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Abstract—We give a new and improved proof that
the shrinkage exponent of De Morgan formulae is 2.
Namely, we show that for any Boolean function f :
{0, 1}n → {0, 1}, setting each variable out of x1, . . . , xn

with probability 1 − p to a randomly chosen constant,
reduces the expected formula size of the function by a
factor of O(p2). This result is tight and improves the work
of Håstad [SIAM J. C., 1998] by removing logarithmic
factors.

As a consequence of our results, the function defined by
Andreev [MUMB., 1987], A : {0, 1}n → {0, 1}, which is in
P, has formula size at least Ω( n3

log2 n log3 logn
). This lower

bound is tight (for the function A) up to the log3 log n
factor, and is the best known lower bound for functions
in P. In addition, we strengthen the average-case hardness
result of Komargodski et al.; we show that the functions
defined by Komargodski et al., hr : {0, 1}n → {0, 1},
which are also in P, cannot be computed correctly on
a fraction greater than 1/2 + 2−r of the inputs, by De
Morgan formulae of size at most n3

r2poly logn
, for any

parameter r ≤ n1/3.
The proof relies on a result from quantum query

complexity by Laplante et al. [CC, 2006], Høyer et al.
[STOC, 2007] and Reichardt [SODA, 2011]: for any
Boolean function f , Q2(f) ≤ O(

√
L(f)), where Q2(f)

is the bounded-error quantum query complexity of f , and
L(f) is the minimal size De Morgan formula computing
f .

I. INTRODUCTION

The problem of P vs. NC1 is a major open-

problem in computational complexity. It asks whether

any function computable by a polynomial time Tur-

ing machine can also be computed by a formula of

polynomial size. A De Morgan formula is a binary

tree in which each leaf is labeled with a literal from

{x1, . . . , xn,¬x1, . . . ,¬xn} and each internal node is

labeled with either a Boolean AND or OR gate. Such

a tree naturally describes a Boolean function on n
variables by propagating values from leaves to root,

and returning the root’s value. The formula size is the

number of leaves in the tree; for a Boolean function
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f : {−1, 1}n → {−1, 1} we denote by L(f) the

minimal size formula which computes f .1 Showing

that some language in P requires formulae of super-

polynomial size would imply that P � NC1. 2

Showing super-polynomial formula size lower bounds

for problems in P would be a major breakthrough

in complexity theory, and such lower bounds are not

even known for NEXP. However, lower bounds of

the form Ω(nc), for a fixed constant c, were achieved

during the years for problems in P. This line of re-

search began with the work of Subbotovskaya [1] who

gave an Ω(n1.5) lower bound for the parity function.

Subbotovskaya introduced the technique of random

restrictions in her proof; a method which was applied

successfully to solve other problems such as giving

lower bounds for AC0. Subbotovskaya showed that

the minimal formula size of a given function is shrunk,

on expectation, by a factor of O(p1.5) under p-random
restrictions. These are restrictions to the function vari-

ables keeping each variable “alive” with probability

p (independently of other choices) and fixing it to

a uniformly chosen random bit otherwise. We denote

the distribution of p-random restrictions by Rp; If

ρ ∼ Rp, then f |ρ denotes the restriction of the function

f by ρ. Since the parity function does not become

constant after fixing less than all of its input bits, this

implies that its size is at least Ω(n1.5). Khrapchenko

[2] used a different method to give a tight Ω(n2) lower

bound for the parity function. Andreev [3] constructed

a function in P and showed that its formula size is

at least Ω(n2.5−o(1)). In fact, he got a lower bound

of Ω(n1+Γ−o(1)) where Γ is the shrinkage exponent of

De Morgan formulae - the maximal constant such that

any De Morgan formula is shrunk by a factor of O(pΓ)
under p-random restrictions. Impagliazzo and Nisan [4]

showed that Γ ≥ 1.55; Paterson and Zwick [5] improved

1We identify the truth values true and false with −1 and 1
respectively.

2Here we think of the non-uniform version of NC1: the class of
languages L ⊆ {−1, 1}∗ such that for each length n there exists a
Boolean formula Fn of size poly(n) which decides whether strings
of length n are in the language.
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this bound to Γ ≥ 1.63; and finally Håstad [6] showed

that Γ ≥ 2 − o(1). More precisely, Håstad proved the

following result.

Theorem I.1 ( [6]). Let f be a Boolean function. For
every p > 0,

E
ρ∼Rp

[L(f |ρ)] =

O

(
p2
(
1 + log3/2min

{
1

p
, L(f)

})
L(f) + p

√
L(f)

)
.

This result is essentially tight up to the logarithmic

terms as exhibited by the parity function. The formula

size of the parity function of n variables is Θ(n2) (see

[2], [7]). Applying a p-random restriction on the parity

function yields a smaller parity function (or its negation)

on k variables where k ∼ Bin(n, p). By Khrapchenko’s

argument, the formula size of the restricted function is

≥ k2, thus the expected formula size is at least E[k2] =

p2n2 + p(1− p)n = Ω
(
p2L(f) + p

√
L(f)

)
.

Other efforts have been made to give a function in P
that requires super-polynomial formula size: Karchmer,

Raz and Wigderson [8] suggested a function in P that

might require super-polynomial formula size. Recently,

Gavinsky et al. [9] suggested an information theoretical

approach to further understand the formula size of this

function.

