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Abstract—In this paper we settle an open question by de-
termining the remote memory reference (RMR) complexity of
randomized mutual exclusion, on the distributed shared mem-
ory model (DSM) with atomic registers, in a weak but natural
(and stronger than oblivious) adversary model. In particular,
we present a mutual exclusion algorithm that has constant
expected amortized RMR complexity and is deterministically
deadlock free. Prior to this work, no randomized algorithm
with o(logn/ log logn) RMR complexity was known for the
DSM model. Our algorithm is fairly simple, and compares fa-
vorably with one by Bender and Gilbert [11] for the CC model,
which has expected amortized RMR complexity O(log2 logn)
and provides only probabilistic deadlock freedom.

Keywords-Mutual exclusion; RMR complexity; shared mem-
ory; oblivious adversary; DSM

I. INTRODUCTION

Mutual exclusion, introduced by Dijkstra [16], is one of

the best studied problems in concurrent computing. A mutual
exclusion object (or lock) is a fundamental synchronization

primitive that allows processes to coordinate their access to

a shared resource, by serializing the execution of a piece of

code, called critical section. At any point in time, at most

one process must be in its critical section; we say that this

process owns the lock. A process obtains a lock through

an entry section (or capture protocol), and the owner of

a lock frees up the lock by executing an exit section (or

release protocol). A textbook by Raynal [33] is devoted to

mutual exclusion research up to the mid 80s, and a survey

by Anderson, Kim, and Herman [3] covers research between

1986 and 2003.
Early mutual exclusion algorithms did not take into

account the gap between high processor speeds and the

low speed/bandwidth of the processor–memory intercon-

nect [12]. In distributed shared memory (DSM) systems,

each shared variable is permanently locally accessible to a

single processor and remote to all other processors. In cache-
coherent (CC) systems, each processor keeps local copies of

(remote) shared variables in its cache, and the consistency

of copies in different caches is maintained by a coherence
protocol. Memory accesses that cannot be resolved locally in

DSM and CC systems are called remote memory references
(RMRs). RMRs are orders of magnitude slower than local

memory accesses. Hence, the performance of many algo-

rithms for shared memory multiprocessor systems depends

critically on the number of RMRs they incur [7], [31].

The mutual exclusion problem inherently requires pro-

cesses to busy-wait in their entry section, and thus the

number of shared memory accesses cannot be bounded.

Therefore, the traditional step complexity measure, which

counts the number of shared memory accesses, is not useful

to determine the performance of mutual exclusion algo-

rithms. Local-spin algorithms, which perform busy-waiting

by repeatedly reading locally accessible shared variables,

can achieve bounded RMR complexity and have practical

performance benefits [7]. Recent research has almost entirely

used the RMR complexity as a metric for the performance

of mutual exclusion algorithms (see, e.g., [5]–[7], [9]–[11],

[14], [15], [19], [22], [23], [25]–[29], [32]).

Using strong primitives, such as fetch&increment objects,

it is possible to implement mutual exclusion so that every

process incurs only a constant number of RMRs per passage

through the critical section. A prominent example is the

MCS lock [31], which uses an object that allows both

compare&swap (CAS) and swap operations. Other examples

can be found in standard textbooks, such as [24].

A significant amount of research has focused on de-

termining the RMR complexity of the mutual exclusion

problem if only atomic registers are available. Some com-

mon synchronization primitives, and in particular CAS and

load-linked/store-conditional objects, have linearizable im-

plementations with constant RMR complexity from regis-

ters [20], and therefore they cannot help improving the

asymptotic worst-case RMR complexity.

Unless mentioned otherwise, the results discussed below

hold for the CC and the DSM model with atomic registers,

and n is the number of processes.

The deterministic RMR complexity of mutual exclusion

is Θ(log n) RMRs per passage through the critical section.

The upper bound was established by Yang and Anderson’s

algorithm with O(log n) worst-case RMR complexity [34].

Further, Anderson and Kim [4] conjectured that this bound is

optimal. Following several lower bound proofs of increasing

strength [13], [17], [27], Attiya, Hendler, and Woelfel [10]
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proved this conjecture true.

More recently, randomized techniques have been em-

ployed to improve the efficiency of mutual exclusion algo-

rithms. To capture how random decisions made by processes

can influence the order in which processes take steps (e.g.,

because accesses of some shared registers may be slower

than others), it is assumed that an adversary produces the

schedule. Among the most common adversary models are

the strong adaptive adversary, where scheduling decisions

can depend on all past events, including local coin flips,

and the oblivious adversary, where scheduling decisions

are independent of processes’ random decisions, i.e., the

adversary fixes the schedule in advance. Unfortunately, little

can be gained by using randomization in the strong adaptive

adversary model: Giakkoupis and Woelfel [19] showed that

any mutual exclusion algorithm in this model has expected

RMR complexity Ω(logn/ log logn), matching an upper

bound by Hendler and Woelfel [23].

Note that unlike in deterministic algorithms, in random-

ized ones linearizable implementations of objects can in

general not replace atomic objects, without affecting the

probability distribution over possible outcomes [21]. (Lin-

earizability is defined in Section II; an object is atomic1 if

each operation takes effect instantaneously, once invoked. In

particular, multiple operations on the same atomic object do

not overlap in an execution.) The known constant-RMR CAS

implementations [20], however, preserve those probability

distributions against a strong adaptive adversary. Therefore,

the tight Θ(log n/ log logn) expected RMR bound for mu-

tual exclusion for the strong adaptive adversary holds even

if CAS or load-linked/store-conditional objects are available,

in addition to registers. Hence, it is not possible to achieve

o(log n/ log logn) RMR complexity without using stronger,

less common synchronization primitives.

