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Abstract—Quantum zero-knowledge proofs and quantum
proofs of knowledge are inherently difficult to analyze because
their security analysis uses rewinding. Certain cases of quantum
rewinding are handled by the results by Watrous (SIAM J
Comput, 2009) and Unruh (Eurocrypt 2012), yet in general the
problem remains elusive. We show that this is not only due to
a lack of proof techniques: relative to an oracle, we show that
classically secure proofs and proofs of knowledge are insecure in
the quantum setting.

More specifically, sigma-protocols, the Fiat-Shamir construc-
tion, and Fischlin’s proof system are quantum insecure under
assumptions that are sufficient for classical security. Additionally,
we show that for similar reasons, computationally binding com-
mitments provide almost no security guarantees in a quantum
setting.

To show these results, we develop the “pick-one trick”, a
general technique that allows an adversary to find one value
satisfying a given predicate, but not two.

Keywords-quantum cryptography; quantum query complexity;
rewinding; random oracles

I. INTRODUCTION

Quantum computers threaten classical cryptography. With

a quantum computer, an attacker would be able to break all

schemes based on the hardness of factoring, or on the hardness

of discrete logarithms [1], this would affect most public key

encryption and signature schemes is use today. For symmetric

ciphers and hash functions, longer key and output lengths will

be required due to considerable improvements in brute force

attacks [2], [3]. These threats lead to the question: how can

classical cryptography be made secure against quantum attacks?

Much research has been done towards cryptographic schemes

based on hardness assumptions not known to be vulnerable to

quantum computers, e.g., lattice-based cryptography. (This is

called post-quantum cryptography; see [4] for a somewhat dated

survey.) Yet, identifying useful quantum-hard assumptions is

only half of the problem. Even if the underlying assumption

holds against quantum attackers, for many classically secure

protocols it is not clear if they also resist quantum attacks:

the proof techniques used in the classical setting often cannot

be applied in the quantum world. This raises the question

whether it is just our proof techniques that are insufficient,

or whether the protocols themselves are quantum insecure.

The most prominent example are zero-knowledge proofs. To

show the security of a zero-knowledge proof system, one

typically uses rewinding. That is, in a hypothetical execution,

the adversary’s state is saved, and the adversary is executed

several times starting from that state. In the quantum setting,

we cannot do that: saving a quantum state means cloning

it, violating the no-cloning theorem [5]. Watrous [6] showed

that for many zero-knowledge proofs, security can be shown

using a quantum version of the rewinding technique. (Yet

this technique is not as versatile as classical rewinding. For

example, the quantum security of the graph non-isomorphism

proof system [7] is an open problem.) Unruh [8] noticed that

Watrous’ rewinding cannot be used to show the security of

proofs of knowledge; he developed a new rewinding technique

to show that so-called sigma-protocols are proofs of knowledge.

Yet, in [8] an unexpected condition was needed: their technique

only applies to proofs of knowledge with strict soundness
(which roughly means that the last message in the interaction is

determined by the earlier ones); this condition is not needed in

the classical case. The security of sigma-protocols without strict

soundness (e.g., graph isomorphism [7]) was left open. The

problem also applies to arguments as well (i.e., computationally-

sound proof systems, without “of knowledge”), as these are

often shown secure by proving that they are actually arguments

of knowledge. Further cases where new proof techniques are

needed in the quantum setting are schemes involving random

oracles. Various proof techniques were developed [9]–[13], but

all are restricted to specific cases, none of them matches the

power of the classical proof techniques.

To summarize: For many constructions that are easy to

prove secure classically, proofs in the quantum setting are

much harder and come with additional conditions limiting

their applicability. The question is: does this only reflect our

lack of understanding of the quantum setting, or are those

additional conditions indeed necessary? Or could it be that

those classically secure constructions are actually insecure

quantumly?

Our contribution. We show, relative to an oracle, that the

answer is indeed yes:
• Sigma-protocols are not necessarily quantum proofs of

knowledge, even if they are classical proofs of knowledge.

In particular, the strict soundness condition from [8] is

necessary. (Theorem 15)

• In the computational setting, sigma-protocols are not

necessarily quantum arguments, even if they are classical

arguments. (Theorem 19)

• The Fiat-Shamir construction [14] for non-interactive
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proofs of knowledge in the random oracle model does

not give rise to quantum proofs of knowledge. And in

the computational setting, not even to quantum arguments.