Another recent line of work [10]–[15] concentrated

on giving average-case formula lower bounds for

problems in P. These works also explored applica-

tions of shrinkage properties of formulae to: pseudo-

random generators, compression algorithms and non-

trivial #SAT algorithms for small formulae. The state

of the art average-case lower bound for De Morgan

formulae is the result of Komargodski, Raz and Tal

[13] who gave an explicit hr : {−1, 1}n → {−1, 1}
such that any formula that computes this function on a

fraction 1
2 +2−r must be of size at least n3−o(1)

r2 where

r is an arbitrary parameter smaller than n1/3.

A. Our Results

In this work, we give a new proof of Håstad’s

result. In fact, we obtain a tight result showing that the

shrinkage exponent is exactly 2.

Theorem I.2. Let f be a Boolean function. For every
p > 0,

E
ρ∼Rp

[L(f |ρ)] = O
(
p2L(f) + p

√
L(f)

)
.

Note that both terms in Theorem I.2 are needed

as demonstrated by the parity function above. This

improves the worst-case lower bound Håstad gave to

Andreev’s function to Ω
(

n3

log2 n(log logn)3

)
immediately

(following the proof of Theorem 8.1 in [6]). In addition,

replacing Theorem I.1 with Theorem I.2 improves the

analysis of the average-case lower bound in [13].

Corollary I.3. Let n be large enough, then for any
parameter r ≤ n1/3 there is an explicit (computable in
polynomial time) Boolean function hr : {−1, 1}6n →
{−1, 1} such that any formula of size n3

r2·poly log(n)
computes hr correctly on a fraction of at most 1/2+2−r

of the inputs.

B. Proof Outline

The proof comes from a surprising area: quantum

query complexity. The connection between De Morgan

formulae and quantum query complexity was first noted

in the work of Laplante, Lee and Szegedy [16]. They

showed that the quantum adversary bound is at most

the square root of the formula size of a function.

Høyer, Lee and Špalek [17] replaced the quantum ad-

versary bound by the negative weight adversary bound,

achieving a stronger relation. The long line of works

[18]–[22] showed that the negative weight adversary

bound is equal up to a constant to the bounded-error
quantum query complexity of a function, Q2(f). Com-

bining all these results yields Q2(f) = O(
√

L(f)).
By the connection of quantum query complexity to the

approximate degree 3 , d̃eg(f) = O(Q2(f)), estab-

lished by Beals et al. [23], we get a classical result:

d̃eg(f) = O(
√

L(f)) for any Boolean function f . To

our best knowledge, no classical proof that d̃eg(f) =
O(

√
L(f)) is known – it might be interesting to find

such a proof.

Small formulae have exponentially small Fourier
tails: We obtain a somewhat simpler proof of our

main theorem, compared to Håstad’s original proof, by

taking the result d̃eg(f) = O(
√

L(f)) as a given.

First, we note that by using amplification there exists

a polynomial of degree d̃ = O(
√

L(f) log(1/ε)) which

ε-approximates f pointwise. Using standard arguments

this implies that the Fourier mass above degree d̃,

i.e.
∑

S:|S|>d̃ f̂(S)
2, is at most ε. In other words, the

Fourier mass above O(
√

L(f) · t) is at most 2−t, and

we call this property exponentially small tails of the

Fourier spectrum of f above level O(
√

L(f)). 4

3Let f : {−1, 1}n → {−1, 1}, we say that a polynomial p(x) ε-
approximates f pointwise if |p(x)−f(x)| < ε for all x ∈ {−1, 1}n.

The approximate degree of a function f , denoted by d̃eg(f), is
the minimal degree of a polynomial p which 1/3-approximates f
pointwise.

4Of course, this is meaningless when L(f) ≥ n2, since there is
no Fourier mass above level n.
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Exponentially small Fourier tails imply a “switch-
ing lemma” type property: Our next step is novel.

We show that exponentially small Fourier tails imply

a strong behavior under random restrictions. If for all t,
f has at most 2−t of the mass above level m · t, then

under a p-random restriction we have

∀d : Pr
ρ∼Rp

[deg(f |ρ) ≥ d] ≤ (8pm)d .5 (1)

In particular, if we take p to be ≤ 1
cm for a large

enough constant c we get that the degree of the restricted

function is d with probability exp(−10d). 6

We call such a property a “switching lemma” type
property since the switching lemma [25] states some-

thing similar for DNF formulae: If f can be computed

by a DNF formula where each term is the logical AND

of w literals, then

∀d : Pr
ρ∼Rp

[DT(f |ρ) ≥ d] ≤ (5pw)d .

Our conclusion is somewhat analogous for functions

with exponentially small tails, replacing the decision

tree complexity with the degree as a polynomial. We

think that the relation between exponentially small

Fourier tails and the “switching lemma” type property

is of independent interest.

Proving the case p = O(1/
√
L(f)): Using the

fact that functions with small formula size have expo-

nentially small tails above level
√
L(f), we get that

for p = O(1/
√
L(f)), applying a p-random restriction

yields a function with degree d with probability at

most exp(−10d). In particular, with high probability

the function becomes a constant. As the formula size

of a degree d polynomial is at most 32d we get that

for some large enough constant c, applying a p-random

restriction with p = 1

c
√

L(f)
, yields a function with

expected formula size at most 1. This completes our

proof for the case p = Θ(1/
√

L(f)), and in fact the

case p = O(1/
√
L(f)) as well.

