted graph G in a single pass
and maintains a set of linear sketches of this input in
O
(

1
ε2n polylog(n)

)
space. From these sketches, it is pos-

sible to recover, with high probability, a weighted subgraph
H with O( 1

ε2n log n) edges such that H is a (1 ± ε)
spectral sparsifier of G. The algorithm recovers H in
O
(

1
ε2n

2 polylog(n)
)

time.

It is well known that independently sampling edges from

a graph G according to their effective resistances gives a

(1 ± ε) spectral sparsifier of G with O( 1
ε2n log n) edges

[18]. We can ‘refine’ any coarse sparsifier for G by using it

to approximate effective resistances and then resample edges

according to these approximate resistances. We show how to

perform this refinement in the streaming setting, extending

graph sketching techniques initially used for cut sparsifiers

([1], [2]) and introducing a new sampling technique based

on an �2 heavy hitters algorithm. Our refinement procedure

is combined with a clever recursive method for obtaining a

coarse sparsifier introduced by Miller and Peng in a preprint

of a recent paper on iterative row sampling for matrix

approximation [5].

The fact that our algorithm maintains a linear sketch of

the streamed graph allows for the simple handling of edge

deletions, which are treated as negative edge insertions. Ad-

ditionally, due to their linearity, our sketches are composable

- sketches of subgraphs can simply be added to produce a

sketch of the full graph. Thus, our techniques are directly

applicable in distributed settings where separate procesors

hold different subgraphs or each processes different edge

substreams.

Our application of linear sketching also gives a nice in-

formation theoretic result on graph compression. A spectral

sparsifier is a powerful compression for a graph. It maintains,

up to an ε factor, all spectral information about the Laplacian

using just O( 1
ε2n log n) space. At first glance, it may seem

that such a compression requires careful analysis of the input

graph to determine what information to keep and what to dis-

card. However, the non-adaptive linear sketches used in our

algorithm are completely oblivious: at each edge insertion or

deletion, we do not need to examine the current compression

at all to make the appropriate update. As in sparse recovery

or dimensionality reduction, we essentially just multiply

the vertex edge incidence matrix by a random projection

matrix, decreasing its height drastically in the process.

Nevertheless, the oblivious compression obtained holds as

much information as a spectral sparsifier - in fact, we show

how to extract a spectral sparsifier from it! Furthermore, the

compression is only larger than O( 1
ε2n log n) by log factors.

Our result is the first of this kind in the spectral domain. The

only other streaming algorithm for spectral sparsification that

uses O( 1
ε2n polylog(n)) space is distinctly non-oblivious [3]

and oblivious subspace embeddings for compressing general

matrices inherently require Ω(n2) space, even when the

matrix is sparse (as in the case of an edge vertex incidence

matrix) [19], [20].

Finally, it can be noted that our proofs rely very little on

the fact that our data stream represents a graph. We show

that, with a few modifications, given a stream of row updates

for a general structured matrix A, it is possible to maintain

a O( 1
ε2n polylog(n)) sized sketch from which a spectral

approximation to A�A can be recovered. By structured, we

mean any matrix whose rows are selected from some fixed

dictionary of size poly(n). Spectral graph sparsification is

a special case of this problem: set A to be the vertex edge

incidence matrix of our graph. The dictionary is the set of

all possible
(
n
2

)
edge rows that may appear in A and A�A
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is the graph Laplacian.

D. Road Map

Section II Lay out notation, build linear algebraic founda-

tions for spectral sparsification, and present lemmas for

graph sampling and sparse recovery required by our

algorithm.

Section III Give an overview of our central algorithm,

providing intuition and motivation.

Section IV Present an algorithm of Miller and Peng ([5])

for building a chain of coarse sparsifiers and prove our

main result, assuming a primitive for sampling edges

by effective resistance in the streaming model.

Section V Develop this sampling primitive, our main tech-

nical contribution.

Section VI Show how to extend the algorithm to weighted

graphs.

Section VII Show how to extend the algorithm to general

structured matrices.

Section VIII Remove our assumption of fully independent

hash functions, using a pseudorandom number genera-

tor to achieve a final small space algorithm.

II. NOTATION AND PRELIMINARIES

A. Graph Notation

Let Bn ∈ R
(n2)×n be the vertex edge incidence matrix of

the undirected, unweighted complete graph over n vertices.

be, the row corresponding to edge e = (u, v) contains a 1
in column u, a (−1) in column v, and 0’s elsewhere.

We write the vertex edge incidence matrix of any un-

weighted, undirected graph G(V,E) as B = SBn where

S is an
(
n
2

) × (n2) diagonal matrix with ones at positions

corresponding to edges contained in G and zeros elsewhere.1

The n× n Laplacian matrix of G is given by K = B�B.

