
Sample-Optimal Fourier Sampling in Any Constant Dimension

Piotr Indyk

MIT
indyk@mit.edu

Michael Kapralov

MIT
kapralov@mit.edu

Abstract—We give an algorithm for �2/�2 sparse recov-
ery from Fourier measurements using O(k logN) samples,
matching the lower bound of Do Ba-Indyk-Price-Woodruff’10
for non-adaptive algorithms up to constant factors for any
k ≤ N1−δ . The algorithm runs in Õ(N) time. Our algorithm
extends to higher dimensions, leading to sample complexity of
Od(k logN), which is optimal up to constant factors for any
d = O(1). These are the first sample optimal algorithms for
these problems.

A preliminary experimental evaluation indicates that our
algorithm has empirical sampling complexity comparable to
that of other recovery methods known in the literature, while
providing strong provable guarantees on the recovery quality.

Keywords-sparse Fourier Transform, sample complexity,
compressed sensing, sparse recovery

I. INTRODUCTION

The Discrete Fourier Transform (DFT) is a mathematical

notion that allows to represent a sampled signal or function

as a combination of discrete frequencies. It is a powerful tool

used in many areas of science and engineering. Its popularity

stems from the fact that signals are typically easier to

process and interpret when represented in the frequency

domain. As a result, DFT plays a key role in digital signal

processing, image processing, communications, partial dif-

ferential equation solvers, etc. Many of these applications

rely on the fact that most of the Fourier coefficients of

the signals are small or equal to zero, i.e., the signals are

(approximately) sparse. For example, sparsity provides the

rationale underlying compression schemes for audio, image

and video signals, since keeping the top few coefficients

often suffices to preserve most of the signal energy.
An attractive property of sparse signals is that they can

be acquired from only a small number of samples. Reducing

the sample complexity is highly desirable as it implies a

reduction in signal acquisition time, measurement overhead

and/or communication cost. For example, one of the main

goals in medical imaging is to reduce the sample complexity

in order to reduce the time the patient spends in the MRI ma-

chine [30], or the radiation dose received [35]. Similarly in

spectrum sensing, a lower average sampling rate enables the

fabrication of efficient analog to digital converters (ADCs)

that can acquire very wideband multi-GHz signals [39]. As a

result, designing sampling schemes and the associated sparse

recovery algorithms has been a subject of extensive research

in multiple areas, such as:

• Compressive sensing: The area of compressive sens-

ing [12], [8], developed over the last decade, studies the

task of recovering (approximately) sparse signals from

linear measurements. Although several classes of linear

measurements were studied, acquisition of sparse sig-

nals using few Fourier measurements (or, equivalently,

acquisition of Fourier-sparse signals using few signal

samples) has been one of the key problems studied in

this area. In particular, the seminal work of [8], [34] has

shown that one can recover N -dimensional signals with

at most k Fourier coefficients using only k logO(1) N
samples. The recovery algorithms are based on lin-

ear programming and run in time polynomial in N .

See [13] for an introduction to the area.

• Sparse Fourier Transform: A different line of research,

with origins in computational complexity and learning

theory, has been focused on developing algorithms

whose sample complexity and running time bounds

scale with the sparsity. Many such algorithms have been

proposed in the literature, including [18], [28], [31],

[15], [2], [16], [26], [1], [21], [20], [29], [6], [19], [32],

[22], [25]. These works show that, for a wide range of

signals, both the time complexity and the number of

signal samples taken can be significantly sub-linear in

N .

The best known results obtained in both of those areas

are summarized in the following table. For the sake of

uniformity we focus on algorithms that work for general

signals and recover k-sparse approximations satisfying the

so-called �2/�2 approximation guarantee1. In this case, the

goal of an algorithm is as follows: given m samples of the

Fourier transform x̂ of a signal x2, and the sparsity parameter

k, output x′ satisfying

‖x− x′‖2 ≤ C min
k-sparse y

‖x− y‖2, (1)

The algorithms are randomized and succeed with constant

1Some of the algorithms [8], [34], [10] can in fact be made deterministic,
but at the cost of satisfying a somewhat weaker �2/�1 guarantee. Also,
additional results that hold for exactly sparse signals are known, see e.g., [6]
and references therein.

2Here and for the rest of this paper, we will consider the inverse discrete
Fourier transform problem of estimating a sparse x from samples of x̂. This
leads to a simpler notation. Note that the the forward and inverse DFTs are
equivalent modulo conjugation.

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.61

514

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.61

514

Reference Time Samples Approximation Signal model

[8], [34]

[10] N ×m linear program O(k log3(k) log(N)) C = O(1) worst case

[7] N ×m linear program O(k logN) C = (logN)O(1) worst case

[20] O(k log(N) log(N/k)) O(k log(N) log(N/k)) any C > 1 worst case

[14] O(k log2 N) O(k logN) C = O(1) average case,

k = Θ(
√
N)

[33] O(N logN) O(k logN) C = O(1) average case,

k = O(Nα), α < 1

[25] O(k log2(N) logO(1) logN) O(k log(N) logO(1) logN) any C > 1 worst case

[11] Ω(k log(N/k)) constant C lower bound

Figure 1. Bounds for the algorithms that recover k-sparse Fourier approximations . All algorithms produce an output satisfying Equation 1 with probability
of success that is at least constant.

probability.

As evident from the table, none of the results obtained

so far was able to guarantee sparse recovery from the

optimal number of samples, unless either the approximation

factor was super-constant or the result held for average-case

signals. In fact, it was not even known whether there is

an exponential time algorithm that uses only O(k logN)
samples in the worst case.

A second limitation, that applied to the sub-linear time

algorithms in the last three rows in the table, but not to

compressive sensing algorithms in the first two rows of

the table, is that those algorithms were designed for one-
dimensional signals. However, the sparsest signals often

occur in applications involving higher-dimensional DFTs,

since they involve much larger signal lengths N . Although

one can reduce, e.g., the two-dimensional DFT over p × q
grid to the one-dimensional DFT over a signal of length

pq [16], [27]), the reduction applies only if p and q are

relatively prime. This excludes the most typical case of

m × m grids where m is a power of 2. The only prior

algorithm that applies to general m×m grids, due to [16],

has O(k logc N) sample and time complexity for a rather

large value of c. If N is a power of 2, a two-dimensional

adaptation of the [20] algorithm (outlined in [14]) has

roughly O(k log3 N) time and sample complexity, and an

adaptation of [25] has O(k log2 N(log logN)O(1)) sample

complexity.

Our results: In this paper we give an algorithm that

overcomes both of the aforementioned limitations. Specifi-

cally, we present an algorithm for the sparse Fourier trans-

form in any fixed dimension that uses only O(k logN)
samples of the signal. This is the first algorithm that matches

the lower bound of [11], for k up to N1−δ for any constant

δ > 0. The recovery algorithm runs in time O(N logO(1) N).