Proving the general case: In order to establish

the case where p = Ω(1/
√
L(f)), we use an idea

from Impagliazzo, Meka and Zuckerman’s work [11].

They showed how to decompose a large formula into

O(L(f)/�) many small formulae, each of size O(�).
Furthermore, applying any restriction, the formula size

of the restricted function is at most the sum of formula

5 For technical reasons, it is more convinent for us to argue
about the probablity of having degree exactly d. We actually show
Prρ∼Rp [deg(f |ρ) = d] ≤ (4pm)d and this implies the statement
above by simple arithmetics.

6This is essentially the opposite of a key step in the proof of
Linial, Mansour and Nisan [24] which showed that AC0 circuits
have Fourier spectrum concentrated on the poly log(n) first levels.

sizes of the restricted sub-functions represented by the

sub-formulae. Taking � to be 1/p2 and using linearity

of expectation we get the required result for general p.

C. Related Work

The recent work of Impagliazzo and Kabanets [26]

shows that shrinkage properties imply Fourier concen-

tration. In some sense, our result shows the opposite,

although we need exponential small Fourier tails to

begin with.

II. PRELIMINARIES

A. Formulae

A De Morgan formula F on n variables x1, . . . , xn

is a binary tree whose leaves are labeled with vari-

ables or their negations, and whose internal nodes are

labeled with either ∨ or ∧ gates. The size of a De

Morgan formula F , denoted by L(F ), is the number

of leaves in the tree. The formula size of a function

f : {−1, 1}n → {−1, 1} is the size of the minimal

formula which computes the function, and is denoted

by L(f). A de Morgan formula is called read-once if

every variable appears at most once in the tree.

B. Restrictions

Definition II.1 (Restriction). Let f : {−1, 1}n →
{−1, 1} be a Boolean function. A restriction ρ is a
vector of length n of elements from {0, 1, ∗}. We denote
by f |ρ the function f restricted according to ρ in the
following sense: if ρi = ∗ then the i-th input bit of f
is unassigned and otherwise the i-th input bit of f is
assigned to be ρi.

Definition II.2 (p-Random Restriction). A p-random
restriction is a restriction as in Definition II.1 that
is sampled in the following way. For every i ∈ [n],
independently with probability p set ρi = ∗ and with
probability 1−p

2 set ρi to be 0 and 1, respectively. We
denote this distribution of restrictions by Rp.

C. Fourier Analysis of Boolean Functions

For any Boolean function f : {−1, 1}n → {−1, 1}
there is a unique Fourier representation:

f(x) =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

xi .

The coefficients f̂(S) are given by f̂(S) = Ex[f(x) ·∏
i∈S xi]. Parseval’s equality states that

∑
S f̂(S)2 =

Ex[f(x)
2] = 1. Note that the Fourier representation is

the unique multilinear polynomial which agrees with

f on {−1, 1}n. The polynomial degree is denoted by
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deg(f) and is equal to max{|S| : f̂(S) �= 0}. We denote

by

W=k[f ] �
∑

S⊆[n],|S|=k

f̂(S)2

the Fourier weight at level k of f . Similarly, we denote

by W≥k[f ] �
∑

S⊆[n],|S|≥k f̂(S)
2. The following fact

relates the Fourier coefficients of f and of f |ρ where ρ
is a p-random restriction.

Fact II.3 (Proposition 4.17, [27]).

E
ρ∼Rp

[
f̂ |ρ(S)2

]
=

∑
U⊆[n]

f̂(U)2 · Pr
ρ∼Rp

[{i ∈ U : ρ(i) = ∗} = S]

Summing over all coefficients of size d, we get the

following corollary.

Corollary II.4.

E
ρ∼Rp

⎡⎣ ∑
S:|S|=d

f̂ |ρ(S)2
⎤⎦

=

n∑
k=d

W=k[f ] ·Pr[Bin(k, p) = d]

One can represent a Boolean function also as f̃ :
{0, 1}n → {0, 1}. Identifying {0, 1} with {1,−1} by

b 
→ 1 − 2b we get the following relation between

the {0, 1} and the {−1, 1} representation of the same

function.

f̃(y) =
1− f(1− 2y1, . . . , 1− 2yn)

2

=
1

2
− 1

2

∑
S⊆[n]

f̂(S) ·
∏
i∈S

(1− 2yi) (2)

Let p(y) =
∑

T⊆[n] aT ·
∏

i∈T yi be the unique

multilinear polynomial over the reals, which agrees

with f̃(y) on {0, 1}n. Using Equation (2) gives a∅ =
1/2− 1/2 ·∑S f̂(S) and

∀T �= ∅ : aT = (−2)|T |−1 ·
∑
S⊇T

f̂(S) . (3)

It is clear from Equation (3) that deg(p) = deg(f),
hence the definition of degree does not depend whether

we are talking about the {−1, 1} or the {0, 1} repre-

sentation of the function. Note that since f̃ is Boolean,

the coefficients aT are integers, as we can write

f̃(y) =
∑

z∈{0,1}n
f̃(z) ·

∏
i:zi=0

(1− yi) ·
∏

i:zi=1

yi

which opens up to a multilinear polynomial over y with

integer coefficients.