B. Spectral Sparsification

For any matrix B ∈ R
m×n, K̃ is a (1 ± ε) spectral

sparsifier of K = B�B if, ∀x ∈ R
n, (1 − ε)x�Kx ≤

x�K̃x ≤ (1 + ε)x�Kx. This condition can also be written

as (1− ε)K � K̃ � (1 + ε)K where C � D indicates that

D − C is positive semidefinite. More succinctly, K̃ ≈ε K
denotes the same condition. We’ll also use the slightly

weaker notation (1 − ε)K �r K̃ �r (1 + ε)K to indicate

that (1−ε)x�Kx ≤ x�K̃x ≤ (1+ε)x�Kx for all x in the

row span of K (which is the same as the row span of B).

If K̃ has the same row span as K this notation is equivalent

to the initial notion of spectral sparsification.

Note that we are giving these definitions for a general

matrix B, but we will often work with a B that is the vertex

edge incidence matrix of a graph G, with K is the graph

Laplacian. We will not always require our approximation K̃

1Typically the rows of B that are all 0 are removed, however we find
this formulation more convenient for our purposes.

to be the graph Laplacian of a weighted subgraph, which is a

standard assumption. For this reason, we avoid the standard

LG notation for the Laplacian. For our purposes, K̃ will

always be a sparse symmetric diagonally dominant matrix,

containing no more than O(n log n) non-zero entries. In fact,

it will always be the Laplacian of a sparse subgraph, but pos-

sibly with weight added to its diagonal entries. Furthermore,

the final approximation returned by our streaming algorithm

will be a bonafide spectral graph sparsifier - the Laplacian

matrix of a weighted subgraph of G.

C. Leverage Scores and Row Sampling

For any B ∈ R
m×n with rank r, let K+ denote the

Moore-Penrose pseudoinverse of K = B�B. Consider

the reduced singular value decomposition, B = UΣV�.

U ∈ R
m×r and V ∈ R

n×r have orthonormal columns and

Σ ∈ R
r×r is diagonal and contains the nonzero singular

values of B. K = B�B = VΣU�UΣV� = VΣ2V�. It

follows that:

K+ = V(Σ−1)2V�

The leverage score, τi, for a row bi in B is defined as:

τi
def
= b�

i K
+bi = u�

i ΣV�(VΣ−2V�)VΣui = ‖ui‖22 ≤ 1

The last inequality follows from the fact that every row in a

matrix with orthonormal columns has norm less than 1. In

a graph, τi = riwi, where ri is the effective resistance of

edge i and wi is its weight. Furthermore:

m∑
i=1

τi = tr(BK+B�) = ‖U‖2F = r = rank(B)

It is well known that by sampling the rows of B according

to their leverage scores it is possible to obtain a matrix

B̃ such that K̃ = B̃�B̃ ≈ε K with high probability.

Furthermore, if obtaining exact leverage scores is compu-

tationally difficult, it suffices to sample by upper bounds on

the scores. Typically, rows are sampled with replacement

with probability proportional to their leverage score [18],

[21]. We give an alternative independent sampling procedure

based off the matrix concentration results of [22], which is

more amenable to our application.

Lemma 1 (Spectral Sparsifier via Leverage Score Sam-

pling). Let τ̃ be a vector of m estimated leverage scores
for the rows of B, such that 1 ≥ τ̃i ≥ τi for all i ∈ [m].
For some known constant c, let W1,W2, ...Wc lognε−2 be
diagonal matrices with independently chosen entries such
that Wj(i, i) = 1

τ̃i
with probability τ̃i and Wj(i, i) = 0

otherwise. Letting W̄ = 1
c lognε−2 ·

∑
j Wj then with high

probability,

K̃ = B�W̄B ≈ε K

Furthermore, W̄ has O(‖τ̃‖1 log nε−2) nonzeros with
high probability. That is, if we sample each each row of B

563563



independently with probability τ̃i, reweight selected rows by
1√
τ̃i

, and average over c log nε−2 trials, we obtain a matrix
B̃ = W̄1/2B such that B̃�B̃ = B�W̄B = K̃ ≈ε K and B̃
contains just O(‖τ̃‖1 log nε−2) reweighted rows of B with
high probability.

Lemma 1 follows from a standard Matrix Chernoff bound

– for completeness a proof is included in [23]. We use a

variant of Corollary 5.2 from [22], given by Harvey in [24].

D. Sparse Recovery

We now give a sparse recovery primitive that is used to

sample edges from our linear sketches. We use an �2 heavy

hitters algorithm that, for any vector x, lets us recover from

a small size sketch Φx, the index i and the approximate

value of xi for all i such that xi >
1

O(polylog(n)) ||x||2.

Lemma 2 (�2 Heavy Hitters). For each η > 0, there is
a decoding algorithm D and a distribution on matrices
Φ in R

O(η−2 polylog(N))×N such that, for any x ∈ R
N ,

with probability 1 − N−c over the choice of Φ, given
Φx, the algorithm D returns a vector w such that w has
O(η−2 polylog(N)) non-zeros and satisfies

||x−w||∞ ≤ η||x||2.
with probability 1−N−c. The sketch Φx can be maintained
and decoded in O(η−2 polylog(N)) space.