The strong adaptive adversary constitutes a very pes-

simistic system assumption, as it assumes that the system

reacts in the most undesirable way to random decisions

made by processes. Recently, researchers have increasingly

focused on finding efficient randomized algorithms for the

weaker, oblivious adversary model, e.g., for test-and-set [2],

[18] or consensus [8].

Bender and Gilbert [11] have devised a randomized mu-

tual exclusion algorithm (which will henceforth be called BG

algorithm) that achieves O(log2 log n) expected amortized

RMR complexity against the oblivious adversary, in a CC

model that provides atomic registers and CAS objects. How-

ever, unlike existing randomized algorithms for the strong

adaptive adversary, the BG algorithm guarantees deadlock

freedom only with high probability per passage through

the critical section (rather than with certainty). The BG

algorithm uses CAS objects as mentioned above, and it

1Sometimes in the literature the term “atomic” is used to denote
“linearizable” (see, e.g., Lynch’s textbook [30]).

remains unknown whether a similar efficient implementation

from registers exist.2

For the DSM model, no mutual exclusion algorithm with

randomized o(log n/ log logn) RMR complexity against an

oblivious adversary was known, until now.

Our Contribution

We present a mutual exclusion algorithm for DSM sys-

tems that is optimal w.r.t. several parameters. In particular, it

• has constant expected amortized RMR complexity in

the oblivious adversary model,

• is deterministically deadlock free (and can be trans-

formed into starvation-free using standard techniques),

• can be implemented from atomic O(log n)-bit registers

only.

In fact, we use an adversary that is stronger than the

oblivious one, and seems realistic for the DSM model. The

adversary can make scheduling decisions based on limited

information about the operations each process has incurred

in the past and the operation it will incur in its next step.

While the adversary cannot know the exact register location

on which such an operation has or will be performed, it can

take into account the type of this operation (read or write),

and whether it is a local or remote reference.

In our presentation of the DSM algorithm, we use a

single CAS object, whose only purpose is to allow processes

to repeatedly elect a leader, i.e., solve name consensus.

Our complexity analysis makes no assumption that the

CAS object is atomic (it assumes linearizability, but even

weaker consistency conditions suffice), and therefore known

implementation of CAS objects from registers [20] can be

used without sacrificing the asymptotic RMR complexity of

our mutual exclusion algorithm.

Finally, our algorithm is fairly simple. This is in contrast

to the BG algorithm, which relies on a stack of other

implemented objects, such as max-registers and approximate

counters with various properties.

II. MODEL

We consider the standard distributed shared memory

(DSM) model, where a set {0, . . . , n− 1} of n processes

communicate by executing read and write operations on

shared atomic registers. The set of registers is partitioned

into n memory segments, one for each process. A read or

write step on a register R by process p incurs a remote

memory reference (RMR) if and only if R is not in p’s

memory segment. In this paper we assume that some regis-

ters are remote to all processes—it is not hard to see that

2A statement in [11], saying that it is safe to replace the CAS objects
with the implementation provided in [20], for the reason that this imple-
mentation is strongly linearizable, is incorrect. Strong linearizability [21]
only preserves the power of the strong adaptive adversary, but there are
examples showing that it does not in general preserve the power of the
oblivious adversary.
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this assumption can be made w.l.o.g. in mutual exclusion

algorithms.

A schedule is a sequence of process IDs, and yields an

execution in which processes take shared memory steps in

the order determined by the sequence. Processes can flip

(private) coins to make random decisions. We consider an

adversary that schedules processes in an adaptive way, but

with limited information. When scheduling the next process

to take a step, the adversary has available the following

information about each past step of any process, and about

the step each process is poised to execute: the type of that

step, i.e., whether it is a read or write, and whether the

step constitutes a remote or local reference, i.e., whether

or not the affected register is in the executing process’

memory segment. The exact location of the register to

which a read or write operation is applied, or what value is

being read or written, is not revealed to the adversary, even

after the process has executed that operation. In addition,

we assume that the adversary learns whenever a lock()
or release() call responds. (We assume that each pro-

cess calls release() immediately after termination of

its lock() method call, so the adversary knows when a

process is poised to call release(). Thus, it can delay

those release() calls arbitrarily.)

A compare&swap (CAS) object C supports the oper-

ations C.read(), which returns the value of C, and

C.CAS(old, new), which writes new into C if C = old,

and otherwise does not change C. In either case, it returns

the value that C had at the point immediately before the

operation was applied. It is known that CAS objects can be

implemented from atomic registers such that each CAS()
operation incurs O(1) RMRs [20]. This implementation is

linearizable: In any execution on an implemented CAS

object, every CAS() operation can be associated with a

linearization point between the invocation and response of

that CAS(), such that ordering all CAS() operations by

their linearization points yields a sequential execution that

matches the specification of CAS.

The mutual exclusion problem can be specified in terms

of a lock object, which supports operations lock() and

release(). Each processes must alternate lock() and

release() calls, starting with lock(). We say a process

is in the entry section if its lock() method is pending; it

is in the critical section if it has completed a lock() call

but since then not called release(); and it is in the exit
section while its release() method is pending. A process

that is not in any of the entry, critical, or exit sections is in

the remainder section.

A lock object provides the safety property of mutual
exclusion, which states that no two processes can be in the

critical section at the same time. Several progress conditions

have been considered for mutual exclusion algorithms. The

weakest standard condition is deadlock freedom, which

guarantees system progress: as long as all processes that are

not in the remainder section take sufficiently many steps,

some process will enter the critical section.

III. THE ALGORITHM

A. Main Ideas and High Level Description

We start by describing the core ideas of the algorithm.