An immediate consequence of the above discussion

is the following fact, which states that the Fourier co-

efficients of a degree d polynomial are 2−d “granular”,

i.e. integer multiples of 2−d.

Fact II.5 (Granularity). Let f : {−1, 1}n → {−1, 1}
with deg(f) = d, then f̂(S) = kS · 2−d where kS ∈ Z
for any S ⊆ [n].

Proof: We prove by contradiction. Let T be a max-

imal set with respect to inclusion for which f̂(T ) is not

an integer multiple of 2−d. We first handle the case T �=
∅. Equation (3) gives aT = (−2)|T |−1∑S⊇T f̂(S).

Multiplying both sides by (−2)d−|T |+1 we get

(−2)d−|T |+1 · aT = (−2)d
∑
S⊇T

f̂(S) .

By the assumption on maximality of T , all coefficients

on the RHS except f̂(T ) are integer multiples of 2−d,

hence the RHS is not an integer. On the other hand, the

LHS is an integer since aT is an integer, and we reach

a contradiction.

For the case T = ∅, we have a∅ = 1/2 −
1/2 ·∑S f̂(S). Multiplying both sides by 2d+1 gives

2d+1a∅ = 2d − 2d
∑

S f̂(S). Again, the RHS is not an

integer, while the LHS is an integer.

Definition II.6. We define the sparsity of f as

sparsity(f) � |{S : f̂(S) �= 0}| .
Corollary II.7. Let f : {−1, 1}n → {−1, 1} with
deg(f) = d, then sparsity(f) ≤ 22d.

Proof: By Parseval, 1 =
∑

S f̂(S)2 ≥ sparsity(f)·(
2−d

)2
.

Claim II.8. Let f̃ : {0, 1}n → {0, 1} be a Boolean
function with deg(f̃) = d then f̃ can be written as

f̃(x) =

sparsity(f)∑
i=1

gi(x)

where each gi : {0, 1}n → Z is a d-junta, i.e. depends
only on at most d coordinates.

Proof: Write f̃(x) =
∑

T⊆[n] aT
∏

i∈T xi. By

Equation (3) any T ⊆ [n] such that aT �= 0 is contained

in some subset S ⊆ [n] for which f̂(S) �= 0. Order the

sets {S : f̂(S) �= 0} according to some arbitrary order:

{S1, . . . , Ssparsity(f)} and let

gi(x) =
∑

T⊆Si,∀j<i:T�Sj

aT ·
∏
i∈T

xi .
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Then, by definition f̃(x) =
∑sparsity(f)

i=1 gi(x). By the

integrality of aT , each gi takes integer values. Moreover,

each gi depends only on the variables in the set Si, i.e.

on at most d coordinates.

D. Approximate Degree

Let f : {−1, 1}n → {−1, 1}. Given an ε we define

the ε-approximate degree, denoted by d̃egε(f), as the

minimal degree of a multilinear polynomial p such that

for all x ∈ {−1, 1}n, |f(x) − p(x)| ≤ ε. We denote

d̃eg1/3(f) by d̃eg(f).

When defining approximate degree the choice of 1/3
may seem arbitrary. The next fact (essentially proved

in [28], Lemma 1) shows how approximate degree for

different errors relate. We prove this fact in Appendix A

for completeness.

Fact II.9. Let f : {−1, 1}n → {−1, 1} be a Boolean
function and let 0 < ε < 1 then: d̃egε(f) ≤ d̃eg(f) ·
�8 · ln(2/ε)�.

Relating the approximate degree to the Fourier trans-

form one gets the following fact.

Fact II.10. Let f : {−1, 1}n → {−1, 1} be a Boolean
function, 0 < ε < 1 and d = d̃egε(f), then W>d[f ] ≤
ε2.

Proof: Let p be a polynomial of degree d which

ε approximates f pointwise. Obviously Ex[(f(x) −
p(x))2] ≤ ε2. Let q be the best �2 approximation of f by

a degree d polynomial, namely the polynomial of degree

d which minimizes ‖f − q‖22 � Ex[(f(x) − q(x))2].
Obviously, ‖f − q‖22 ≤ ‖f − p‖22 ≤ ε2 by the choice

of p and q. Using Parseval’s equality ‖f − q‖22 =∑
S

(
f̂(S)− q̂(S)

)2
, and it is easy to see that the min-

imizer of this expression among degree d polynomials

is the Fourier expansion of f truncated above degree d:

q(x) =
∑

S⊆[n]:|S|≤d

f̂(S) ·
∏
i∈S

xi .

Overall, we get that ε2 ≥ ‖f − q‖22 =
∑

S:|S|>d f̂(S)
2.

Our proof relies heavily on the following result from

quantum query complexity.

Theorem II.11 ( [17], [22], [23]). There exists a univer-
sal constant C1 ≥ 1 such that for any f : {−1, 1}n →
{−1, 1} we have d̃eg(f) ≤ C1 ·

√
L(f).

The next claim states that functions have exponen-

tially small fourier tails above level
√
L(f).

Claim II.12. There exists a constant C > 0 such that
for any f : {−1, 1}n → {−1, 1} and k ∈ N,

W≥k[f ] ≤ e · exp
(

−k
C
√
L(f)

)
.

Proof: Let t = k

C
√

L(f)
where C is some constant

we shall set later. We prove that W≥k[f ] ≤ e · e−t.