Note that setting η = ε
C logn for any 0 < ε < 1/2 and

C > 0, guarantees that wi must be a (1± ε) approximation

of xi for any i with xi ≥ 1
C logn‖x‖2. It also guarantees

that we can distinguish using wi whether xi ≥ 1
C logn‖x‖2

or xi <
1

2C logn‖x‖2. Lemma 2 is based on an �2/�2 sparse

recovery result given in [25] – we include the full reduction

in the full version [23].

III. ALGORITHM OVERVIEW

Before providing a formal presentation and proof of our

main result, Theorem 1, we would like to give an informal

overview of the algorithm to provide intuition.

A. Effective Resistances

As explained in Section II-C, spectral sparsifiers can

be generated by sampling edges, i.e. rows of the vertex

edge incidence matrix. For an unweighted graph G, each

edge is sampled independently with probability equal to

its leverage score, τe. After appropriate repetition of the

sampling, we reweight and combine any sampled edges. The

result is a subgraph of G containing, with high probability,

O( 1
ε2n log n) edges and spectrally approximating G.

If we view G as an electrical circuit, with each edge

representing a unit resistor, the leverage score of an edge

e = (i, j) is equivalent to its effective resistance. This value

can be computed by forcing 1 unit of current out of vertex

i and 1 unit of current into vertex j. The resulting voltage

difference between the two vertices is the effective resistance

of e. Qualitatively, if the voltage drop is low, there are many

low resistance (i.e. short) paths between i and j. Thus,

maintaining a direct connection between these vertices is

less critical in approximating G, so e is less likely to be

sampled. Effective resistance can be computed as:

τe = b�
e K

+be

Note that τe can be computed for any pair of vertices,

(i, j), or in other words, for any possible edge in G. We can

evaluate b�
e K

+be even if e is not present in the graph. Thus,

we can reframe our sampling procedure. Instead of just

sampling edges actually in G, imagine we run a sampling

procedure for every possible e. When recombining edges to

form a spectral sparsifier, we separately check whether each

edge e is in G and only insert into the sparsifier if it is.

B. Sampling in the Streaming Model

With this procedure in mind, a sampling method that

works in the streaming setting requires two components.

First, we need to obtain a constant factor approximation to

τe for any e. Known sampling algorithms, including our

Lemma 1, are robust to this level of estimation. Second, we

need to compress our edge insertions and deletions in such

a way that, during post-processing of our sketch, we can

determine whether or not a sampled edge e actually exists

in G.

The first requirement is achieved through the recursive

procedure given in [5]. We will give the overview shortly

but, for now, assume that we have access to a coarse

sparsifier, K̃ ≈1/2 K. Computing b�
e K̃

+be gives a 2 factor

multiplicative approximation of τe for each e. Furthermore,

as long as K̃ has sparsity O(n polylog(n)), the computation

can be done in small space using any nearly linear time

solver for symmetric diagonally dominant linear systems

(e.g. [26]).

Solving part two (determining which edges are actually in

G) is a bit more involved. As a first step, consider writing:

τe = b�
e K

+KK+be = ‖BK+be‖22 = ‖SBnK
+be‖22

Referring to Section II, recall that B = SBn is exactly the

same as a standard vertex edge incidence matrix except that

rows in Bn corresponding to nonexistent edges are zeroed

out instead of removed. Denote xe = SBnK
+be. Each

nonzero entry in xe contains the voltage difference across

some edge (resistor) in G when one unit of current is forced

from i to j.

When e is not in G, the eth entry of xe, xe(e), is

0. However, if e is in G, then xe(e) is τe. Furthermore,

‖xe‖22 = τe. So, if we could access a sketch of xe, could

we determine whether or not e ∈ G using our �2 sparse

recovery primitive?

Not quite - to determine whether an index in xe is

nonzero, the recovery primitive, Lemma 2, requires it to
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account for an O(1/ polylog(n)) fraction of the total �2
norm. Currently, xe(e)/‖xe‖2 =

√
τe, which could be much

smaller than O(1/ log n). However, suppose we had a sketch

of xe with all but τe fraction of edges randomly sampled

out. Then, we would expect ‖xe‖22 ≈ τ2e and, in fact,

we can show that it would equal o (τe log n) with high

probability. Thus, xe(e)/‖xe‖2 = Ω(1/polylog(n)) and

sparse recovery would successfully indicate whether or not

e ∈ G. What’s more, randomly zeroing out edges of xe can

serve as our main sampling routine for edge e. This process

will set xe(e) = 0 with probability (1 − τe), exactly what

we wanted to sample by in the first place.

However, how do we go about sketching every

appropriately sampled xe? Well, consider subsampling

our graph at geometrically decreasing rates, 1/2s

for s ∈ {0, 1, ...O(log n)}. Maintain linear sketches

Π1B1, ...ΠO(logn)BO(logn) of the vertex edge incidence

matrix for every subsampled graph using the �2 sparse

recovery sketch distribution from Lemma 2. When asked

to output a spectral sparsifier, for every possible edge e,

we compute its approximate effective resistance τe using

K̃ and determine a rate 1/2s that approximates τe.