In addition, we note that the algorithm is in fact quite

simple. It is essentially a variant of an iterative thresholding

scheme, where the coordinates of the signal are updated

sequentially in order to minimize the difference between

the current approximation and the underlying signal. In Sec-

tion VII we discuss a preliminary experimental evaluation

of this algorithm, which shows promising results.

The techniques introduced in this paper have already

found applications. In particular, in a followup paper [23],

we give an algorithm that uses O(k log(N) logO(1) logN)
samples of the signal and has the running time of

O(k logO(1)(N) logO(1) logN) for any constant dimension

d. This generalizes the result of [25] to any constant dimen-

sion, at the expense of somewhat larger runtime.

Our techniques: The overall outline of our algorithms

follows the framework of [16], [20], [25], which adapt the

methods of [9], [17] from arbitrary linear measurements to

Fourier ones. The idea is to take, multiple times, a set of

B = O(k) linear measurements of the form

ũj =
∑

i:h(i)=j

sixi

for random hash functions h : [N] → [B] and random sign

changes si with |si| = 1. This denotes hashing to B buckets.

With such ideal linear measurements, O(log(N/k)) hashes

suffice for sparse recovery, giving an O(k log(N/k)) sample

complexity.

The sparse Fourier transform algorithms approximate ũ
using linear combinations of Fourier samples. Specifically,

the coefficients of x are first pseudo-randomly permuted, by

re-arranging the access to x̂ via a random affine permutation.

Then the coefficients are partitioned into buckets. This steps

uses the“filtering” process that approximately partitions the

range of x into intervals (or, in higher dimension, squares)

with N/B coefficients each, and collapses each interval into

one bucket. To minimize the number of samples taken, the

filtering process is approximate. In particular the coefficients

contribute (“leak”’) to buckets other than the one they are

nominally mapped into, although that contribution is limited

and controlled by the quality of the filter. The details are

described in Section III, see also [21] for further overview.

Overall, this probabilistic process ensures that most of the

515515

large coefficients are “isolated”, i.e., are hashed to unique

buckets, as well as that the contributions from the “tail”

of the signal x to those buckets is not much greater than

the average; the tail of the signal is defined as Errk(x) =
mink−sparse y ||x−y||2. This enables the algorithm to identify

the positions of the large coefficients, as well as estimate

their values, producing a sparse estimate χ of x. To improve

this estimate, we repeat the process on x−χ by subtracting

the influence of χ during hashing. The repetition will yield

a good sparse approximation χ of x.

To achieve the optimal number of measurements, however,

our algorithm departs from the above scheme in a crucial

way: the algorithm does not use fresh hash functions in every

repetition. Instead, O(logN) hash functions are chosen at

the beginning of the process, such that each large coefficient

is isolated by most of those functions with high probability.

The same hash functions are then used throughout the

duration of the algorithm. Note that each hash function

requires a separate set of samples to construct the buckets, so

reusing the hash functions means that the number of samples

does not grow with the number of iterations. This enables

us to achieve the optimal measurement bound.

At the same time reusing the hash functions creates a

major difficulty: if the algorithm identifies a non-existing

large coefficient by mistake and adds it to χ, this coefficient

will be present in the difference vector x−χ and will need

to be corrected later. And unlike the earlier guarantee for the

large coefficients of the original signal x, we do not have any

guarantees that large erroneous coefficients will be isolated

by the hash functions, since the positions of those coeffi-

cients are determined by those functions. Because of these

difficulties, almost all prior works3 either used a fresh set of

measurements in each iteration (almost all sparse Fourier

transform algorithms fall into this category) or provided

stronger deterministic guarantees for the sampling pattern

(such as the restricted isometry property [8]). However, the

latter option required a larger number of measurements to

ensure the desired properties. Our algorithm circumvents this

difficulty by ensuring that no large coefficients are created

erroneously. This is non-trivial, since the hashing process is

quite noisy (e.g, the bucketing process suffers from leakage).

Our solution is to recover the large coefficients in the

decreasing order of their magnitude. Specifically, in each

step, we recover coefficients with magnitude that exceeds a

specific threshold (that decreases exponentially). The process

is designed to ensure that (i) all coefficients above the

threshold are recovered and (ii) all recovered coefficients

have magnitudes close to the threshold. In this way the set of

locations of large coefficients stays fixed (or monotonically

3We are only aware of two exceptions: the algorithms of [14], [32] (which
were analyzed only for the easier case where the large coefficients them-
selves were randomly distributed) and the analysis of iterative thresholding
schemes due to [3] (which relied on the fact that the measurements were
induced by Gaussian or Gaussian-like matrices).

decreases) over the duration of the algorithms, and we can

ensure the isolation properties of those coefficients during

the initial choice of the hash functions.

Overall, our algorithm has two key properties (i) it is iter-

ative, and therefore the values of the coefficients estimated

in one stage can be corrected in the second stage and (ii)

does not require fresh hash functions (and therefore new

measurements) in each iteration. Property (ii) implies that

the number of measurements is determined by only a single

(first) stage, and does not increase beyond that. Property (i)

implies that the bucketing and estimation process can be

achieved using rather “crude” filters4, since the estimated

values can be corrected in the future stages. As a result

each of the hash function require only O(k) samples; since

we use O(logN) hash functions, the O(k logN) bound

follows. This stands in contrast with the algorithm of [16]
(which used crude filters of similar complexity but required

new measurements per each iteration) or [20] (which used

much stronger filters with O(k logN) sample complexity)

or [25] (which used filters of varying quality and sample

complexity). The advantage of our approach is amplified in

higher dimension, as the ratio of the number of samples

required by the filter to the value k grows exponentially in

the dimension. Thus, our filters still require O(k) samples

in any fixed dimension d, while for [20], [25] this bound

increases to O(k logd N).

Organization: We give definitions and basic results

relevant to sparse recovery from Fourier measurements in

section II. Filters that our algorithm uses are constructed in

section III. Section IV states the algorithm and provides in-

tuition behind the analysis. The main lemmas of the analysis

are proved in section V, and full analysis of the algorithm is

provided in section VI. Results of an experimental evaluation

are presented in section VII.

II. PRELIMINARIES

For a positive even integer a we will use the notation [a] =
{−a

2 ,−a
2 + 1, . . . ,−1, 0, 1, . . . , a

2 − 1}. We will consider

signals of length N = nd, where n is a power of 2 and

d ≥ 1 is the dimension. We use the notation ω = e2πi/n for

the root of unity of order n. The d-dimensional forward and

inverse Fourier transforms are given by

x̂j =
1√
N

∑
i∈[n]d

ω−iT jxi and xj =
1√
N

∑
i∈[n]d

ωiT j x̂i

(2)

respectively, where j ∈ [n]d. We will denote the forward

Fourier transform by F . Note that we use the orthonormal

version of the Fourier transform. Thus, we have ||x̂||2 =
||x||2 for all x ∈ C

N (Parseval’s identity). We recover a

4In fact, our filters are only slightly more accurate than the filters
introduced in [16], and require the same number of samples.