The complete pseudocode is given in Fig. 1, but here we

will make some simplifications in order to not distract from

the main insights. In particular, our code uses some sequence

numbers, which we omit from this description. Also, some

of the variables in the pseudocode are indexed by α. We

will explain the purpose of this index later, and for now we

will omit α from the corresponding variable names.

To decide which process enters the critical section first,

we use a simple leader election protocol. The functionality

of that is provided by a CAS object, denoted S in our

pseudocode, which is initially ⊥. Each process p executes

S.CAS(⊥, p), and if it succeeds (i.e., the operation returns

⊥) it becomes the leader, otherwise it loses.

A basic idea (albeit one that does not work without some

additional twists) is the following: The losers of the leader

election try to “notify” the leader, and if successful, the

leader coordinates their passage through the critical section.

For this mechanism, we use the notion of a backpack.

Intuitively, processes try to join the leader’s backpack while

it is “open”. At some point, the leader “closes” its backpack,

and then arranges that all processes in the backpack go

through the critical section, one by one.

More precisely, the leader w has n distinct registers in its

local memory segment, namely, B[w][0..n−1]. If process p
wants to join w’s backpack (after losing the leader election),

it writes its ID into B[w][p]. A flag, stored in register A[w] in

our pseudocode, indicates whether w has already closed the

backpack. Hence, after writing its ID to B[w][p], process

p checks that flag, and if the backpack is still open, it is

guaranteed to be found: After closing the backpack, the

leader will scan the array B[w][ · ], and for every process

it finds, it starts a handshaking procedure, coordinating the

processes found to the critical section. (We say the leader

promotes into the critical section each process it finds.)

Hence, if process p joins the backpack while the backpack

is still open, p can busy-wait on some variable in its local

memory segment (in our case B[p][w])) which the leader

will use to notify p, when it is p’s turn to get promoted.

Otherwise, if p finds that the backpack is closed when it

checks the flag in A[w], then p “gives up”, and does not

wait for the leader to promote it. Finally, once the leader

w has coordinated all processes from its backpack into the

critical section, it resets the CAS object S by executing

S.CAS(w,⊥), so that subsequently other processes can

become leaders.

While one can easily design a correct algorithm based on

the above technique, this technique by itself does not achieve

the desired RMR complexity, even against an oblivious
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adversary: The adversary could first schedule one process

until it becomes the leader and has closed its backpack. After

that, and before the leader resets the CAS object S, the

adversary schedules all remaining processes to participate

in the leader election. These processes will fail to join the

backpack, and thus their RMRs are “wasted”.

To motivate our second core idea, which deals with this

issue, assume for a moment that processes have access to

an oracle. After process w becomes the leader, the oracle

provides it with exactly one ID, of a process q∗ chosen

uniformly at random from the set M of processes that are

already in the entry section or will enter the entry section

before w closes its backpack. Given this information, the

leader can busy-wait on B[w][q∗] (which is in w’s memory

segment) until q∗ appears there and thus has joined the

backpack. Only after that, does w close its backpack and

promotes all the processes it finds in B[w][ · ] into the critical

section. If the random choice of q∗ ∈ M is independent

of the adversary’s scheduling decision, then we expect that

roughly half of the processes in M join w’s backpack

(i.e, write to B[w][ · ]) before q∗ does. Hence, half of the

processes in the entry section get promoted (in expectation),

and thus for every constant number of RMRs, one process

enters the critical section.

We now describe a randomized mechanism that provides

a functionality that can replace the oracle above. We use

a shared array R[1..�], where � = �log n� + 1, and each

array entry is initially ⊥ (in our pseudocode we use again

sequence numbers, so the actual initial value is different).

Before participating in the leader election, each process

writes its ID to an array entry R[λ], where λ ∈ {1, . . . , �} is

chosen at random in such a way that λ = i with probability

Θ(1/2i). The leader scans this array from left to right until

it finds the first index i such that R[i] = ⊥. Then (slightly

simplifying matters) it uses the process ID q∗ found in

R[i − 1] in the same way as the oracle response above,

i.e., it waits for q∗ to join its backpack. The crucial insight

now is the following: Suppose M is the set of processes that

write to R before the point t when q∗ starts to scan R, and

let m = �log |M |�. Then with constant probability the fol-

lowing “good” event happened: all registers R[0], . . . , R[m]
were written by processes in M , and exactly one process in

M wrote to R[m].
Given this event, the process that wrote to R[m] is

uniformly distributed over M . Hence, by waiting for that

process q∗ to join its backpack, w ensures that it does not

close its backpack before Ω(|M |) processes have also joined

its backpack, in expectation. To deal with some technical

issues arising from processes writing to R at different times,

and to simplify the analysis, the leader actually waits for

every process it finds on R, not only the “topmost” one.

Clearly, waiting longer cannot make matters worse.

The mechanism above still does not guarantee that all

processes have a chance of getting promoted, but only those

that write to R during a specific time interval. In particular,

a process that writes to R after w scanned that array may

be scheduled in such a way that it has no chance of getting

promoted. To describe the solution to this problem we use

the notion of “good” intervals. Recall that the CAS object

S gets reset to ⊥ whenever a leader finishes its exit section,

before it gets captured by the next leader. A good interval

starts whenever the CAS object gets reset, and ends just

before the next leader starts scanning R. As argued above,

our technique guarantees that if M is the set of processes

that write to R during a good interval, then in expectation

Ω(|M |) processes get promoted by the one that becomes the

leader in that interval.

We employ the following simple trick: We use two copies

of essentially the entire data structure (i.e., of almost all

shared objects). In the pseudocode, we add a subscript α to

each shared object, where the value of α ∈ {0, 1} indicates

the copy of the object. (We say “side α” to refer to copy α
of the data structure.) At the beginning of its entry section,

a process chooses a side α ∈ {0, 1} uniformly at random.