Next, since our sketches are linear, for every edge, we can

just multiply Π1/2sB1/2s on the right by K̃+be. We get:

Π1/2sB1/2sK̃
+be ≈ Π1/2sx

1/2s

e

where x
1/2s

e (e) is xe sampled at rate 1/2s ≈ τe. This sketch

is equivalent to what would be obtained if we had been able

to sketch x
1/2s

e in the first place. Thus, as explained, we can

just use our sparse recovery routine to determine whether or

not e is present. If it is, we have obtained a sample for our

spectral sparsifier!

C. A Chain of Coarse Sparsifiers

The final required component is access to some

sparse K̃ ≈1/2 K. This coarse sparsifier is ob-

tained recursively by constructing a chain of matrices,[
K(0),K(1), . . . ,K(d),K

]
each weakly approximating the

next. Specifically, imagine producing K(d) by adding a

fairly light identity matrix to K. As long as the identity’s

weight is small compared to K’s spectrum, K(d) approx-

imates K. Add even more weight to the diagonal to form

K(d− 1). Again, as long as the increase is small, K(d− 1)
approximates K(d). We continue down the chain until K(0),
which will actually have a heavy diagonal after all the

incremental increases. Thus, K(0) can be approximated by

an appropriately scaled identity matrix, which is clearly

sparse. Miller and Peng show that parameters can be chosen

such that d = O(log n) [5].

Putting everything together, we maintain O(log n)
sketches for

[
K(0),K(1), . . . ,K(d),K

]
. We first use a

weighted identity matrix as a coarse approximation for

K(0), which allows us to recover a good approximation

to K(0) from our sketch. This approximation will in turn

be a coarse approximation for K(1), so we can recover

a good sparsifier of K(1). Continuing up the chain, we

eventually recover a good sparsifier for our final matrix, K.

This approach is formalized in the next section.

IV. RECURSIVE SPARSIFIER CONSTRUCTION

In this section, we describe the recursive procedure for

obtaining a chain of coarse sparsifiers using a technique

introduced by Miller and Peng - “Introduction and Removal

of Artificial Bases” [5]. We then formally prove Theorem

1 by combining this technique with the sampling algorithm

developed in Section V.

Theorem 2 (Recursive Sparsification ([5], Section 4)).
Consider any PSD matrix K with maximum eigenvalue
bounded from above by λu and minimum nonzero eigenvalue
bounded from below by λl. Let d = 
log2(λu/λl)�. For
� ∈ {0, 1, 2, ..., d}, define:

γ(�) = λu/2
�

So, γ(d) ≤ λl and γ(0) = λu. Then the chain of PSD
matrices,

[
K(0),K(1), . . . ,K(d)

]
with:

K(�) = K+ γ(�)In×n

satisfies the following relations:
1) K �r K(d) �r 2K
2) K(�) � K(�− 1) � 2K(�) for all � ∈ {1, . . . , d}
3) K(0) � 2γ(0)I � 2K(0)

When K is the Laplacian of an unweighted graph, λmax <
2n and λmin > 8/n2 (where here λmin is the smallest
nonzero eigenvalue). Thus the length of our chain, d =

log2 λu/λl�, is O(log n).

For completeness, we’ve included a proof of Theorem 2

in the full version of the paper [23]. Now, to prove our

main result, we need to state the sampling primitive for

streams that will be developed in Section V. This procedure

maintains a linear sketch of a vertex edge incidence matrix

B, and using a coarse sparsifier of K(�) = B�B + γ(�)I,
performs independent edge sampling as required by Lemma

1, to obtain a better sparsifier of K(�).

Theorem 3. Let B ∈ R
n×m be the vertex edge incidence

matrix of an unweighted graph G, specified by an insertion-
deletion graph stream. Let γ = O(poly n) be a fixed param-
eter and consider K = B�B+γI. For any 0 < ε < 1, there
exists a sketching procedure MaintainSketches(B, ε)
that outputs an O(n polylog(n)) sized sketch ΠB.

There exists a corresponding recovery algorithm
RefineSparsifier, such that, if K̃ is a spectral
approximation to K with O(n polylog(n)) nonzeros and
cK �r K̃ �r K for some constant 0 < c < 1 then:

RefineSparsifier(ΠB, K̃, γ, ε, c) returns,
with high probability, K̃ε = B̃�

ε B̃ε + γI, where
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(1 − ε)K �r K̃ε �r (1 + ε)K, and B̃ε contains
only O(ε−2c−1n log n) reweighted rows of B with
high probability. RefineSparsifier runs in
O(n2 polylog(n)) time.

Using this primitive, we can initially set K̃ = 2γ(0)I and

use it obtain a sparsifier for K(0) from a linear sketch of

B. This sparsifier can then be used on a second sketch of B
to obtain a sparsifier for K(1), and so on. Working our way

up the chain, we can eventually obtain a sparsifier for our

original K. While sparsifier recovery will proceed in several

levels, we can construct all required sketches in a single pass
over edge insertions and deletions, and all recovery can be

performed in post-processing.