516516

signal z such that

||x− z||2 ≤ (1 + ε) min
k− sparse y

||x− y||2

from samples of x̂.

We will use pseudorandom spectrum permutations, which

we now define. We write Md×d for the set of d×d matrices

over Zn with odd determinant. For Σ ∈ Md×d, q ∈ [n]d

and i ∈ [n]d let πΣ,q(i) = Σ(i − q) mod n. Since Σ ∈
Md×d, this is a permutation. Our algorithm will use π to

hash heavy hitters into B buckets, where we will choose

B ≈ k/ε. It should be noted that unlike many sublinear

time algorithms for the problem, our algorithm does not use

O(k) buckets with centers equispaced in the time domain.

Instead, we think of each point in time domain as having

a bucket around it. This improves the dependence of the

number of samples on the dimension d. We will often omit

the subscript Σ, q and simply write π(i) when Σ, q is fixed or

clear from context. For i, j ∈ [n]d we let oi(j) = π(j)−π(i)
to be the “offset” of j ∈ [n]d relative to i ∈ [n]d. We will

always have B = bd, where b is a power of 2.

Definition II.1. Suppose that Σ−1 exists mod n. For a, q ∈
[n]d we define the permutation PΣ,a,q by (PΣ,a,qx̂)i =

x̂ΣT (i−a)ω
iTΣq .

Lemma II.2. F−1(PΣ,a,qx̂)πΣ,q(i) = xiω
aTΣi

The proof is similar to the proof of Claim B.3 in [14]

and is deferred to the full version of the paper [24] for

completeness. Define

Errk(x) = min
k−sparse y

||x− y||2 and μ2 = Err2k(x)/k. (3)

In this paper, we assume knowledge of μ (a constant factor

upper bound on μ suffices). We also assume that the signal to

noise ratio is bounded by a polynomial, namely that R∗ :=
||x||∞/(

√
εμ) ≤ nC for a constant C > 0. We use the

notation B
∞
r (x) to denote the �∞ ball of radius r around x:

B
∞
r (x) = {y ∈ [n]d : ||x− y||∞ ≤ r},

where ||x− y||∞ = max1≤s≤d ||xs− ys||◦, and ||xs− ys||◦
is the circular distance on Zn. We will also use the notation

f � g to denote f = O(g). We sometimes write u.a.r. to

denote ‘uniformly at random’.

III. FILTER CONSTRUCTION AND PROPERTIES

For an integer b > 0 a power of 2 let

Ĥ1
i =

{ √
n

b−1 , if |i| < b/2

0 o.w.
(4)

Let ĤF denote the F -fold convolution of Ĥ1 with itself,

so that supp ĤF ⊆ [−F · b, F · b]. Here and below F is a

parameter that we will choose to satisfy F ≥ 2d, F = Θ(d).

The Fourier transform of Ĥ1 is the Dirichlet kernel (see

e.g. [36], page 37):

H1
j =

1

b− 1

∑
|i|<b/2

ωij =
sin(π(b− 1)j/n)

(b− 1) sin(πj/n)
for j
= 0

H1
0 = 1.

Thus, HF
j =

(
1

b−1

∑
|i|<b/2 ω

ij
)F

=
(

sin(π(b−1)j/n)
(b−1) sin(πj/n)

)F

for j
= 0, and HF
0 = 1. For i ∈ [n]d let

Gi =

d∏
s=1

HF
is , (5)

so that Ĝi =
∏d

s=1 Ĥ
F
is

and supp Ĝ ⊆ [−F · b, F · b]d. We

will use the following simple properties of G:

Lemma III.1. For any F ≥ 1 one has (1) G0 = 1, and
Gj ∈ [1

(2π)F ·d , 1] for all j ∈ [n]d such that ||j||∞ ≤ n
2b ; (2)

|Gj | ≤
(

2
1+(b/n)||j||∞

)F

for all j ∈ [n]d as long as b ≥ 3.

The two properties imply that most of the mass of the filter

is concentrated in a box of side O(n/b), approximating the

“ideal” filter (whose value would be equal to 1 for entries

within the square and equal to 0 outside of it). The proof of

the lemma is similar to the analysis of filters in [21], [25]

and is deferred to the full version of the paper [24]. We will

not use the lower bound on G given in the first claim of

Lemma III.1 for our Õ(N) time algorithm in this paper. We

state the Lemma in full form for later use in [23], where we

present a sublinear time algorithm.

The following property of pseudorandom permutations

πΣ,q makes hashing using our filters effective (i.e. allows us

to bound noise in each bucket, see Lemma III.3, see below):

Lemma III.2. Let i, j ∈ [n]d. Let Σ be uniformly random
with odd determinant. Then for all t ≥ 0 Pr[||Σ(i−j)||∞ ≤
t] ≤ 2(2t/n)d.

A somewhat incomplete proof of this lemma for the case

d = 2 appeared as Lemma B.4 in [14]. We give a full proof

for arbitrary d in the full version of the paper [24].

We access the signal x via random samples of x̂, namely

by computing the signal F−1((PΣ,a,qx̂)·Ĝ). As Lemma III.3

below shows, this effectively “hashes” x into B = bd bins

by convolving it with the filter G constructed above. Since

our algorithm runs in Õ(N) as opposed to Õ(k) time,

we can afford to work with bins around any location in

time domain (we will be interested in locations of heavy

hitters after applying the permutation, see Lemma III.3).

This improves the dependence of our sample complexity on

d. The properties of the filtering process are summarized in

Lemma III.3. Let x ∈ C
N . Choose Σ ∈ Md×d, a, q ∈

[n]d uniformly at random, independent of x. Let u =√
NF−1((PΣ,a,qx̂) · Ĝ), where G is the filter constructed

517517

in (5). Let π = πΣ,q . For i ∈ [n]d let μ2
Σ,q(i) =∑

j∈[n]d\{i} |xjGoi(j)|2, where oi(j) = π(j) − π(i) as
before. Suppose that F ≥ 2d. Then for any i ∈ [n]d

1) EΣ,q[μ
2
Σ,q(i)] ≤ Cd‖x‖22/B for a constant C > 0.

2) for any Σ, q one has Ea[|ω−aTΣiuπ(i) − xi|2] �
μ2
Σ,q(i) + δ||x||22, where the last term corresponds to

the numerical error incurred from computing FFT with
O(log 1/δ) bits of machine precision.