Then, it proceeds as described above, but uses side α of

the data structure. Since there are also two CAS objects,

S0 and S1, we may now have two competing leaders. To

synchronize between them, we use an additional 2-process

lock object, L (in fact, for technical reasons, we need that

L be a 4-process lock). As soon as a process becomes the

leader of side α (i.e., it captures Sα), it tries to capture L;

and when it has captures L, it releases it only after it resets

Sα. As a consequence, every point in time belongs to either a

good interval on side 0, or a good interval on side 1. Hence,

since processes choose α at random, whenever they write to

Rα they have (at least) a 1/2 probability of writing during

a good interval on side α.

There are several small technical difficulties to overcome

in order to make these ideas work. Many of the difficulties

stem from the fact that information on R may be outdated,

i.e., it is left behind by processes that did not manage to

join a backpack. To deal with this and other issues we use

sequence numbers that processes increment frequently, and

attach to the information they write to registers. Techniques

to recycle sequence numbers are known [1], [20] and well

understood. It is not difficult to bound sequence numbers

so that our algorithm needs only O(log n)-bit numbers, but

doing so makes the implementation more complicated and

distracts from the core-ideas.

B. Implementation

The pseudocode of our algorithm is given in Fig. 1.

We use array A[0..n − 1] and, for s ∈ {0, 1}, arrays

Bs[0..n− 1][0..n− 1] and Rs[1..�], where � = �log n�+ 1.

Array As is used by processes to keep track of their

sequence number and communicate their “status”. Array Bs

implements the backpack functionality, and Rs is used for

the random “oracle” mechanism described earlier. Registers
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Variables and Notation:
N0 = N ∪ {0} is the set of non-negative integers, and P = {0, . . . , n− 1} is the set of processes. Lower case Latin and Greek symbols indicate
(process-)local variables; the names of shared objects are capitalized. The scope of all process-local variables is global, i.e., they maintain their values
between method calls. All shared variables are remote to all processes, except for array B, where B[p][q] is in p’s local memory segment.

Shared Objects:
• A[0..n− 1] is an array of registers, each storing a pair (seq, str),

where seq ∈ N0 and str ∈ {want, done}∪(P×N0

)
. Each array

entry is initially (0, done).
• Bs[0..n − 1][0..n − 1], for s ∈ {0, 1}, is an array of registers,

each storing a pair (seq, stat), where seq ∈ N0 and stat ∈
{trying, waiting, promoted, done}. Each array entry is initially
(0, done). Subarray B[p][ · ] is in process p’s memory segment.

• Rs[1..�], for s ∈ {0, 1} and � = �logn�+1 is an array of registers,
each storing a pair in P ×N0 that is initially (0, 0).

• Ss, for s ∈ {0, 1} is a CAS object which stores values in (P ×
N0) ∪ {(⊥,⊥)}, and is initially (⊥,⊥).

• L is a 4-process lock (4PLock) which can be accessed by the
processes 0, . . . , 3.

• Bits, for s ∈ {0, 1}, is a Boolean register that is initially 0.

lockp():
1 while True do
2 c := A[p].seq + 1; A[p] := (c, want) //Announce that I want the lock
3 Choose α : Pr(α = j) = 1/2 for j ∈ {0, 1} //Choose a side uniformly at random
4 Choose λ : Pr(λ = j) = 2−j for j ∈ {1, . . . , �− 1}, and Pr(λ = �) = 2−�+1 //Choose a random location in Rα

5 Rα[λ] := (p, c) //Write to that location
6 (w, d) := Sα.CAS((⊥,⊥), (p, c)) //Try to become a leader
7 if w = ⊥ then //I am the leader
8 bit := Bitα //Read bit to compute parity for access on L
9 L.lock(2α+ bit) //Prevent anyone else from executing the code below

//Collect processes from Rα:
10 found := ∅
11 for j = 1, . . . , � do
12 (r, d) := Rα[j]
13 if A[r] �∈ {

(d,want),
(
d, (p, c)

)}
then break //Break if r won’t see me

14 found := found ∪ {(r, d)}

15 for each (r, d) ∈ found− {(p, c)} do //Wait for each process in found to join my backpack
16 await(Bα[p][r].seq ≥ d)

17 promotep() //Promote processes that have applied in time
18 A[p] := (c, done) //Close backpack
19 promotep() //Promote late processes
20 return //Enter the critical section
21 else //I failed to become a leader
22 A[p] :=

(
c, (w, d)

)
//Announce that I’m trying to enter w’s backpack

23 (w, d) := Sα.read() //Perhaps there’s a new leader?
24 Bα[w][p] := (c, trying) //Join w’s backpack
25 if A[w] = (d,want) then //The backpack is still open
26 Bα[w][p] := (c, waiting) //Tell w that I’m ready to get promoted
27 await(Bα[p][w] = (c, promoted)) //Wait to be promoted
28 return //Enter the critical section
29 else Bα[w][p] := (c, done) //May be too late for promotion, better give up

releasep():
30 if w = ⊥ then //I am the leader
31 Bitα := 1− bit //Force next leader on side α to use different ID on L
32 Sα.CAS((p, d),(⊥,⊥)) //Reset the CAS object
33 L.release(2α+ bit) //Release lock L
34 else Bα[w][p] := (c, done) //Notify leader that I left the critical section

promotep():
35 for r = 0, . . . , n− 1 do //Scan through backpack
36 d := Bα[p][r].seq //Get r’s sequence number
37 await(Bα[p][r] �= (d, trying)) //Wait for r’s decision: promote?
38 if Bα[p][r] = (d,waiting) then //r wants promotion
39 Bα[r][p] := (d, promoted) //Promote process q
40 await(Bα[p][r] �= (d,waiting)) //Wait until process q is done

Figure 1. Lock Implementation.
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Bs[p][q] are in process p’s local memory segment, and all

other registers are remote to all processes. We also use

compare&swap objects Ss, s ∈ {0, 1}, to elect leaders, and

registers Bits to indicate the parity of the number of leaders

that have been elected on Ss. (The reason for this will be

explained below.) Finally, we use a 4-process lock L. To

capture L, a process calls L.lock(i), where i is a virtual
ID in the set {0, 1, 2, 3}.