(Theorems 24 and 25)

• Fischlin’s non-interactive proof of knowledge in the

random oracle model [15] is not a quantum proof of

knowledge. (This is remarkable because in contrast to Fiat-

Shamir, the classical security proof of Fischlin’s scheme

does not use rewinding.) And in the computational setting,

it is not even an argument. (Theorems 27 and 28)

• Besides proof systems, we also have negative results for

commitment schemes. The usual classical definition of

computationally binding commitments is that the adversary

cannot provide openings to two different values for the

same commitment. Surprisingly, relative to an oracle,

there are computationally binding commitments where

a quantum adversary can open the commitment to any

value he chooses (just not to two values simultaneously).
(Theorem 11)

• The results on commitments in turn allow us to strengthen

the above results for proof systems. While it is known

that even in the quantum case, sigma-protocols with so-

called “strict soundness” (the third message is uniquely

determined by the other two) are proofs and proofs of

knowledge [8], using the computational variant of this

property leads to schemes that are not even computation-

ally secure. (Theorems 15, 19, 24, 25, 27, and 28.)

Figure 1 gives an overview of the results relating to proofs of

knowledge.

Our main result are the separations listed in the bullet points

above. Towards that goal, we additionally develop two tools

that may be of independent interest in quantum cryptographic

proofs:

• Section III: We develop the “pick-one” trick, a technique

for providing the adversary with the ability to compute a

value with a certain property, but not two of them. (See

“our technique” below.) This technique and the matching

lower bound on the adversary’s query complexity may be

useful for developing further oracle separations between

quantum and classical security. (At least it gives rise to

all the separations listed above.)

• We show (in the full version) how to create an oracle

that allows us to create arbitrarily many copies of a given

state |Ψ〉, but that is not more powerful than having many

copies of |Ψ〉, even if queried in superposition. Again,

this might be useful for other oracle separations, too. (The

construction of OΨ in Section III is an example for this.)

Related work. Van der Graaf [16] first noticed that security

definitions based on rewinding might be problematic in the

quantum setting. Watrous [6] showed how the problems with

quantum rewinding can be solved for a large class of zero-

knowledge proofs. Unruh [8] gave similar results for proofs

of knowledge; however he introduced the additional condition

“strict soundness” and they did not cover the computational

case (arguments and arguments of knowledge). Our work

(the results on sigma-protocols, Section V) shows that these

restrictions are not accidental: both strict soundness and

statistical security are required for the result from [8] to hold.

Protocols that are secure classically but insecure in the quantum

setting were constructed before: [17] presented classically

secure pseudorandom functions that become insecure when

the adversary is not only quantum, but can also query the
pseudorandom function in superposition. Similarly for secret

sharing schemes [18] and one-time MACs [19]. But, in all

of these cases, the negative results are shown for the case

when the adversary is allowed to interact with the honest

parties in superposition. Thus, the cryptographic protocol

is different in the classical case and the quantum case. In

contrast, we keep the protocols the same, with only classical

communication and only change adversary’s internal power

(by allowing it to be a polynomial-time quantum computer

which may access quantum oracles). We believe that this is

the first such separation. Boneh, Dagdelen, Fischlin, Lehmann,

Schaffner, and Zhandry [9] first showed how to correctly define

the random oracle in the quantum setting (namely, the adversary

has to have superposition access to it). For the Fiat-Shamir

construction (using random oracles as modeled by [9]), an

impossibility result was given by Dagdelen, Fischlin, and

Gagliardoni [20]. However, their impossibility only shows

that security of Fiat-Shamir cannot be shown using extractors

that do not perform quantum rewinding;1 but such quantum

rewinding is possible and used in the existing positive results

from [6], [8] which would also not work in a model without

quantum rewinding. A variant of Fiat-Shamir has been shown

to be a quantum secure signature scheme [20]. Probably their

scheme can also be shown to be a quantum zero-knowledge

proof of knowledge.2 However, their construction assumes

sigma-protocols with “oblivious commitments”. These are

a much stronger assumption that usual sigma-protocols: as

shown in [21, Appendix A], sigma-protocols with oblivious

commitments are by themselves already non-interactive zero-

knowledge proofs in the CRS model (albeit single-theorem,

non-adaptive ones). [21] presents a non-interactive quantum

zero-knowledge proof of knowledge in the random oracle

model, based on arbitrary sigma-protocols (it does not even

need strict soundness). That protocol uses ideas different from

both Fiat-Shamir and Fischlin’s scheme to avoid rewinding.