The proof of Lemma III.3 is given in the full version of

the paper [24].

Remark III.4. We assume throughout the paper that arith-
metic operations are performed on C logN bit numbers for
a sufficiently large constant C > 0 such that δ||x||22 ≤
δ(R∗)2nμ2 ≤ μ2/N , so that the effect of rounding errors
on Lemma III.3 is negligible.

IV. THE ALGORITHM

In this section we present our Õ(N) time algorithm that

achieves dO(d) 1
εk logN sample complexity and give the

main definitions required for its analysis. Our algorithm

follows the natural iterative recovery scheme. The main

body of the algorithm (Algorithm 1) takes samples of the

signal x̂ and repeatedly calls the LOCATEANDESTIMATE

function (Algorithm 2), improving estimates of the values of

dominant elements of x over O(log n) iterations. Crucially,

samples of x̂ are only taken at the beginning of Algorithm 1

and passed to each invocation of LOCATEANDESTIMATE.

Each invocation of LOCATEANDESTIMATE takes samples

of x̂ as well as the current approximation χ to x as input,

and outputs a constant factor approximation to dominant

elements of x− χ (see section VI for analysis of LOCATE-

ANDESTIMATE).

We first give intuition behind the algorithm and the

analysis. We define the set S ⊆ [n]d to contain elements

i ∈ [n]d such that |xi|2 ≥ εμ2 (i.e. S is the set of head
elements of x). As we show later (see section VI) it is

sufficient to locate and estimate all elements in S up to

O(εμ2) error term in order obtain �2/�2 guarantees that we

need5. Algorithm 1 performs O(logN) rounds of location

and estimation, where in each round the located elements

are estimated up to a constant factor. The crucial fact that

allows us to obtain an optimal sampling bound is that the

algorithm uses the same samples during these O(logN)
rounds. Thus, our main goal is to show that elements of

S will be successfully located and estimated throughout

the process, despite the dependencies between the sampling

pattern and the residual signal x−χ(t) that arise due to reuse

of randomness in the main loop of Algorithm 1.

We now give an overview of the main ideas that allow

us to circumvent lack of independence. Recall that our

5In fact, one can see that our algorithm gives the stronger �∞/�2
guarantee

Algorithm 1 Overall algorithm: perform Sparse Fourier

Transform
1: procedure SPARSEFFT(x̂, k, ε, R∗, μ) 	 R∗ is a bound

on ||x||∞/(
√
εμ)

2: χ(0) ← 0 	 in C
n.

3: T ← log2 R
∗

4: B ← k/(εαd) 	 B = bd for b a power of 2
5: G, Ĝ← filter as in (5)

6: rmax ← Θ(logN)
7: for r = 0 to rmax do
8: Choose Σr ∈Md×d, ar, qr ∈ [n]d u.a.r.

9: For r = 1, . . . , rmax,

10: ur ← √
NF−1((PΣ,a,qx̂) · Ĝ)

11: � Note that ur ∈ C
[n]d for all r

12: end for
13: for t = 0, 1, . . . , T − 1 do
14: χ′ ← LOCATEANDESTIMATE(x̂, χ(t),
15: {(Σr, ar, br), ur}rmax

r=1 , rmax, Ĝ, 4
√
εμ2T−(t+1))

16: χ(t+1) ← χ(t) + χ′

17: end for
18: return χ(T)

19: end procedure

Algorithm 2 LOCATEANDESTIMATE(x̂, χ,
{(Σr, ar, qr), ur}rmax

r=1 , rmax, Ĝ, ν)

1: procedure LOCATEANDESTIMATE(x̂, χ,

{(Σr, ar, qr), ur}rmax
r=1 , rmax, Ĝ, ν)

2: Requires that ||x− χ||∞ ≤ 2ν
3: Guarantees that ||x− χ− χ′||∞ ≤ ν
4: L← ∅
5: w ← 0
6: for r = 0 to rmax do
7: vr ← ur −√NF−1((PΣ,a,qχ̂) · Ĝ)
8: � Update signal: note this does not use any new

samples

9: end for
10: for f ∈ [n]d do
11: S ← ∅
12: for r = 0 to rmax do
13: Denote permutation πΣr,qr by π

14: S ← S ∪ {vrπ(f) · ω−aTΣf}
15: end for
16: η ← median(S)
17: If |η| ≤ ν/2 then continue
18: L← L ∪ {f}
19: wf ← η
20: end for
21: return w
22: end procedure

518518

algorithm needs to estimate all head elements, i.e. elements

i ∈ S, up to O(εμ2) additive error. Fix an element i ∈ S
and for each permutation π consider balls B∞π(i)((n/b)·2t+2)
around the position that i occupies in the permuted signal.

For simplicity, we assume that d = 1, in which case the

balls B
∞
π(i)((n/b) · 2t+2) are just intervals:

B
∞
π(i)((n/b) · 2t+2) = π(i) +

[
−n

b
· 2t+2,+

n

b
· 2t+2

]
, (6)

where addition is modulo n. Since our filtering scheme is

essentially “hashing” elements of x into B = Ω(|S|/α)
“buckets” for a small constant α > 0, we expect at

most O(α)2t+2 elements of S to land in a ball (6) (i.e.

the expected number of elements that land in this ball is

proportional to its volume).

First suppose that this expected case occurs for any

permutation, and assume that all head elements (elements

of S) have the same magnitude (equal to 1 to simplify

notation). It is now easy to see that the number of elements

of S that are mapped to (6) for any t ≥ 0 does not

exceed its expectation (we call element i “isolated” with

respect to π at scale t in that case), then the contribution

of S to i’s estimation error is O(α). Indeed, recall that the

contribution of an element j ∈ [n] to the estimation error

of i is about (1 + (b/n)|π(i) − π(j)|)−F by Lemma III.1,

(2), where we can choose F to be any constant without

affecting the asymptotic sample complexity. Thus, even if

F = 2, corresponding to the boxcar filter, the contribution

to i’s estimation error is bounded by∑
t≥0,(n/b)·2t+2<n/2

∣∣∣π(S) ∩ B
∞
π(i)((n/b) · 2t+2)

∣∣∣
· max
y∈B∞

π(i)
((n/b)·2t+2)\B∞

π(i)
((n/b)·2t+1)

|Gπ(i)−y|

=
∑

t≥0,(n/b)·2t+2<n/2

O(α2t+2) · (1 + 2t+1)−F = O(α).