In line 2 of the lock() method, process p increments

its sequence number stored in A[p].seq and writes the pair

(c, want) to A[p], where c is the incremented sequence

number. The status indicates that p has started the entry

section. Then, in lines 3 and 4, p chooses α ∈ {0, 1}
uniformly at random, and λ ∈ {0, . . . , �} according to a

geometric probability distribution that guarantees that λ = i
with probability Θ(1/2i). In line 5, p writes its ID/sequence-

number pair (p, c) to Rα[λ]. Then, in line 6, p tries to

compare-and-swap (p, c) into Sα.

If p’s CAS() succeeds, p becomes the leader on side α.

In that case, it reads Bitα into bit and then tries to capture

lock L (in lines 8 and 9), using a virtual 2-bit ID with high-

order bit α and low-order bit bit. Then, in lines 10–14, the

process scans array Rα, from left to right. Each time it finds

a process/sequence-number pair (r, d), it checks the status

of process r in A[r]. If that status is want or (p, c), then

it is guaranteed that r will get promoted. All such pairs are

added to a local set found, and as soon as the leader sees

a process on Rα that does not meet the above criterion, it

stops scanning Rα. In lines 15 and 16, the leader p waits for

each process r added to found (except for itself), until r has

joined p’s backpack by writing to Bα[p][r]. In line 17, p calls

promote(), which is a method that promotes processes

that wrote to Bα[p][ · ], i.e., coordinates their entry into the

critical section. The promote() method guarantees that

p will successfully promote each process r that, before

the invocation of that method, wrote to Bα[p][r] the pair

(c, trying) or (c, waiting), where c is p’s current sequence

number. Upon termination of promote(), all processes

that p promoted will have exited the critical section. In

lines 18 and 19, p first closes its backpack by writing

(c, done) to A[p], and then calls promote() again. This

second promotion call ensures that all processes that joined

p’s backpack before p closed it, will get promoted. After

that, p enters the critical section.

Now suppose p lost the leader election, i.e., its Sα.CAS()
in line 6 returned (w, d), where w is the leader of the CAS()
operation at the time, and d is its sequence number. Then,

in line 22, p writes the pair (c, (w, d)) to A[p] to indicate its

new status, namely that it now aims to join w’s backpack.

In line 23, p reads a pair (w, d) from Sα again, in case the

leader has changed after p updated its status. This avoids

deadlock, because otherwise p might try to join the backpack

of an “old” leader, while the “new” leader may have seen

(c, want) when it read A[p] in line 13, and thus might try

to promote p. Then, in line 24, p tries to enter w’s backpack

by writing (c, trying) to Bα[w][p]. In line 25, it reads A[w]
to check whether w’s backpack is still open. If not, p “gives

up” and indicates that is not trying to get promoted anymore

by writing (c, done) to Bα[w][p], in line 29. Otherwise, in

lines 26 and 27, p indicates that it is ready to get promoted

by writing (c, waiting) to Bα[w][p], and then it busy-waits

on Bα[p][w] until w promotes it. After that p can enter the

critical section by returning from its lock() call, in line 28.

In method release(), a loser p simply indicates in

line 34 that it is done with the critical section by writing

(c, done) to Bα[w][p], where w is the current leader that

promoted p. If p is a leader, then it executes lines 31–33.

First it flips the bit Bitα, then it resets the CAS object Sα to

the initial value (⊥,⊥), and finally it releases lock L. Note

that it releases L only after resetting Sα. This is necessary

to ensure that there is always a good interval, either on side

0 or side 1 (see the high level description in Section III-A).

However, this also means that a new leader may get elected

on side α before the previous leader on side α has released

L. Since processes use the bit Bitα to compute their virtual

IDs, it is ensured that access to lock L is still safe. (This is

the reason why we need to use a 4-process lock L, instead

of a 2-process one.)

Method promote() uses a straightforward handshaking

mechanism to facilitate the promotion. The leader p scans

array Bα[p][ · ], and waits for each process r until either its

sequence number stored in Bα[p][r] changes, or until r is

not trying to get promoted, as indicated by Bα[p][r].status
(lines 36 and 37). When this happens, r has made a decision

whether it still wants to be promoted, by writing to that array

entry that it is waiting for promotion, in line 26, or that it

has given up, in line 29. (In the latter case, r may also

subsequently have increased the sequence number stored in

Bα[p][r].seq, if meanwhile it started another attempt.) If r
still wants to be promoted, it wrote (d, waiting), and is now

busy-waiting in line 27. In this case, in line 39 process p
notifies process r that it can enter the critical section, and

then in line 40, p waits until r writes to Bα[p][r] again; r
will do so at the end of its exit section in line 34.

IV. COMPLEXITY ANALYSIS

In this section we analyze the RMR complexity of our

algorithm. The proofs of deadlock freedom and mutual

exclusion, as well as the proofs of some claims used for the

complexity analysis are omitted due to space restrictions.

We start with some terminology and some simple facts.

A subscript attached to a local variable indicates the process

to which the local variable belongs to; e.g., cx denotes local

variable c of process x.