It was known for a long time that it is difficult to use classical

definitions for computational binding in the quantum setting

([22] is the first reference we are aware of), but none showed

so far that the computational definition was truly insufficient.

Our technique. The schemes we analyze are all based on

sigma-protocols which have the special soundness property:

In a proof of a statement s, given two accepting conversations

(com, ch, resp) and (com, ch ′, resp′), one can efficiently ex-

1They do allow extractors that restart the adversary with the same classical
randomness from the very beginning. But due to the randomness inherent
in quantum measurements, the adversary will then not necessarily reach the
same state again. They also do not allow the extractor to use a purified (i.e.,
unitary) adversary to avoid measurements that introduce randomness.

2The unforgeability proof from [20] is already almost a proof of the proof
of knowledge property. And the techniques from [21] can probably be applied
to show that the protocol form [20] is zero-knowledge.
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Underlying sigma-protocol Sig.-pr. used directly Fiat-Shamir Fischlin
zero- special strict

knowledge soundness soundness PoK proof PoK proof PoK proof
stat perf comp attack15 stat [6] attack24 ? attack27 ?
stat comp comp attack19 attack19 attack25 attack25 attack28 attack28

stat perf perf stat [8] stat [6] ? ? ? ?

Fig. 1: Taxonomy of proofs of knowledge. For different combinations of security properties of the underlying sigma-protocol (statistical (stat)/perfect
(perf)/computational (comp)), is there an attack in the quantum setting (relative to an oracle)? Or do we get a statistically/computationally secure proof/proof
of knowledge (PoK)? The superscripts refer to theorem numbers in this paper or to literature references. Note that in all cases, classically we have at least
computational security.

tract a witness for s. (The commitment com and the response
resp are sent by the prover, and the challenge ch by the

verifier.) In the classical case, we can ensure that the prover

cannot produce one accepting conversation without having

enough information to produce two. This is typically proven

by rewinding the prover to get two conversations. So in order

to break the schemes in the quantum case, we need to give

the prover some information that allows him to succeed in one

interaction, but not in two.

To do so, we use the following trick (we call it the pick-one
trick): Let S be a set of values (e.g., accepting conversations).

Give the quantum state |Ψ〉 := 1√
|S|
∑

x∈S |x〉 to the adversary.

Now the adversary can get a random x ∈ S by measuring

|Ψ〉. However, on its own that is not more useful than just

providing a random x ∈ S. So in addition, we provide an

oracle that applies the unitary OF with OF |Ψ〉 = −|Ψ〉 and
OF |Ψ⊥〉 = |Ψ⊥〉 for all |Ψ⊥〉 orthogonal to |Ψ〉. Now the

adversary can use (a variant of) Grover’s search starting with

state |Ψ〉 to find some x ∈ S that satisfies a predicate P (x) of

his choosing, as long as |S|/|{x ∈ S : P (x)}| is polynomially

bounded. Note however: once the adversary did this, |Ψ〉 is

gone, he cannot get a second x ∈ S.

How do we use that to break proofs of knowledge? The

simplest case is attacking the sigma-protocol itself. Assume

the challenge space is polynomial. (I.e., |ch| is logarithmic.)

Fix a commitment com , and let S be the set of all (ch, resp)
that form an accepting conversation with com . Give com and

|Ψ〉 to the malicious prover. (Actually, in the full proof we

provide an oracle OΨ that allows us to get |Ψ〉 for a random

com .) He sends com and receives a challenge ch ′. And using

the pick-one trick, he gets (ch, resp) ∈ S such that ch = ch ′.
Thus sending resp will make the verifier accept.

This in itself does not constitute a break of the protocol.