Thus, if not too many elements of S land in intervals around

π(i), then the error in estimating i is at most O(α) times the

maximum head element in the current residual signal (plus

noise, which can be handled separately). This means that the

median in line 15 of Algorithm 2 is an additive ±O(α)||x−
χ||∞ approximation to element f . Since Algorithm 2 only

updates elements that pass the magnitude test in line 16,

we can conclude that whenever we update an element, we

have a (1±O(α)) multiplicative estimate of its value, which

is sufficient to conclude that we decrease the �∞ norm of

x−χ in each iteration. Finally, we crucially ensure that the

signal is never updated outside of the set S. This means that

the set of head elements is fixed in advance and does not

depend on the execution path of the algorithm! This allows

us to formulate a notion of isolation with respect to the set

S of head elements fixed in advance, and hence avoid issues

arising from the lack of independence of the signal x − χ
and the permutations we choose.

We formalize this notion in Definition V.2, where we

define what it means for i ∈ S to be isolated under π.

Note that the definition is essentially the same as asking

that the balls in (6) do not contain more than the expected

number of elements of S. However, we need to relax the

condition somewhat in order to argue that it is satisfied

with good enough probability simultaneously for all t ≥ 0.

A adverse effect of this relaxation is that our bound on

the number of elements of S that are mapped to a balls

around π(i) are weaker than what one would have in

expectation. This, however, is easily countered by choosing

a filter with stronger, but still polynomial, decay (i.e. setting

the parameter F in the definition of our filter G in (5)

sufficiently large).

As noted before, the definition of being isolated crucially

only depends on the locations of heavy hitters as opposed

to their values. This allows us to avoid an (intractable)

union bound over all signals that appear during the execution

of our algorithm. We give formal definitions of isolationin

section V, and then use them to analyze the algorithm in

section VI.

V. ISOLATED ELEMENTS AND MAIN TECHNICAL LEMMAS

We now give the technical details for the outline above.

Definition V.1. For a permutation π and a set S ⊆ [n]d we
denote Sπ := {π(x) : x ∈ S}.
Definition V.2. Let Σ ∈ Md×d, q ∈ [n]d, S ⊆ [n]d, and
let π = πΣ,q . We say that an element i is isolated under
permutation π at scale t if

|(S \ {i})π ∩ B
∞
π(i)((n/b) · 2t+2)| ≤ αd/22(t+3)d · 2t.

We say that i is simply isolated under permutation πΣ,q if it
is isolated under πΣ,q at all scales t ≥ 0.

Remark V.3. We will use the definition of isolated elements
for a set S with |S| ≈ k/ε.

The following lemma shows that every i ∈ [n]d is likely

to be isolated under a randomly chosen permutation π:

Lemma V.4. Let S ⊆ [n]d, |S| ≤ 2k/ε. Let B ≥
k/(εαd). Let Σ ∈ Md×d, q ∈ [n]d be chosen uniformly
at random, and let π = πΣ,q . Then each i ∈ [n]d is isolated

under permutation π with probability at least 1−O(αd/2).

Proof: By Lemma III.2, for fixed i, j
= i, and any

r ≥ 0,

PrΣ[‖Σ(i− j)‖∞ ≤ r] ≤ 2(2r/n)d. (7)

Setting r = (n/b) · 2t+2, we get

EΣ,q[|(S \ {i})π ∩ B
∞
π(i)((n/b) · 2t+2)|]

=
∑

j∈S\{i}
PrΣ,q[π(j) ∈ B

∞
π(i)((n/b) · 2t+2)] (8)

519519

Since πΣ,q(i) = Σ(i− q) for all i ∈ [n]d, we have

PrΣ,q[π(j) ∈ B
∞
π(i)((n/b) · 2t+2)]

= PrΣ,q[||π(j)− π(i)||∞ ≤ (n/b) · 2t+2]

= PrΣ,q[||Σ(j − i)||∞ ≤ (n/b) · 2t+2] ≤ 2(2t+3/b)d,

where we used (7) in the last step. Using this in (8), we get

EΣ,q[|(S \ {i})π ∩ B
∞
π(i)((n/b) · 2t+2)|]

≤ |S| · (2t+3/b)d ≤ (|S|/B) · 2(t+3)d � εαd2(t+3)d.

Now by Markov’s inequality we have that i fails to be

isolated at scale t with probability at most

PrΣ,q

[
|(S \ {i})π ∩ B

∞
π(i)(

n

b
· 2t+2)| > αd/22(t+3)d+t

]
� 2−tαd/2.

Taking the union bound over all t ≥ 0, we get

PrΣ,q[i is not isolated] �
∑

t≥0 2
−tαd/2 � αd/2 as re-

quired.

The contribution of tail noise to an element i ∈ [n]d is

captured by the following

Definition V.5. Let x ∈ C
N . Let S ⊆ [n]d, |S| ≤ 2k/ε. Let

B ≥ k/(εαd). Let u =
√
NF−1((PΣ,a,qx̂[n]d\S) · Ĝ). We

say that an element i ∈ [n]d is well-hashed with respect to

noise under (πΣ,q, a) if |uπ(i)ω
−aTΣi − xi|2 = O(

√
α)εμ2,

where we let π = πΣ,q to simplify notation.

Lemma V.6. Let S ⊆ [n]d, |S| ≤ 2k/ε, be such
that ||x[n]d\S ||∞ ≤ μ. Let B ≥ k/(εαd). Let
Σr ∈ Md×d, qr, ar ∈ [n]d, r = 1, . . . , rmax, rmax ≥
(C/

√
α) logN be chosen uniformly at random, where α > 0

is a constant and C > 0 is a sufficiently large constant that
depends on α. Then with probability at least 1 − N−Ω(C)

1) each i ∈ [n]d is isolated with respect to S under at least
(1 − O(

√
α))rmax permutations πr, r = 1, . . . , rmax; and

2) each i ∈ [n]d is well-hashed with respect to noise under
at least (1−O(

√
α))rmax pairs (πr, ar), r = 1, . . . , rmax.

Proof: The first claim follows by an application of

Chernoff bounds and Lemma V.4. For the second claim,

let u =
√
NF−1((PΣ,a,qx̂[n]d\S) · Ĝ), where (Σ, a, q) =

(Σr, ar, qr) for some r = 1, . . . , rmax. Letting π = πΣ,q ,

by Lemma III.3, (1) and (2) we have

EΣ,q,a[|uπ(i)ω
−aTΣi − (x[n]d\S)i|2]

≤ (C ′)d||x[n]d\S ||2/B + ||x||2 ·N−Ω(c)

for a constant C ′ > 0, where we asssume that arithmetic

operations are performed on c logN -bit numbers for some

constant c > 0. Since we assume that R∗ ≤ poly(N), we

have

EΣ,q,a[|uπ(i)ω
−aTΣi − (x[n]d\S)i|2]

≤ (C ′′)d||x[n]d\S ||2/B + μ2 ·N−Ω(c).