Assume without loss of generality that t ≥ 1 or else

the claim is trivial since W≥k[f ] ≤ 1 ≤ e · e−t. Put

ε = e−t/2, and combine Theorem II.11 and Fact II.9 to

get

d̃egε(f) ≤
√
L(f) · C1 · �8 ln(2/ε)�

=
√

L(f) · C1 · �4t+ 8 ln(2)�
≤
√

L(f) · C1 · 11t .

Using Fact II.10 we get W>
√

L(f)·C1·11t[f ] ≤ e−t.

Hence W≥
√

L(f)·C1·12t[f ] ≤ e−t. Setting C := C1 · 12
completes the proof.

E. The Generalized Binomial Theorem

Theorem II.13 (The generalized binomial theorem).
Let |x| < 1, and s ∈ N then

1

(1− x)s
=

∞∑
k=0

(
s+ k − 1

s− 1

)
· xk

Rearranging this equality one get the following corol-

lary:

Corollary II.14. Let |x| < 1, and m ∈ N ∪ {0} then∑∞
n=m xn · (nm) = xm

(1−x)m+1 .

Proof: By the generalized binomial theorem

xm

(1− x)m+1
=

∞∑
k=0

(
m+ k

m

)
· xm+k .

The RHS can be rewritten as
∑∞

n=m

(
n
m

) · xn, which

completes the proof.

III. EXPONENTIALLY SMALL TAILS AND THE

SWITCHING LEMMA

In this section we prove the main technical part of

our proof by showing a close relation between two

properties of Boolean functions:

1) Having exponentially small Fourier tails above

level t: ∀k :W≥k[f ] ≤ e−k/t.

2) A “switching lemma” type property with param-

eter t′: ∀p, d : Prρ∼Rp [deg(f |ρ) ≥ d] ≤ (t′p)d.
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Linial, Mansour and Nisan proved that Property 2

implies Property 1. For completeness we include a proof

of this theorem in Appendix A.

Theorem III.1 ( [24], restated slightly). Let f :
{−1, 1}n → {−1, 1} and assume there exists t > 0
such that for all d ∈ N, p ∈ (0, 1), Prρ∼Rp [deg(f |ρ) ≥
d] ≤ (tp)

d; then for any k, W≥k[f ] ≤ 2e · e−k/te.

Next, we prove a converse to Theorem III.1.

Theorem III.2. Let f : {−1, 1}n → {−1, 1} be a
Boolean function, let t, C > 0 such that for all k,
W≥k[f ] ≤ C · e−k/t and let ρ be a p-random restric-
tion; then for all d, Pr[deg(f |ρ) = d] ≤ C · (4pt)d.

Proof Sketch: If a function f has exponentially

small Fourier tails above level t then on expectation

the restricted function f |ρ will have exponentially small

Fourier tails above level pt, since the Fourier spectrum

of f roughly squeezes by a factor of p under a p-random

restriction (see Corollary II.4). However, the Fourier

mass above level d of a Boolean function of degree d
cannot be smaller than 4−d by the granularity property.

We get that if pt � 1, then with high probability the

restricted function is not a degree d polynomial.

Proof: Our proof strategy is as follows: we bound

the value of Eρ

[
W=d[f |ρ]

]
from below and above

showing

E
ρ

[
W=d[f |ρ]

] ≥ Pr[deg(f |ρ) = d] · 4−d (4)

and

E
ρ

[
W=d[f |ρ]

] ≤ C (pt)
d
. (5)

Combining the two estimates will complete the proof.

We begin by proving Equation (4). Conditioning on

the event that deg(f |ρ) = d, Fact II.5 implies that any

nonzero Fourier coefficient of f |ρ is of magnitude ≥
2−d. Hence, W=d[f |ρ] =

∑
S:|S|=d f̂ |ρ(S)2 ≥ 4−d,

and we get

E
ρ

[
W=d[f |ρ]

] ≥ Pr[deg(f |ρ) = d]

·E
ρ

[
W=d[f |ρ]

∣∣∣∣ deg(f |ρ) = d

]
≥ Pr[deg(f |ρ) = d] · 4−d .

Next, we turn to prove Equation (5).

E
ρ

[
W=d[f |ρ]

]
=
∑
k≥d

W=k[f ]

(
k

d

)
pd(1− p)k−d

(Corollary II.4)

=
∑
k≥d

(
W≥k[f ]−W≥k+1[f ]

)(k
d

)
pd(1− p)k−d

=

(
p

1− p

)d ∑
k≥d

(
W≥k[f ]−W≥k+1[f ]

)(k
d

)
(1− p)k

We can rearrange the sum in the RHS of the above

equation, gathering terms according to W≥k[f ]. We

denote
(
d−1
d

)
= 0, and get:∑

k≥d

(
W≥k[f ]−W≥k+1[f ]

)(k
d

)
(1− p)k

=
∑
k≥d

W≥k[f ]

((
k

d

)
(1− p)k −

(
k − 1

d

)
(1− p)k−1

)
≤
∑
k≥d

W≥k[f ]

((
k

d

)
(1− p)k −

(
k − 1

d

)
(1− p)k

)
≤
∑
k≥d

W≥k[f ]

(
k − 1

d− 1

)
(1− p)k .