Proof of Theorem 1: Let K be the Laplacian of our

graph G. Process all edge insertions and deletions, using

MaintainSketches to produce a separate sketch, (ΠB)�
for each � ∈ {0, 1, . . . , 
log2 λu/λl�+ 1}.

We can use Theorem 3 to recover an ε approximation,

K̃(�), for any K(�) given an ε approximation for K(�− 1).
First, consider the base case, K(0). Let:

K̃(0) = RefineSparsifier((ΠB)0, γ(0)I, γ(0), ε,
1

2
)

By Theorem 2, Relation 3:

1

2
K(0) � γ(0)I � K(0)

Thus, with high probability, (1 − ε)K(0) �r K̃(0) �r

(1+ ε)K(0) and K̃(0) contains O((1/2)−1 ·n log n · ε−2) =
O(ε−2n log n) entries.

Now, consider the inductive case. Suppose we have some

K̃(�− 1) such that (1− ε)K(�− 1) �r K̃(�− 1) �r (1 +
ε)K(�− 1). Let:

K̃(�) = RefineSparsifier

(
(ΠB)�,

1

2(1 + ε)
K̃(�− 1),

γ(�), ε,
1− ε

2(1 + ε)

)
By Theorem 2, Relation 2:

1

2
K(�) � 1

2
K(�− 1) � K(�)

Furthermore, by assumption we have the inequalities:

1− ε

1 + ε
K(�− 1) �r

1

1 + ε
K̃(�− 1) �r K(�− 1)

Thus:

1− ε

2(1 + ε)
K(�) �r

1

2(1 + ε)
K̃(�− 1) �r K(�)

So, with high probability RefineSparsifier returns

K̃(�) such that (1 − ε)K(�) �r K̃(�) �r (1 +

ε)K(�) and K̃(�) contains just O(( 2(1+ε)
1−ε )2ε−2n log n) =

O(ε−2n log n) nonzero elements. It is important to note that

there is no “compounding of error” in this process. Every

K̃(�) is an ε approximation for K(�). Error from using

K̃(� − 1) instead of K(� − 1) is absorbed by a constant

factor increase in the number of rows sampled from B.

The corresponding increase in sparsity for K(�) does not

compound - in fact Theorem 3 is completely agnostic to the

sparsity of the coarse approximation K̃ used.

Finally, to obtain a bonafide spectral graph sparsifier (a

weighted subgraph of our streamed graph), let:

K̃ = RefineSparsifier

(
(ΠB)d+1,

1

2(1 + ε)
K̃(d),

0, ε,
1− ε

2(1 + ε)

)
As in the inductive case,

1− ε

2(1 + ε)
K �r

1

2(1 + ε)
K̃(d) �r K

Thus, it follows that, with high probability, K̃ has sparsity

O(ε−2n log n) and (1 − ε)K �r K̃ �r (1 + ε)K. Since

we set γ to 0 for this final step, K̃ simply equals B̃�B̃ for

some B̃ that contains reweighted rows of B. Any vector in

the kernel of B is in the kernel of B̃, and thus any vector

in the kernel of K is in the kernel of K̃. Thus, we can

strengthen our approximation to:

(1− ε)K � K̃ � (1 + ε)K

We conclude that K̃ is the Laplacian of some graph H
containing O(ε−2n log n) rescaled edges of G and approxi-

mating G spectrally to precision ε. Finally, note that we only

required d + 1 = O(log n) recovery steps, each running in

O(n2 polylog(n)) time. Thus, the complete recovery time is

O(n2 polylog(n)).

V. STREAMING ROW SAMPLING

In this section, we develop the sparsifier refinement sub-

routine required for the proof of Theorem 1 in Section IV.

Proof of Theorem 3:
Outside of the streaming model, given full access to

B rather than just a sketch ΠB it is easy to implement

RefineSparsifier via leverage score sampling. Letting

⊕ denote appending the rows of one matrix to another, we

can define Bγ = B⊕√γ(�)·I, so K = B�B+γI = B�
γ Bγ .

Since τi = b�
i K

+bi and cK �r K̃ �r K, for any row of

Bγ we have

τi ≤ b�
i K̃

+bi ≤ 1

c
τi.

Let τ̃i = b�
i K̃

+bi be the leverage score of bi approxi-

mated using K̃. Let τ̃ be the vector of approximate leverage

scores, with the leverage scores of the n rows corresponding

to
√
γ(�) · I rounded up to 1. This will include the rows

of the identity with probability 1 in each independent

sampling. While not strictly necessary, doing so simplifies

our analysis in the streaming setting. Using this τ̃ in Lemma
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1, we can obtain K̃ε ≈ε K with high probability. Since

‖τ̃‖1 ≤ 1
c‖τ‖1+n ≤ 1

c · rank(B)+n ≤ n+1
c , we can write

K̃ε = B̃�
ε B̃ε + γI, where B̃ε contains O(ε−2c−1n log n)

reweighted rows of B with high probability.