Let S∗ ⊂ [n]d denote a set of top k coefficients of x (with

ties broken arbitrarily). We have

||x[n]d\S ||2 ≤ ||x[n]d\(S∪S∗)||2 + ||xS∗\S ||2
≤ ||x[n]d\S ||2 ≤ ||x[n]d\S∗ ||2 + k · ||x[n]d\S ||2∞ ≤ 2kμ2.

Since B ≥ k/(εαd), we thus have

EΣ,q,a[|uπ(i)ω
−aTΣi − (x[n]d\S)i|2] ≤ (C ′′′α)dεμ2

for a constant C ′′′ > 0. By Markov’s inequality

PrΣ,q,a[|uh(i)ω
−aTΣi−(x[n]d\S)i|2 > (C ′′′

√
α)dεμ2] < αd/2.

As before, an application of Chernoff bounds now shows

that each i ∈ [n]d is well-hashed with respect to noise with

probability at least 1 − N−10, and hence all i ∈ [n]d are

well-hashed with respect to noise with probability at least

1−N−Ω(C) as long as α is smaller than an absolute constant.

We now combine Lemma V.4 with Lemma V.6 to derive

a bound on the noise in the “bucket” of an element i ∈ [n]d

due to both heavy hitters and tail noise. Note that crucially,

the bound only depends on the �∞ norm of the head

elements (i.e. the set S), and in particular, works for any
signal that coincides with x on the complement of S.

Lemma V.7 will be the main tool in the analysis of our

algorithm in the next section.

Lemma V.7. Let x ∈ C
N . Let S ⊆ [n]d, |S| ≤ 2k/ε.

Let B ≥ k/(εαd). Let y ∈ C
N be such that y[n]d\S =

x[n]\S and ||yS ||∞ ≤ 4
√
εμ2w for some t ≥ 0. Let

u =
√
NF−1((PΣ,a,q ŷ) · Ĝ). Then for each i ∈ [n]d that

is isolated and well-hashed with respect to noise under
(Σr, qr, ar) one has |ujω

−aTΣi − yi|2 � √
αε((4μ2w)2 +

μ2).

Proof: We have
∣∣∣ujω

−aTΣi − xi

∣∣∣2 ≤ 2|AH |2 +

2|AT |2, where AH = uH
j ω−aTΣi − (yS)i for uH =√

NF−1((PΣ,a,q ŷS) · Ĝ) and AT = uT
j ω

−aTΣi− (y[n]d\S)i
for uT =

√
NF−1((PΣ,a,q ŷ[n]d\S) · Ĝ)

We first bound AH . Fix i ∈ [n]d. If i is isolated, we have

|(S \ {i})π ∩ B
∞
π(i)((n/b) · 2t+2)| ≤ αd/22(t+3)d · 2t.

for all t ≥ 0. We have

|AH | = |uH
j ω−aTΣi − yi| =

∣∣∣∣∣∣
∑

j∈S\{i}
yjGoi(j)ω

−aTΣj

∣∣∣∣∣∣
≤

∑
j∈S\{i}

|yjGoi(j)|

≤ ||yS ||∞ ·
∑
t≥0

(
2

2t+2

)F

|(S \ {i})π ∩ B
∞
π(i)

(n
b
· 2t+2

)
|

≤ ||yS ||∞ ·
∑
t≥0

(
2

2t+2

)F

αd/22(t+3)d · 2t

520520

= ||yS ||∞ ·O(αd/2) = O(αd/2
√
εμ2w)

as long as F ≥ 2d, F = Θ(d). Further, if i is well-hashed

with respect to noise, we have |AT | � √αεμ2. Putting these

estimates together yields the result.

VI. MAIN RESULT

In this section we use Lemma V.7 to prove that our algo-

rithm satisfies the stated �2/�2 sparse recovery guarantees.

The proof consists of two main steps: Lemma VI.1 proves

that one iteration of the peeling process (i.e. one call to LO-

CATEANDESTIMATE) outputs a list containing all elements

whose values are close to the current �∞ norm of the residual

signal. Furthermore, approximations that LOCATEANDES-

TIMATE returns for elements in its output list are correct up

to a multiplicative 1± 1/3 factor. Lemma VI.2 then shows

that repeated invocations of LOCATEANDESTIMATE reduce

the �∞ norm of the residual signal as claimed.

Lemma VI.1. Let x ∈ C
N . Let S ⊆ [n]d, |S| ≤ 2k/ε, be

such that ||x[n]d\S ||∞ ≤ μ. Let B ≥ k/(εαd). Consider
the t-th iteration of the main loop in Algorithm 1. Suppose
that ||x− χ||∞ ≤ 2ν, ν >

√
εμ. Suppose that each element

i ∈ [n]d is isolated with respect to S and well-hashed with
respect to noise under at least (1−O(

√
α))rmax values of

r = 1, . . . , rmax. Let y = x − χ(t), and let χ′ denote the
output of LOCATEANDESTIMATE. Then one has

1) |χ′i − yi| < 1
3 |yi| for all i ∈ L;

2) all i such that |yi| ≥ ν are included in L;
3) for all i ∈ L one has |yi| ≥ ν/4

as long as α > 0 is a sufficiently small constant.

Proof: We let y := x − χ(t) to simplify notation. Fix

i ∈ [n]d. Consider r such that i is isolated under πr and

well-hashed with respect to noise under (πr, ar). Then we

have by Lemma V.7

|vrjω−aTΣi − yi|2 �
√
α(ε(||y[S]||∞)2 + εμ2)

�
√
αε((2ν)2 + μ2) ≤ (

1

16
ν)2

(9)

as long as α is smaller than an absolute constant.

Since each i is well-hashed with respect to at least at

1−O(
√
α) fraction of permutations, we get that |yi− η| ≤

1
16ν. Now if i ∈ L, it must be that |η| > ν/2, but then

|yi| ≥ |η| − ν/16 > ν/2− ν/16 > (1/4)ν, (10)

implying the third claim. This also implies that |χ′i − yi| ≤
ν/16 < 4|yi|/16 < |yi|/3, so the first claim follows.

For the second claim, it suffices to note that if |yi| > ν,

then we must have |η| ≥ |yi| − ν/16 > ν/2, so i passes the

magnitude test and is hence included in L.

We can now prove the main lemma required for analysis

of Algorithm 1:

Lemma VI.2. Let x ∈ C
N . Let Σr ∈ Md×d, ar, qr ∈

[n]d, r = 1, . . . , rmax = C logN , where C > 0 is a

sufficiently large constant, be chosen uniformly at ran-
dom. Then with probability at least 1 − N−Ω(C) one has
||x− χ(T)||∞ ≤ 4

√
εμ.

Proof: We now fix a specific choice of the set S ⊆ [n]d.