We consider an execution of the algorithm, and fix lin-

earization points of all CAS() operations in an arbitrary

but unique way. When we say a process executes a CAS()
operation op at time t, we mean that t is the linearization
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point of op. Sometimes we talk about the value that the CAS

object has at a certain point; with that we mean the value it

would have at that point, if all CAS() operations occurred

atomically at their linearization points.

For s ∈ {0, 1} and i ≥ 0, we define a phase (s, i). Phase

(s, 0) starts at the beginning of the execution, and phase

(s, i), for i ≥ 1, starts when for the i-th time a Ss.CAS()
operation in line 32 linearizes. Phase (s, i) ends when phase

(s, i + 1) starts. The leader of phase (s, i) is the unique

process p that executes a successful Ss.CAS() operation in

line 6 which linearizes during phase (s, i). We say process

x gets promoted during a promote() call by process y,

if x enters the critical section while y’s promote() call

is pending. Note that y must own lock L when it calls

promote(), so no two promote() calls can overlap,

and thus a process can only get promoted during a single

promote() call.

Theorem 1. Consider the random execution of the algorithm
scheduled by a locality-aware adversary, and let τm be the
point when the implemented lock method has been invoked
m ≥ 1 times. The expected total number of RMRs incurred
until point τm is O(m).

W.l.o.g. we assume that after point τm, the adversary does

not schedule any new invocations to the lock() method; it

only schedules processes that have already started a lock()
operation until all such pending operations are completed.

Let τ ′m denote that completion point. We will bound the

number of RMRs incurred until point τ ′m, as this is clearly

an upper bound on the RMRs incurred until τm. The next

lemma says that it suffices to bound instead the number of

writes to arrays Rs in line 5.

Lemma 2. The total number of RMRs incurred until point
τ ′m is O(Wm), where Wm is the total number of write
operations on the two arrays R0 and R1 until τ ′m.

Proof: We consider the number of RMRs incurred by

process p in a single iteration of the while-loop in the

lock() method. Up to (and including) line 7, p incurs

O(1) RMRs. The number of RMRs incurred in the rest of the

while-loop iteration depends on whether or not p becomes a

leader (i.e., wins the CAS object Sαp
in line 6). If p does not

become a leader, then it executes the else-part of the if-else

statement, in lines 21–21, which requires just O(1) RMRs.

If p does become a leader, then it executes lines 8–20, which

may incur more than O(1) RMRs. Precisely, more than O(1)
RMRs may be needed in the for-loop in lines 11–11, and

also in each of the two promote() operations in lines 17

and 19 (the remaining operations incur O(1) RMRs). In each

iteration of the for-loop in lines 11–11, p incurs two RMRs,

in lines 12 and 13, and in each promote() operation, an

RMR is incurred every time p executes line 39. We explain

next how to charge those RMRs to other processes, without

charging more than O(1) RMRs in total to each process, per

iteration of the while-loop.

Claim 3. Let t be some point at which process w∗ has
finished the for-loop in lines 11–11 but not yet started the
loop in lines 15 and 16. If (r∗, d∗) ∈ foundw∗ at point t,
then at this point r∗ executes some iteration of the while-
loop in a lock() operation, and enters the critical section
in the same iteration while cr∗ = d∗.

From Claim 3, it follows that in each iteration of the for-

loop in lines 11–11, except possibly for the last one, process

p adds to set foundp a distinct pair (r, d), not added to any

other found set. For each such pair (r, d), we have that

process r executes a different iteration of the while-loop in

the lock() method. We charge to r the two RMRs incurred

in the for-loop iteration in which (r, d) is added to foundp,

and charge to p the two RMRs of the last for-loop iteration.

It follows that for each iteration of the while-loop executed

by r or p, this process is charged at most O(1) of the RMRs

incurred (by any process) in lines 11–11.

Claim 4. If during a promote() operation process w∗

finishes line 40 k ≥ 1 times, then during that promote()
call at least k lock() calls respond and k release()
calls get invoked.

Claim 4 allows us to distribute the RMR cost of a

promote() operation to the processes that go through the

critical section during that call, charging one RMR to each

process q for each of its entries to the critical section. Since

only one promote() operation can be in progress at a

time (as the leader must own lock L during the call), no

process is charged twice for the same passage through the

critical section. Finally, we observe that each release()
operation incurs O(1) RMRs.

Combining the above, we obtain that the total number

of RMRs is asymptotically the same as the total number

of iterations of the while-loop in the lock() method,

executed by all processes, plus the total number of passages

of processes through the critical section. Since for each

passage, a process must execute at least one iteration of

the while-loop, we conclude that the total number of RMRs

is asymptotically the same as the total number of iterations

of the while-loop, which is equal to the number of write

operations on R0 and R1. This completes the proof of

Lemma 2.

Next we introduce the notions of good intervals and good
writes, and show that in expectation at least half of the writes

to arrays R0 and R1 are good. Thus, it suffice to bound the

number of good writes.

For s ∈ {0, 1} and i ≥ 0, the good interval Is,i starts at

the beginning of phase (s, i), and ends when the L.lock()
operation in line 9 by the leader of phase (s, i) responds (i.e.,

when the leader has acquired that lock). A write operation

on array Rs in line 5 is good if it takes place in some good

interval Is,i.
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Good intervals Is,i and Is,i′ with i 	= i′ do not overlap, but

good intervals for different sides s may overlap. A critical

observation for our analysis is that the union of all good

intervals covers the complete execution. Since each process

chooses the side α at random before writing to Rα, with

probability 1/2 that write will occur during a good interval

on side α. A straight-forward application of Wald’s Theorem

yields the following lemma.

Lemma 5. In expectation, at least half of all write opera-
tions on arrays R0 and R1 are good.