Let a := e−1/t. The assumption on the Fourier tails of

f , W≥k[f ] ≤ C · ak, gives

E
ρ

[
W=d[f |ρ]

] ≤ (
p

1− p

)d ∑
k≥d

C(a(1− p))k ·
(
k − 1

d− 1

)

=

(
p

1− p

)d

· C(a(1− p))

·
∑
k≥d

(a(1− p))k−1 ·
(
k − 1

d− 1

)

=

(
p

1− p

)d

· C(a(1− p))·

·
∑

k′≥d−1
(a(1− p))k

′ ·
(

k′

d− 1

)
Next we use Corollary II.14 with x := a(1 − p) and

m := d− 1 to get

E
ρ

[
W=d[f |ρ]

] ≤ (
p

1− p

)d

· C(a(1− p))

· (a(1− p))d−1

(1− a(1− p))
d

= C

(
ap

1− a(1− p)

)d

≤ C

(
ap

1− a

)d

Substituting a with e−1/t gives

E
ρ

[
W=d[f |ρ]

] ≤ C

(
p

1

1/a− 1

)d

= C

(
p

1

e1/t − 1

)d

≤ C (pt)
d
,
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where the last inequality follows since ex − 1 ≥ x for

any x ≥ 0.

IV. DEGREE VS. FORMULA SIZE

We use the following fact about the formula size of

the parity function

Fact IV.1 ( [7]). L(PARITYm) ≤ 9/8 · m2. Fur-
thermore, if m = 2k for some integer k, then
L(PARITYm) ≤ m2.

Claim IV.2. Let f̃ : {0, 1}n → {0, 1} such that
deg(f̃) = d, then L(f̃) ≤ 2 · 32d.

Proof: According to Claim II.8, f̃ can be written

as
∑4d

i=1 gi(x), where the functions gi(x) take integer

values, and each of them depends on at most d variables.

Since f̃(x) ∈ {0, 1} we may perform all operations

modulo 2 and get f̃(x) =
⊕4d

i=1 hi(x), where hi(x) =
gi(x) mod 2. Taking a formula for the parity of m =
4d variables, y1, . . . , ym, and replacing each instance of

a variable yi with a formula computing hi(x) gives a

formula for f̃ . The size of the formula computing each

hi is at most 2d+1 since any function on d variables can

be computed by a formula of such size. Thus, the size

of the combined formula is ≤ L(PARITYm) · 2d+1 =
16d · 2d+1 = 2 · 32d.

V. THE CASE p = O(1/
√
L(f))

Claim V.1. There exists a constant C > 0 such that
for any function f : {−1, 1}n → {−1, 1} and any
p ≤ 1

C
√

L(f)
the following hold. Let ρ be a p-random

restriction, then Eρ[L(f |ρ)] = O(p
√

L(f)). In partic-
ular, in this regime of parameters, Eρ[L(f |ρ)] = O(1).

Proof of Claim V.1: From Claim II.12, there

exists a constant C > 0 such that ∀k : W≥k[f ] ≤
e·e−k/(C

√
L(f)). This implies, using Theorem III.2, that

Prρ∼Rp [deg(f |ρ) = d] ≤ e ·
(
4pC

√
L(f)

)d

. Using

Claim IV.2, if deg(f |ρ) = d then L(f |ρ) ≤ 2 · 32d. For

p ≤ 1

64·4C
√

L(f)
we get

E
ρ∼Rp

[L(f |ρ)] =
n∑

d=1

Pr
ρ
[deg(f |ρ) = d]

·E
ρ
[L(f |ρ)| deg(f |ρ) = d]

≤
∞∑
d=1

e ·
(
4pC

√
L(f)

)d

· 2 · 32d

≤ O(p
√

L(f))

∞∑
d=1

(
4pC

√
L(f) · 32

)d−1

≤ O(p
√

L(f))
∞∑
d=1

(32/64)d−1

= O(p
√

L(f))

VI. THE GENERAL CASE

In Section V we have proved Theorem I.2 for the case

p = O(1/
√

L(f)). In this section we give a reduction

from the case where p is larger, i.e. p = Ω(1/
√
L(f)),

to the case where p is small, i.e. p = Θ(1/
√

L(f)).
We use the tree decompsition of Impagliazzo, Meka and

Zuckerman [11] to establish this reduction.7

The next lemma states that every binary tree can

be decomposed into smaller subtrees with some small

overhead. Its proof can be found in [11].

Lemma VI.1 ( [11]). Let � ∈ N. Any binary tree with
s ≥ � leaves can be decomposed into at most 6s/�
subtrees, each with at most � leaves, such that each
subtree has at most two other subtree children. Here
subtree T1 is a child of subtree T2 if there exists nodes
t1 ∈ T1, t2 ∈ T2, such that t1 is a child of t2.

Claim VI.2. Let F be a formula over the set of
variables X = {x1, . . . , xn}, and � ∈ N be some
parameter; then, there exist m ≤ O(L(F )/�) formulae
over X , denoted by G1, . . . , Gm, each of size at most
�, and there exists a read-once formula F ′ of size
m such that F ′(G1(x), . . . , Gm(x)) = F (x) for all
x ∈ {−1, 1}n.

Proof: Consider the decomposition promised by

Lemma VI.1 with parameter �. Let T1, . . . , Tm′ be the

subtrees in this decomposition where m′ ≤ 6n/�. We

will show by induction on m′, that one can construct

a read-once formula F ′ of size m ≤ 6m′ along-

side m sub-formulae G1, . . . , Gm of size � such that

F ≡ F ′(G1, . . . , Gm). For m′ = 1 the statement holds

trivially.