Let

S = {i ∈ [n]d : |xi| >
√
εμ}. (11)

First note that ||x[n]d\S ||∞ ≤ √
εμ (in particular,

||x[n]d\S ||∞ ≤ μ). Also, we have |S| ≤ 2k/ε. Indeed, recall

that μ2 = Err2k(x)/k. If |S| > 2k/ε, more than k/ε elements

of S belong to the tail, amounting to at least εμ2 · (k/ε) >
Err2k(x) tail mass. Thus, since rmax ≥ C logN , and by the

choice of B in Algorithm 1, we have by Lemma V.6 that

with probability at least 1−N−Ω(C)

1) each i ∈ [n]d is isolated with respect to S under

at least (1 − O(
√
α))rmax permutations πr, r =

1, . . . , rmax;

2) each i ∈ [n]d is well-hashed with respect to noise

under at least (1−O(
√
α))rmax permutations πr, r =

1, . . . , rmax.

This ensures that the preconditions of Lemma VI.1 are sat-

isfied. We now prove the following statement for t ∈ [0 : T]
by induction on t:

1) χ
(t)
[n]\S ≡ 0

2) ||(x− χ(t))S ||∞ ≤ 4
√
εμ2T−t.

3) |xi − χ
(t)
i | ≤ |xi| for all i ∈ [n]d.

Base:t = 0. True by the choice of T .

Inductive step: t → t + 1. Consider the list L constructed

by LOCATEANDESTIMATE at iteration t. Let S∗ := {i ∈
S : |(x − χ(t))i| > 4

√
εμ2T−(t+1)}. We have S∗ ⊆ L by

Lemma VI.1, (2). Thus,

||(x− χ(t+1))S ||∞ ≤ max{||(x− χ(t+1))S∗ ||∞,

||(x− χ(t+1))S\S∗ ||∞,

||(x− χ(t+1))[n]d\S ||∞}.

By Lemma VI.1, (1) we have |xi − χ
(t+1)
i | ≤ |xi − χ

(t)
i |/3

for all i ∈ L, so (3) follows. Furthemore, this implies that

1) ||(x − χ(t+1))S∗ ||∞ ≤ ||x − χ(t)||∞/3 ≤
4
√
εμ2T−(t+1) by the inductive hypothesis;

2) ||(x− χ(t+1))S\S∗ ||∞ ≤ 4
√
εμ2T−(t+1) by definition

of S∗;
3) ||(x − χ(t+1))[n]d\S ||∞ = ||x[n]d\S ||∞ ≤ √

εμ ≤
4
√
εμ2T−(t+1) by the inductive hypothesis and the

fact that t ≤ T − 1.

This proves (2).

Finally, by Lemma VI.1, (3) only elements i such that

|(x−χ(t))i| > 1
44
√
εμ2T−t >

√
εμ are included in L. Since

|(x − χ(t))i| ≤ |xi|, this means that |xi| >
√
εμ, i.e. i ∈ S

and χ
(t+1)
[n]\S = 0, as required.

We can now prove

521521

Theorem VI.3. Algorithm 1 returns a vector χ such that
||x− χ||2 ≤ (1 +O(ε)) Errk(x). The number of samples is
bounded by dO(d) 1

εk logN , and the runtime is bounded by
O(N log3 N).

Proof: By Lemma VI.2 we have that ||x − χ||∞ ≤
4
√
εμ, so

||x− χ||22 ≤ ||(x− χ)[k]||2∞ · k + ||(x− χ)[n]d\[k]||22
≤ ||(x− χ)[k]||2∞ · k + ||x[n]d\[k]||22
≤ (1 +O(ε)) Err2k(x),

where we used Lemma VI.2, (3) to upper bound ||(x −
χ)[n]d\[k]||22 with ||x[n]d\[k]||22.

We now bound sampling complexity. The support of

the filter G is bounded by O(BF d) = dO(d) 1
εk by con-

struction. We are using rmax = Θ(logN), amounting

to dO(d) 1
εk logN sampling complexity overall. The loca-

tion and estimation loop takes O(N log3 N) time: each

time the vector vr is calculated in LOCATEANDESTIMATE

O(N logN) time is used by the FFT computation, so since

we compute O(logN) vectors during each of O(logN)
iterations, this results in an O(N log3 N) contribution to

runtime.

VII. EXPERIMENTAL EVALUATION

In this section we describe results of an experimental

evaluation of our algorithm from section IV. In order to

avoid the issue of numerical precision and make the notion

of recovery probability well-defined, we focus the problem

of support recovery, where the goal is to recover the po-
sitions of the non-zero coefficients. We first describe the

experimental setup that we used to evaluate our algorithm,

and follow with evaluation results.

Experimental setup: We present experiments for sup-

port recovery from one-dimensional Fourier measurements

(i.e. d = 1). In this problem one is given frequency domain

access to a signal x̂ that is exactly k-sparse in the time

domain, and needs to recovery the support of x exactly. The

support of x was chosen to be uniform among subsets of

[N] of size k.

We compared our algorithm to �1-minimization, a state-

of-the-art technique for practical sparse recovery using

Gaussian and Fourier measurements. We used the implemen-

tation from SPGL1 [38], [37], a standard Matlab package

for sparse recovery using �1-minimization. We also present a

comparison to SSMP [5], which is a state-of-the art iterative

algorithm for sparse recovery using sparse matrices. We

compare our results to experiments in [4]. The details of our

implementation of Algorithm 1 and the input distributions

in the two experiments are described in the full version of

the paper [24].

Results: A plot of recovery probability as a function

of the number of (complex) measurements and sparsity for

SPGL1 and Algorithm 1 is given in Fig. 2. The empirical

sparsity

nu
m

be
r o

f m
ea

su
re

m
en

ts

n=32768, L1 minimization

10 20 30 40 50 60 70 80 90 100

500

1000

1500

2000

2500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sparsity

n=32768, B=k+1, random phase, non−monotone

10 20 30 40 50 60 70 80 90 100

500

1000

1500

2000

2500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2. Success probability as a function of sparsity and number
of (complex) measurements: SPGL1 (left panel) and Algorithm 1 (right
panel).

sample complexity of our algorithm is within a factor of

2 of �1 minimization if success probability 0.9 is desired.

The best known theoretical bounds for the general setting

of approximate sparse recovery show that O(k log3 k logN)
samples are sufficient. The runtime is bounded by the cost

of solving an N×m linear program. Our algorithm provides

comparable empirical performance, while providing optimal

measurement bound and Õ(N) runtime.

n=32768, B=k+1, random +1/−1, non−monotone

nu
m

be
r o

f m
ea

su
re

m
en

ts

sparsity
10 20 30 40 50 60 70 80 90 100

500

1000

1500

2000

2500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. Success probability as a function of sparsity and number of
(real) measurements: SSMP (left panel) and Algorithm 1 (right panel).