The challenge in the semi-streaming setting is actually

performing the independent edge sampling given only a

sketch of B. The general idea is explained in our overview

Section III, with detailed pseudocode included below. We

show that each required computation is possible in the dy-

namic semi-streaming model, and then prove the correctness

of the sampling procedure.

Streaming Sparsifier Refinement
MaintainSketches(B, ε):

1) For j ∈ 1, 2, ...c0
1
ε2 log n

a) For s ∈ {1, ...O(log n)} let hs : E → {0, 1}
be a uniform hash function. Let Bs be B with

all rows except those with
∏

j≤s hj(e) = 0
zeroed out. So Bs is B with rows sampled

independently at rate 1
2s . B0 is simply B.

b) Maintain O(log n) sketchs

Π0B0,Π1B1, ...,ΠO(logn)BO(logn) where

{Π0,Π1, ...ΠO(logn)} are drawn from the

distribution from Lemma 2 with η = 1
4c1 logn .

RefineSparsifier(ΠB, K̃, γ, ε, c):

1) For j ∈ 1, 2, ...c0
1
ε2 log n

a) Compute ΠsBsK̃
+ for each s ∈

{0, 1, 2, ...O(log n)}.
b) For each possible edge e:

i) Compute τ̃e = b�
e K̃

+be. Choose s such

that min{1, τ̃e} ≤ 1
2s ≤ 2 ·min{1, τ̃e}.

ii) Compute the vector Πsxe = ΠsBsK̃
+be,

and perform the heavy hitters algorithm of

Lemma 2, recovering with high probability

elements with a ≥ 1
c1 logn fraction of the �2

weight of xe, and throwing out any recov-

ered elements with a < 1
2c1 logn fraction of

the weight.

iii) If xe(e) is recovered set Wj(e, e) = 2s

2) Set W̄ = 1
c0ε−2 logn

∑
j Wj and output K̃ε =

B�W̄B+ γI.

Implementation Details in the Semi-Streaming
Model.: Note that the iterations of main loop of

MaintainSketches can be done simultaneously

in a single pass over the data stream. The sketches

Π0B0, . . . ,ΠO(logn)BO(logn) can be stacked and the

entire O(n polylog(n)) sized compression is output as ΠB.

MaintainSketches requires O(n polylog(n)) space

in total, and can be implemented in the dynamic streaming

model. When an edge insertion comes in, use {hs} to

compute which Bs’s should contain the inserted edge, and

update the corresponding sketches. An edge deletion can be

performed simply by updating the sketches to reflect adding

−be to Bs.

Step 1(a) of RefineSparsifier can also be

implemented in O(n polylog n) space. Since K̃ has

O(n polylog n) nonzeros and since each ΠsBs has

O(polylogn) rows, this step simply requires solving

O(polylogn) linear systems on K̃, which can be per-

formed in O(n polylog n) time by using a nearly linear

time SDD system solver [26]. From this time bound we

immediately know that this computation can be performed

in O(n polylog n) space.

In step 1(b)i. it is always possible to choose an appropriate

s with min{1, τ̃e} ≤ 1
2s ≤ 2 · min{1, τ̃e}. λmax(K) ≤

n+γ = O(poly(n)). So λmin(K̃
+) = Ω(poly(n)) so τ̃e =

Ω(poly(n)) for all e. So such an s always can be found if

we have O(log n) samplings of B.

Finally, with high probability, when running Step 1(b) for

each edge, in total we only ever recover O(n log n) edges

and so can store them in small space.

Correctness: We need to show that, with high prob-

ability, in each round of sampling, this algorithm inde-

pendently samples each row of B with probability τ̂e
where min{1, τ̃e} ≤ τ̂e ≤ 2 · min{1, τ̃e}. Given this fact,

since the algorithm samples the n rows of
√
γ · I with

probability 1, and since τe ≤ min{1, τ̃e} ≤ 1
c τe for all

e, by Lemma 1, with high probability, K̃ε ≈ε K and

K̃ε = BW̄B + γI = B̃�
ε B̃ε + γI, where B̃ε contains

O(ε−2c−1n log n) reweighted rows of B.

In the above algorithm, an edge is only included in K̃ε if

it is included in the sampled matrix Bs(e) where

min{1, τ̃e} ≤ 1

2s(e)
≤ 2 ·min{1, τ̃e}

The probability of be being included in Bs(e) is simply

1/2s(e), and sampling is done independently using uniform

random hash functions. So, as long as we can show that with

high probability, all be are recovered by the sparse recovery

procedure if included in their respective Bs(e), then we are

done.

Let xe = BK̃+be and x
s(e)
e = Bs(e)K̃

+be. If e is not an

edge in the original graph or be is not included in Bs(e) then

x
s(e)
e (e) = 0, so if index e is recovered, it will be discarded.