Assume that the root of the formula F is a node in

the subtree T1, and that the subtree T1 has two subtree

children: T2 and T3 (the case where T1 has one subtree

child can be handled similarly, and is in fact slightly

simpler). We now add two special leaves to the tree

T1. Let t2 ∈ T2, t1 ∈ T1 (respectively t3 ∈ T3, t
′
1 ∈

T1) be the nodes such that t2 (t3, resp.) is a child of

t1 (t′1, resp.) in the tree represented by F , and add a

leaf labeled by the “special” variable z2 (z3, resp.) as

7Another approach to prove the general case is to follow Håstad
original proof, changing the estimates when p = O(1/

√
L(F )) with

what we showed in Section V. The reduction we suggest simplifies
this approach significantly.
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a child of t1 (t′1, resp.). Call the new subtree T . Note

that since T is a De Morgan formula, the value of T is

monotone in z2 and z3. Let T ′ be the minimal subtree

of T which contains both leaves marked by z2 and z3.

By minimality T ′ = T ′2 op T ′3, for op ∈ {∧,∨}, where

T ′2 contains z2 and not z3, and T ′3 contains z3 and not

z2.

We will construct a formula equivalent to T ′ by

finding equivalent formulae for T ′2 and T ′3. We claim

that T ′2 = (T ′2|z2=false)∨(T ′2|z2=true∧z2). This follows

since T ′2 is monotone in z2: if T ′2|z2=false = true
then T ′2 = true, otherwise T ′2 = true only if both

T ′2|z2=true and z2 are true. Same goes for T ′3, and we

get

T ′ ≡ ((T ′2|z2=false) ∨ (T ′2|z2=true ∧ z2))

op ((T ′3|z3=false) ∨ (T ′3|z3=true ∧ z3)) .

Replacing T ′ with a leaf labeled with z, where z is

a new “special” variable, and doing the same trick we

get: T ≡ T |z=false ∨ (T |z=true ∧ z). Combining both

formulae, we get the following equivalence:

T ≡T |z=false∨
(T |z=true ∧ ((T ′2|z2=false) ∨ (T ′2|z2=true ∧ z2))

op ((T ′3|z3=false) ∨ (T ′3|z3=true ∧ z3))) .

Note that the RHS of the equation above can be written

as F ′′(G1(x), . . . , G6(x), z2, z3) where F ′′ is read-once

and G1(x), . . . , G6(x) are formulae of size �, defined

on the variables in X .

Let m2,m3 be the number of subtrees which are

descendants of T2, T3 in the tree-decomposition given

by Lemma VI.1. By induction, the subformula of F
rooted at t2 is equivalent to

F ′2(G
2
1(x), . . . , G

2
6m2

(x)) where F ′2 is read-once and

G2
i (x) are formulae of size ≤ �. Similarly for t3. We

thus get that

F (x) = F ′′ (G1(x), . . . , G6(x),

F ′2(G
2
1(x), . . . , G

2
6m2

(x)),

F ′3(G
3
1(x), . . . , G

3
6m3

(x))
)
.

Rearranging the RHS, we get a read-once formula of

size m ≤ 6 + 6m2 + 6m3 = 6m′ alongside m sub-

formulae, each of size �, such that their composition is

equivalent to F .

We now turn to complete the proof of our main

theorem.

Theorem (Theorem I.2, restated). Let f : {−1, 1}n →
{−1, 1} be a Boolean function, and let p > 0, then
Eρ∼Rp [L(f |ρ)] = O

(
p2L(f) + p

√
L(f)

)
.

Proof: The case p ≤ 1
C
√
L

is implied by Claim V.1.

Therefore, it is enough to show the statement holds

when p > 1
C
√
L

. Let F be the smallest De Mor-

gan formula computing f . Applying Claim VI.2 with

� := 1
p2·C2 , we get a read-once De Morgan for-

mula F ′ of size m = O(L(F )/�) along with for-

mulae G1, . . . , Gm, each of size at most �, such

that f(x) = F ′(G1(x), . . . , Gm(x)) for all x ∈
{−1, 1}n. Denote the functions which G1, . . . , Gm

compute by g1, . . . , gm respectively. Applying a re-

striction ρ we get f |ρ ≡ F ′(g1|ρ, . . . , gm|ρ), hence

L(f |ρ) ≤
∑m

i=1 L(gi|ρ). By linearity of expectation,

E
ρ
[L(f |ρ)] ≤ E

ρ

[
m∑
i=1

L(gi|ρ)
]

≤ m ·O(p ·
√
�)

= m ·O(1) = O(p2 · L(f)) .

VII. OPEN ENDS

An interesting open question raised by Håstad in [6]

is

What is the shrinkage exponent of monotone

De Morgan formulae?