Since experiments in [4] used real measurements, we

multiply the number of our (complex) measurements by 2
for this comparison (note that the right panel of Fig. 3 is the

same as the right panel of Fig. 2, up to the factor of 2 in the

number of measurements). We observe that our algorithm

improves upon SSMP by a factor of about 1.15 when 0.9
success probability is desired.

ACKNOWLEDGMENT

We would like to thank the anonymous FOCS reviewers

for comments that helped improve the presentation of the

paper. This research was supported by NSF award CCF-

1065125, MADALGO center, Packard Foundation and Si-

mons Foundation. We also acknowledge financial support

from grant #FA9550-12-1-0411 from the U.S. Air Force

Office of Scientific Research (AFOSR) and the Defense

Advanced Research Projects Agency (DARPA).

REFERENCES

[1] A. Akavia. Deterministic sparse Fourier approximation via
fooling arithmetic progressions. COLT, pages 381–393, 2010.

522522

[2] A. Akavia, S. Goldwasser, and S. Safra. Proving hard-core
predicates using list decoding. FOCS, 44:146–159, 2003.

[3] M. Bayati, M. Lelarge, and A. Montanari. Universality in
polytope phase transitions and message passing algorithms.
2012.

[4] Radu Berinde. Advances in sparse signal recovery methods.
MIT, 2009.

[5] Radu Berinde and Piotr Indyk. Sequential sparse matching
pursuit. Allerton’09, pages 36–43, 2009.

[6] P. Boufounos, V. Cevher, A. C. Gilbert, Y. Li, and M. J.
Strauss. What’s the frequency, Kenneth?: Sublinear Fourier
sampling off the grid. RANDOM/APPROX, 2012.

[7] E. Candes and Y. Plan. A probabilistic and ripless theory
of compressed sensing. IEEE Transactions on Information
Theory, 2010.

[8] E. Candes and T. Tao. Near optimal signal recovery from
random projections: Universal encoding strategies. IEEE
Trans. on Info.Theory, 2006.

[9] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. ICALP, 2002.

[10] Mahdi Cheraghchi, Venkatesan Guruswami, and Ameya Vel-
ingker. Restricted isometry of Fourier matrices and list
decodability of random linear codes. SODA, 2012.

[11] Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff.
Lower Bounds for Sparse Recovery. SODA, 2010.

[12] D. Donoho. Compressed sensing. IEEE Transactions on
Information Theory, 52(4):1289–1306, 2006.

[13] Simon Foucart and Holger Rauhut. A Mathematical Intro-
duction to Compressive Sensing. Springer, 2013.

[14] Badih Ghazi, Haitham Hassanieh, Piotr Indyk, Dina Katabi,
Eric Price, and Lixin Shi. Sample-optimal average-case
sparse Fourier transform in two dimensions. arXiv preprint
arXiv:1303.1209, 2013.

[15] A. Gilbert, S. Guha, P. Indyk, M. Muthukrishnan, and
M. Strauss. Near-optimal sparse Fourier representations via
sampling. STOC, 2002.

[16] A. Gilbert, M. Muthukrishnan, and M. Strauss. Improved
time bounds for near-optimal space Fourier representations.
SPIE Conference, Wavelets, 2005.

[17] A. C. Gilbert, Y. Li, E. Porat, and M. J. Strauss. Approximate
sparse recovery: optimizing time and measurements. In
STOC, pages 475–484, 2010.

[18] O. Goldreich and L. Levin. A hard-corepredicate for allone-
way functions. STOC, pages 25–32, 1989.

[19] H. Hassanieh, F. Adib, D. Katabi, and P. Indyk. Faster GPS
Via the Sparse Fourier Transform. MOBICOM, 2012.

[20] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Near-optimal
algorithm for sparse Fourier transform. STOC, 2012.

[21] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and
practical algorithm for sparse Fourier transform. SODA, 2012.

[22] Sabine Heider, Stefan Kunis, Daniel Potts, and Michael Veit.
A sparse Prony FFT. SAMPTA, 2013.

[23] Piotr Indyk and Michael Kapralov. Sample-Optimal Fourier
Sampling – II. http://www.mit.edu/∼kapralov/ ft-hd-part1.
pdf , 2014.

[24] Piotr Indyk and Michael Kapralov. Sample-Optimal Fourier
Sampling in Any Constant Dimension. http://arxiv.org/abs/
1403.5804, 2014.

[25] Piotr Indyk, Michael Kapralov, and Eric Price. (Nearly)
sample-optimal sparse Fourier transform. SODA, 2014.

[26] M. A. Iwen. Combinatorial sublinear-time Fourier algo-
rithms. Foundations of Computational Mathematics, 10:303–
338, 2010.

[27] M.A. Iwen. Improved approximation guarantees for
sublinear-time Fourier algorithms. Applied And Computa-
tional Harmonic Analysis, 2012.

[28] E. Kushilevitz and Y. Mansour. Learning decision trees using
the Fourier spectrum. STOC, 1991.

[29] D. Lawlor, Y. Wang, and A. Christlieb. Adaptive sub-linear
time Fourier algorithms. arXiv:1207.6368, 2012.

[30] M. Lustig, D.L. Donoho, J.M. Santos, and J.M. Pauly. Com-
pressed sensing MRI. Signal Processing Magazine, IEEE,
25(2):72–82, 2008.

[31] Y. Mansour. Randomized interpolation and approximation of
sparse polynomials. ICALP, 1992.

[32] Sameer Pawar and Kannan Ramchandran. Computing a k-
sparse n-length Discrete Fourier Transform using at most 4k
samples and O(k log k) complexity. ISIT, 2013.

[33] Sameer Pawar and Kannan Ramchandran. A robust FFAST
framework for computing a k-sparse n-length DFT in
O(k log n) sample complexity using sparse-graph codes.
Manuscript, 2014.

[34] M. Rudelson and R. Vershynin. On sparse reconstruction
from Fourier and Gaussian measurements. CPAM, 2008.

[35] Emil Sidky. What does compressive sensing mean for X-ray
CT and comparisons with its MRI application. In Conference
on Mathematics of Medical Imaging, 2011.

[36] Elias M. Stein and Rami Shakarchi. Fourier Analysis:An
Introduction. Princeton University Press, 2003.

[37] E. van den Berg and M. P. Friedlander. SPGL1: A
solver for large-scale sparse reconstruction, June 2007.
http://www.cs.ubc.ca/labs/scl/spgl1.

[38] E. van den Berg and M. P. Friedlander. Probing the Pareto
frontier for basis pursuit solutions. SIAM Journal on Scientific
Computing, 31(2):890–912, 2008.

[39] Juhwan Yoo, S. Becker, M. Loh, M. Monge, E. Candès, and
A. E-Neyestanak. A 100MHz–2GHz 12.5x subNyquist rate
receiver in 90nm CMOS. In IEEE RFIC, 2012.

523523