We need to argue that, if be is in fact included in Bs(e),

with high probability, ‖xs(e)
e ‖2 is not too large, so we are

able to identify x
s(e)
e (e). We have:

xs(e)
e (e) = xe(e) = 1eBK̃+be = b�

e K̃
+be = τ̃e (1)
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Further, we can compute:

‖xe‖2 = b�
e K̃

+B�BK̃+be

≤ b�
e K̃

+B�
γ BγK̃

+be (Since B�B � B�
γ Bγ)

≤ 1

c
· b�

e K̃
+be (Since c

(
B�

γ Bγ

) � K̃)

≤ 1

c
τ̃e

For any edge e′ �= e we define:

τ̃e′,e
def
= xs(e)

e (e′) = 1e′BK̃+be = b�
e′K̃

+be

Lemma 3. τ̃e′,e ≤ τ̃e

Proof: Consider ṽe = K̃+be. When K+ is a graph

Laplacian ṽe can be interpreted as the approximate voltages

induced over each vertex when we treat our edges as

resistors and route one unit of current between the endpoints

of e. Letting e = (u1, u2) and e′ = (u′
1, u

′
2), if we have

|ṽe(u
′
1)− ṽe(u2)

′| ≤ |ṽe(u1)− ṽe(u2)| then:

b�
e′ ṽe = b�

e′K̃
+be ≤ b�

e K̃
+be = b�

e ṽe

So:

τ̃e′,e ≤ τ̃e

Now, K̃ is a weighted graph Laplacian added to a

weighted identity matrix. So it is full rank and diagonally

dominant. So K̃ṽe = K̃K̃+be = be

Since K̃ is diagonally dominant and since be is zero

everywhere except at be(u1) = 1 and be(u2) = −1, it must

be that ṽe(u1) is the maximum value of ṽe and ṽe(u2) is the

minimum value. So |ṽe(u
′
1)− ṽe(u2)

′| ≤ |ṽe(u1)− ṽe(u2)|
and τ̃e′,e ≤ τ̃e.

Now we upper bound the probability that in step (b)ii of

RefineSparsifier we can’t recover edge e from Bs(e)

given that it is included in the sample.

P

(
x
s(e)
e (e)2

‖xs(e)
e ‖2

<
1

c1 · log n

∣∣∣∣∣e ∈ Bs(e)

)

= P

(
‖xs(e)

e ‖2 > c1 log n · τ̃2e
)

= P

(
‖ 1
τ̃e
xs(e)
e ‖2 > c1 log n

)

Note that the vector 1
τ̃e
x
s(e)
e has all entries (and thus all

squared entries) in [0, 1] (by Lemma 3) so we can apply

a Chernoff bound to show concentration for its norm.

Specifically, we will use a common multiplicative bound

[27]:

P(X > (1 + δ)EX) < e−
δ2

2+δ EX (2)

Recall that:

E ‖ 1
τ̃e
xs(e)
e ‖2 =

1

2s(e)
· τ̃e
c
· 1

τ̃2e
≤ 2

c
= Θ(1) (3)

which gives:

P

(
‖ 1
τ̃e
xs(e)
e ‖2 > c1 log n

)

≤ P

(
‖ 1
τ̃e
xs(e)
e ‖2 >

c1c log n

2
E ‖ 1

τ̃e
xs(e)
e ‖2

)
= O(n−Θ(1))

since δ = Θ(logn).
Recall that c is the constant determined by our input

coarse sparsifier and c1 can be chosen by implementing our

sparse recovery routine with a different parameter. If we set

c1 large enough, as long as edge e is included in Bs(e), it is

recovered with high probability. This guarantee holds for all(
n
2

)
possible edges with high probability by a union bound.

So with high probability, our sampling process is exactly

equivalent to independently sampling each edge with prob-

ability 1
2s(e)

where min{1, τ̃e} ≤ 1
2s(e)

≤ 2 ·min{1, τ̃e}. So

our algorithm returns the desired K̃ε with high probability.

VI. SPARSIFICATION OF WEIGHTED GRAPHS

We can use a standard technique to extend our result

to streams of weighted graphs in which an edge’s weight

is specified at deletion, matching what is known for cut

sparsifiers in the dynamic streaming model [1], [2]. Assume

that all edge weights and the desired approximation factor

ε are polynomial in n, then we can consider the binary

representation of each edge’s weight, out to O(log n) bits.

For each bit of precision, we maintain a separate unweighted

graph G0, G1, ...GO(logn). We add each edge to the graphs

corresponding to bits with value one in its binary represen-

tation. When an edge is deleted, its weight is specified, so

we can delete it from these same graphs. We have that: G

=
∑

i 2
i · Gi, so given a (1 ± ε) sparsifier K̃i for each Ki

we have:

(1− ε)
∑
i

2i ·Ki �
∑
i

2i · K̃i � (1 + ε)
∑
i

2i ·Ki

(1− ε)K �
∑
i

2i · K̃i � (1 + ε)K

So
∑

i 2
i · K̃i is a spectral sparsifier for K, the Laplacian

of the weighted graph G.