Next we look at a single phase (s, i), and bound from

below the number of times processes go through the critical

section during that phase, in terms of the number of good

writes to Rs in the phase. Let ks,i be the number of

good writes to array Rs in phase (s, i), and let �s,i be

the number of passages through the critical section by

processes in phase (s, i); if phase (s, i) does not exists, then

ks,i = �s,i = 0.

Lemma 6. E[�s,i] ≥ E[ks,i]/36.

Proof: We first give an overview of the proof. We fix the

set of processes that perform a good write to array Rs during

phase (s, i), and condition on the event E that all the first

κ = �log(ks,i)� positions in Rs get written by those good

writes. Event E has constant probability, and implies that the

leader of phase (s, i) will execute at least κ iterations of the

for-loop comprising lines 11–11; and for each 1 ≤ j ≤ κ, it

will add to its found set some process that wrote to Rs[j]
after the beginning of the phase. The leader will then have

to wait in line 16 until all these processes have executed

line 24, and in particular until the process p∗ that wrote to

Rs[κ] has done so. Given E , the conditional distribution of

the position λ in which a process writes to Rs in phase (s, i)
is very close to the unconditional one, described in line 4.

In particular, the probability that a process writes to the κ-

th position Rs[κ] is O(1/2κ) = O(1/ks,i). It follows that

any schedule by the adversary will result in an expected

number of at least Ω(ks,i) processes that write to Rs in

phase (s, i), and execute line 24 before process p∗ does.

All these processes will be promoted to the critical section

before the end of the phase, as the leader has to wait for

p∗ in line 16 before it invokes a promote() operation

in line 17, and thus it will see those Ω(ks,i) processes (in

expectation) when it scans through its backpack.

We now give the detailed proof. We define three sets

of processes, Ks,i, Ms,i, and Ps,i, as follows. Set Ks,i

consists of all processes that perform a good write to Rs

during phase (s, i). Set Ms,i consists of the processes that

write to Rs between the beginning of phase (s, i), and

the point right after the leader of the phase has either

completed the κ-th iteration of the for-loop in lines 11–

11, where κ := �log(ks,i)�, or has broken out of the

loop in line 13 (whichever of the two happens first). Note

that Ks,i ⊆ Ms,i. Finally, set Ps,i contains all processes

p ∈Ms,i that write to array Bs in line 24 before the leader

invokes the promote() operation in line 17.

We let E be the event that for each position 1 ≤ j ≤ κ
of array Rs, at least one of the ks,i good write operations

on Rs during phase (s, i) is performed on register Rs[j].

The following claim establishes that no process, which

writes to Rs in phase (s, i), can proceed past line 27, or,

unless it is the leader of that phase, read an entry of Rs,

before the leader of that phase executes line 17.

Claim 7. Let t be some point after the leader w∗ of phase
(s, i) finished line 9, but has not yet started line 17, and let
c∗ be the value of cw∗ at that point. Then at point t,

(a) no process other than w∗ has performed a read opera-
tion on Rs since the beginning of the phase; and

(b) for each process q 	= w∗ that has written to Rs at some
point t′ < t during phase (s, i):

(b1) at point t, q is poised to execute a shared memory
step in line 6 or in one of lines 22–27; and

(b2) if in interval [t′, t] process q executes a read()
or CAS() operation on Ss in line 6 or 23, respec-
tively, then this operation returns (w∗, c∗), and if it
executes line 25 during [t′, t], then the if-condition
in that line evaluates to true.

Between the beginning of phase (s, i) and the point when

good interval Is,i ends, the leader does not access Rs.

Claim 7 implies that the position λ in Rs, where a process

p ∈ Ks,i writes to when it executes line 5 during Is,i does

not affect any other processes’ steps, or p’s steps starting

with line 5 and until interval Is,i ends. Since the adversary

does not know which position λ a process p chooses, and

only the location of p’s write to Rs depends on λ, that

random choice does not affect the schedule up to the point

interval Is,i ends.

Fix some execution prefix E that ends at the beginning

of good interval Is,i. In addition, fix all remaining random

choices made by processes until the end of Is,i, except for

the choice of λ that each process makes on side s. Then

for every infinite sequence �λ = (λ1, λ2, . . . ), the adversary

schedules an execution that is uniquely determined by �λ up

to the end of Is,i, where the j-th process that executes line 4

on side s during Is,i chooses the value λj in that line. Let E�λ
denote that unique execution up to the point when Is,i ends.

Then we have that for any two �λ, �λ′, the adversary cannot

distinguish between E�λ and E�λ′ , and the only difference any

process sees (if any) is the random value it chooses in line 4

on side s during Is,i. Since the adversary cannot distinguish

between those two executions, Ks,i is the same for both,

and so is the order of all steps. Hence, κ is also fixed, and

the probability of event E , that each of the values 1, . . . , κ
is chosen at least once by processes in Ks,i, is
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Pr(E) = 1− Pr(Ē) ≥ 1−
∑

1≤i≤κ

(1− 1/2i)ks,i ≥

1−
∑

1≤i≤κ

e−ks,i/2
i ≥ 1−

∑

j≥1

e−j =
e− 2

e− 1
>

1

3
. (1)

(We used that κ = �log(ks,i)�.)
Claim 8. If event E occurs, then the leader of phase (s, i)
does not break out of the for-loop in lines 11–11 during the
first κ iterations.

Let κ′ ≥ κ be the number of iterations of the for-loop in

lines 11–11 completed by the leader of phase (s, i), without

including the last iteration if it ends with a break. Let T
be the point right after the end of the last iteration of the

for-loop.

In the following we condition on event E and also on the

value of κ′. Note that E implies κ′ ≥ κ, by Claim 8.