In particular, this has strong connections with under-

standing the monotone formula size of Majority. The

analysis in Section VI implies that it is enough to find

the critical probability pc for which Eρ∼Rpc
[L(f |ρ)] =

1, and then use the tree decomposition to argue for

p ≥ pc (note that the decomposition done in Section

6 respects monotonicity). Hence, in order to show Γ
shrinkage, i.e. that formulae of size s shrink to expected

size O(pΓs+1) after applying a p-random restriction, it

is necessary and sufficient to show that for p = 1
L(f)1/Γ

,

the expected size of the minimal monotone formula

computing f |ρ is O(1).
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APPENDIX

Theorem (Theorem III.1, restated). Let f : {−1, 1}n →
{−1, 1} and assume there exists t ∈ R such that for all
d, p, Prρ∼Rp [deg(f |ρ) ≥ d] ≤ (tp)

d. Then for any k,
W≥k[f ] ≤ 2e · e−k/(te).
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Proof: For any d ∈ N and p ∈ (0, 1] we have

E
ρ∼Rp

[
W≥d[f |ρ]

]
=
∑
k≥d

W=k[f ] ·Pr[Bin(k, p) ≥ d]

(Corollary II.4)

≥
∑

k≥d/p

W=k[f ] ·Pr[Bin(k, p) ≥ d]

≥
∑

k≥d/p

W=k[f ] · 1/2

(median(Bin(k, p)) ≥ �kp� ≥ d, [29])

= 1/2 ·W≥d/p[f ]

Overall we got

W≥d/p[f ] ≤ 2 · E
ρ∼Rp

[
W≥d[f |ρ]

]
≤ 2 Pr

ρ∼Rp

[deg(f |ρ) ≥ d] ≤ 2(tp)d. (6)

Given k and t we choose p := 1/(te) and d := �kp�.
Substituting d and p in Equation (6) we get W≥k[f ] ≤
2 · e−
k/(te)� ≤ 2e · e−k/(te).

The proof in this section is essentially the same as

the one in [28]; we present it here for completeness.

Definition A.1. For q ∈ [−1, 1] we say that x is a q-
biased bit, denoted by x ∼ Nq , if Pr[x = 1] = 1+q

2

and Pr[x = −1] = 1−q
2 . In other words, x is a random

variable taking values from {−1, 1} with E[x] = q.

The next lemma connects the value of a polynomial

representing a Boolean function on non-Boolean inputs

with a product-measure distribution.

Lemma A.2. Let f : {−1, 1}n → R and let p ∈
R[x1, . . . , xn] be the unique multilinear polynomial
agreeing with f on {−1, 1}n. Let q1, . . . , qn ∈ [−1, 1]
then

E
xi∼Nqi

[f(x1, . . . , xn)] = p(q1, . . . , qn)

where the xis are drawn independently.

Proof: We write

p(x1, . . . , xn) =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

xi .

We first show the lemma for a single monomial:

E
xi∼Nqi

[∏
i∈S

xi

]
=

xi are ind.

∏
i∈S

E
xi∼Nqi

[xi] =
∏
i∈S

qi .

By linearity of expectation we have:

E
xi∼Nqi

[p(x1, . . . , xn)] = E
xi∼Nqi

⎡⎣ ∑
S⊆[n]

f̂(S) ·
∏
i∈S

xi

⎤⎦
=

∑
S⊆[n]

f̂(S) ·
∏
i∈S

qi

= p(q1, . . . , qn) .

We now turn to prove Fact II.9, restated next.

Fact A.3. Let f : {−1, 1}n → {−1, 1} be Boolean
function and let 0 < ε < 1 then: d̃egε(f) ≤ d̃eg(f) ·
�8 · ln(2/ε)�.

Proof: Let m be some parameter we will set later.

Take MAJm : {−1, 1}m → {−1, 1} to be the majority

of m inputs, and denote by pMAJ ∈ R[x1, . . . , xm]
the multilinear polynomial agreeing with MAJm on

{−1, 1}m. Let q ∈ (0, 1] (the case q ∈ [−1, 0) is

similar), then by Lemma A.2 we have

pMAJ(q, q, . . . , q) = E
xi∼Nq

[MAJm(x1, . . . , xm)]

= Pr
xi∼Nq

[∑
i

xi ≥ 0

]
− Pr

xi∼Nq

[∑
i

xi < 0

]
.

Let X =
∑

i xi, then by Chernoff-Hoeffding bound we

have

Pr [X ≥ 0] = Pr [X −E[X] ≥ −q ·m]
≥ 1− e−(qm)2/2m

= 1− e−mq2/2 ,

which implies

pMAJ(q, q, . . . , q) ≥ 1− 2e−mq2/2 . (7)

By definition there exists a polynomial p of degree

d̃eg(f) such that p(x) ∈ [−4/3,−2/3] if f(x) = −1
and p(x) ∈ [2/3, 4/3] if f(x) = 1. Take p′(x) = p(x)

4/3 ,

then p′(x) ∈ [1/2, 1] if f(x) = 1 and p′(x) ∈
[−1,−1/2] if f(x) = −1. Consider the polynomial

g(x) = pMAJ(p
′(x), p′(x), . . . , p′(x)),

then deg(g) ≤ deg(pMAJ) · deg(p′) = m · d̃eg(f).
On the other hand, for x such that f(x) = 1 (the

case where f(x) = −1 is analogous) we have g(x) =
pMAJ(q, q, . . . , q) for some q ∈ [1/2, 1]. Since pMAJ is

monotone and using Equation (7), we have

1 ≥ g(x) = pMAJ(q, . . . , q)

≥ pMAJ(1/2, . . . , 1/2) ≥ 1− 2e−m/8 .

Picking m = �8 · ln(2/ε)� completes the proof.
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