VII. SPARSIFICATION OF STRUCTURED MATRICES

Here we show that our algorithm can be extended to

handle certain general matrices rather than just graph Lapla-

cians. There were only three places in our analysis where

we used that B was not an arbitrary matrix. First, we needed

that B = SBn, where Bn is the vertex edge incidence

matrix of the unweighted complete graph on n vertices.
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In other words, we assumed that we had some dictionary

matrix Bn whose rows encompass every possible row that

could arrive in the data stream. In addition to this dictionary

assumption, we needed B to be sparse and to have a bounded

condition number in order to achieve our small space re-

sults. These conditions allow our compression to avoid an

Ω(n2 polylog(n)) lower bound for approximately solving

regression on general Rm×n matrices in the streaming model

[28].

As such, to handle the general ‘structured matrix’ case,

we assume that we have some dictionary A ∈ R
m×n

containing rows ai ∈ R
n for each i ∈ [m]. We assume

that m = O(poly(n)). In the dynamic streaming model we

receive insertions and deletions of rows from A resulting

in a matrix A = SA where S ∈ R
m×m is a diagonal

matrix such that Sii ∈ {0, 1} for all i ∈ [m]. Our goal is to

recover an O(n polylog(m)) space compression a diagonal

matrix W with at most O(n log(n)) nonzero entries such

that A�W2A ≈ε ATS2A = A�A. Formally, we prove

the following:

Theorem 4 (Streaming Structured Matrix Sparsification).
Given a row dictionary A ∈ R

m×n containing all possible
rows of the matrix A, there exists an algorithm that, for
any ε > 0, processes a stream of row insertions and
deletions for A in a single pass and maintains a set of
linear sketches of this input in O

(
1
ε2n polylog(m,κu)

)
space where κu is an upper bound on the condition number
of A�A. From these sketches, it is possible to recover, with
high probability, a matrix Ã�Ã such that Ã contains only
O(ε−2n log n) reweighted rows of A and ÃT Ã is a (1± ε)
spectral sparsifier of ATA. The algorithm recovers Ã in
poly(m, ε, n, log κu) time.

Note that, when A, κu = o(poly(n)), the sketch space

is O
(

1
ε2n polylog(n)

)
. To prove Theorem 4, we need to

introduce a more complicated sampling procedure than what

was used for the graph case. In Lemma 3, for the correctness

proof of RefineSparsifier in Section V, we relied

on the structure of our graph Laplacian and vertex edge

incidence matrix to show that τ̃e′,e ≤ τ̃e. This allowed

us to show that the norm of a sampled x
s(e)
e concentrates

around its mean. Thus, we could recover edge e with high

probability if it was in fact included in the sampling Bs(e).

Unfortunately, when processing general matrices, τ̃e is not

necessarily the largest element x
s(e)
e and the concentration

argument falls apart.

We overcome this problem by modifying our algorithm

to compute more sketches. Rather than computing a single

ΠAs, for every sampling rate 1/2s, we compute O(log n)
sketches of different samplings of A at rate 1/2s. Each

sampling is fully independent from the all others, including

those at the same and different rates. This differs from the

graph case, where B1/2s+1 was always a subsampling of

B1/2s (for ease of exposition). Our modified set up lets

us show that, with high probability, the norm of xi
s(i) is

close to its expectation for at least a (1− ε) fraction of the

independent samplings for rate s(i). We can recover row i
if it is present in one of the ‘good’ samplings.

Ultimately, we argue that we can sample rows according

to some distribution that is close to the distribution obtained

by independently sampling rows according to leverage score.

Using this primitive, we proceed as in the previous sections

to prove Theorem 4. We defer the algorithm and the proofs

to the full version of the paper [23] due to space constraints.

VIII. USING A PSEUDORANDOM NUMBER GENERATOR

In the proof of our sketching algorithm, Theorem 3, we

assume that MaintainSketches has access to O(log n)
uniform random hash functions, h1, . . . , hO(logn) mapping

every edge to {0, 1}. These functions are used to subsam-

ple our vertex edge incidence matrix, B, at geometrically

decreasing rates. Storing the functions as described would

require O(n2 log n) space - we need O(log n) random bits

for each possible edge.

To achieve O(n polylog(n)) space, we need to compress

the hash functions using Nisan’s pseudorandom number

generator [29]:

Theorem 5 (Corollary 1 in [29]). Any randomized algorithm
running in space(S) and using R random bits may be
converted to one that uses only O(S logR) random bits (and
runs in space (O(S logR)))

The application of Theorem 5 to our algorithms is not

immediate. Our approach follows an argument in [1] (Sec-

tion 3.4) that was originally introduced in [30] (Section 3.3),

and relies crucially on the fact that our algorithms are based

on linear sketches, i.e. their output does not depend on the

order in which edges are inserted and deleted in the stream.

We defer the details of this argument to the full version of

the paper [23].
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