We are interested in the conditional distribution of the λ-

value of each process p ∈ Ms,i, given E and κ′ = k, for

k ≥ κ. At point T the adversary has no knowledge of those

λ-values, except for what can be inferred from the value

of κ′. Hence, conditionally on events E and κ′ = k, the

value of λ chosen by each p ∈ Ms,i has no effect on the

schedule and thus on p’s steps during the interval starting

with p’s good write to Rs and ending at point T . Then, for

each p ∈ Ms,i and 1 ≤ j ≤ κ, the probability that a given

p ∈Ms,i chooses λ = j is

Pr(λ = j | E , κ′ = k) ≤ Pr(λ = j | E , κ′ = κ)

=
Pr(λ = j ∧ E | κ′ = κ)

Pr(E | κ′ = κ)
.

Since

Pr(λ = j ∧ E | κ′ = k) ≤ Pr(λ = j | κ′ = κ)

≤ Pr(λ = j | λ ≤ κ) ≤ (1/2j)/(1− 1/2j),

and Pr(E | κ′ = κ) ≥ Pr(E) ≥ 1/3, by (1), it follows

Pr(λ = j | E , κ′ = k) ≤ (3/2j)/(1− 1/2j). (2)

The next claim says that the leader will wait in line 16

until all processes in its found set (other than the leader

itself) have executed line 24.

Claim 9. Let t1 be the point when phase (s, i) begins, and
t2 > t1 the point during phase (s, i) when the leader of
that phase, w∗, finishes the for-loop in line 16. If at point
t2, (r∗, d∗) ∈ foundw∗ and r∗ 	= w∗, then r∗ writes
(d∗, trying) to Bs[w

∗][r∗] at some point t∗ ∈ [t1, t2].

We are interested in the total number of processes p ∈
Ms,i that execute line 24 until all processes in the leader’s

found set (other than the leader) have executed that line.

This is lower bounded by the number Y of processes p ∈

Ms,i that execute line 24 until the first process p∗ ∈ Ms,i

with λp∗ = κ executes that line, provided that the λ-value

of the leader is not κ.

After point T , the leader executes the loop in lines 15–

16 throughout which all shared memory steps are reads of

registers in the leader’s own local memory segment, and thus

do not incur RMRs. Hence, the adversary does not gain any

information about how many iterations of the for-loop have

been executed by the leader, until the leader finishes that

loop. Therefore, to determine Y we can assume that the

λ-value of each process p ∈ Ms,i (other than the leader)

remain unknown until the leader has finished its loop in

lines 15–16. Given E and κ′, the probability that any given

process p ∈ Ms,i (including the leader) chooses λ = κ is

at most π = (3/2κ)/(1 − 1/2κ), by (1). From the union

bound, the probability that neither the leader nor any of the

first j − 1 processes p ∈ Ms,i that execute line 24 choose

λ = κ is at least 1− jπ. Thus, E[Y | E , κ′] is at least

∑

j≥1

max {0, 1− jπ} ≥ 2κ(1− 1/2κ)

6
− 1

2
.

Therefore, the expected number of processes p ∈ Ms,i that

execute line 24 before the leader initiates a promotion is

E[|Ps,i| | E ] ≥ 2κ(1−1/2κ)
6 − 1

2 , and thus

E[|Ps,i|] ≥ E[|Ps,i| | E ] · Pr(E)
(1)

≥ 2κ(1− 1/2κ)

18
− 1

6
. (3)

The next claim says that the leader and all p ∈ Ps,i go

through the critical section in phase (s, i). cl

Claim 10. The leader of phase (s, i) finishes its lock()
operation in the same iteration of its while-loop in which
it becomes the leader, and each process q ∈ Ps,i in the
iteration of its while-loop in which it writes to Rs for the
first time during phase (s, i).

Since the leader does not belong to Ps,i, it follows from

Claim 10 and (3), that the expected total number of processes

that go through the critical section in phase (s, i) is at least
2κ(1−1/2κ)

18 − 1
6 + 1 ≥ ks,i/36, as κ = �log(ks,i)�. This

completes the proof of Lemma 6.

We now have all the pieces we need to prove the main

result of the section, the bound on the total number of RMRs.

Proof of Theorem 1: Recall, we have assumed w.l.o.g.

that the adversary schedules exactly m invocations to the im-

plemented lock() operation. We will bound the total num-

ber of RMRs until the point τ ′m when all those operations

are completed. The total number of passages by processes

through the critical section is also m. Thus, m =
∑

s,i �s,i,
where the summation is over all s ∈ {0, 1} and i ≥ 0
(�s,i = 0 if phase (s, i) does not exist). Since m is fixed

and finite, it follows m = E[
∑

s,i �s,i] =
∑

s,i E[�s,i]..
Using that E[�s,i] ≥ E[ks,i]/36, from Lemma 6, gives

m ≥∑
s,i E[ks,i]/36 = E[

∑
s,iks,i]/36.
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Further, from Lemma 5, we have for the total number Wm

of writes to arrays R0 and R1, E[Wm] ≤ 2E[
∑

s,iks,i].
Combining this with the inequality above, yields E[Wm] ≤
72m. The theorem now follows from this and Lemma 2,

which bounds the total number of RMRs by O(Wm).

V. CONCLUSION

For the CC model, there is currently no randomized algo-

rithm that achieves constant RMR complexity. We believe

that our techniques can be extended to the CC model. To

achieve this, we are working on a mechanism that allows

processes to join the backpack of a leader in a similar way

as in our DSM algorithm. The naive algorithm requires the

leader to scan an array of size n and incurs Ω(n) RMRs

in the CC model, but we have a randomized technique

that achieves something similar in O(1) RMRs. However,

it is a technical challenge to combine this with the “oracle”

mechanism of our DSM algorithm.
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