A malicious prover is allowed to make the verifier accept, as

long as he knows a witness. Thus we need to show that even

given |Ψ〉 and OF , it is hard to compute a witness. Given two

accepting conversations (com, ch, resp) and (com, ch ′, resp′)
we can compute a witness. So we need that given |Ψ〉 and

OF , it is hard to find two different x, x′ ∈ S. We show

this below (under certain assumptions on the size of S, see
Theorem 4, Corollary 7). Thus the sigma-protocol is indeed

broken: the malicious prover can make the verifier accept

using information that does not allow him to compute a

witness. (The full counterexample will need additional oracles,

e.g., for membership test in S etc.) Counterexamples for the

other constructions (Fiat-Shamir, Fischlin, etc.) are constructed

similarly. We stress that this does not contradict the security

of sigma-protocols with strict soundness [8]. Strict soundness

implies that there is only one response per challenge. Then |S|
is polynomial and it becomes possible to extract two accepting

conversations from |Ψ〉 and OF .
The main technical challenge is to prove that given |Ψ〉

and OF , it is hard to find two different x, x′ ∈ S. This

is done using the representation-theoretic form of “quantum

adversary" lower bound method for quantum algorithms [23],

[24]. The method is based on viewing a quantum algorithm as

a sequence of transformations on a bipartite quantum system

that consists of two registers: one register HA that contains the

algorithm’s quantum state and another register HI that contains

the information which triples (com, ch, resp) belong to S. The

algorithm’s purpose is to obtain two elements x1, x2 ∈ S using

only a limited type of interactions betweeen HA and HI .

(From a practical perspective, a quantum register HI holding

the membership information about S would be huge. However,

we do not propose to implement such a register. Rather, we

use it as a tool to prove a lower bound which then implies

a corresponding lower bound in the usual model where S is

accessed via oracles.)
We then partition the state-space of HI into subspaces

corresponding to group representations of the symmetry group

ofHI (the set of all permutations of triples (com, ch, resp) that
satisfy some natural requirements). Informally, these subspaces

correspond to possible states of algorithm’s knowledge about

the input data: having no information about any s ∈ S, knowing

one value x ∈ S, knowing two values x1, x2 ∈ S and so on.
The initial state in which the algorithm has |Ψ〉 corresponds

to HI being in the state “the algorithm knows one x ∈ S".
(This is very natural because measuring |Ψ〉 gives one value

x ∈ S and there is no way to obtain two values x ∈ S from

this state with a non-negligible probability.) We then show that

each application of the available oracles (such as OF and the

membership test for S) can only move a tiny part of the state

in HI from the “the algorithm knows one x ∈ S" subspace

of HI to the “the algorithm knows two x ∈ S" subspace.

Therefore, to obtain two values x1, x2 ∈ S, we need to apply

the available oracles a large number of times.
While the main idea is quite simple, implementing it requires

a sophisticated analysis of the representations of the symmetry

group of HI and how they evolves when the oracles are applied.
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Actually, below we prove an even stronger result: We do not

wish to give the state |Ψ〉 as input to the adversary. (Because

that would mean that the attack only works with an input that is

not efficiently computable, even in our relativized model.) Thus,

instead, we provide an oracle OΨ for efficiently constructing

this state. But then, since the oracle can be invoked arbitrarily

many times, the adversary could create two copies of |Ψ〉, thus
easily obtaining two x, x′ ∈ S! Instead, we provide an oracle

OΨ that provides a state |ΣΨ〉 which is a superposition of

many |Ψ〉 = |Ψ(y)〉 for independently chosen sets Sy. Now

the adversary can produce |ΣΨ〉 and using a measurement of

y, get many states |Ψ(y)〉 for random y’s, but no two states

|Ψ(y)〉 for the same y. Taking these additional capabilities into

account complicates the proof further, as does the presence of

additional oracles that are needed, e.g., to construct the prover

(who does need to be able to get several x ∈ S).
On the meaning of oracle separations. At this point, we

should say a few words about what it implies that our

impossibility results are relative to a certain oracle. Certainly,

our results do not necessarily imply that the investigated

schemes are insecure or unprovable in the “real world”, i.e.,

without oracles. However, our results give a number of valuable

insights. Foremost, they tell us which proof techniques cannot

be used for showing security of those schemes: only non-

relativizing proofs can work. This cuts down the search

space for proofs considerable. Also, it shows that security

proofs would need new techniques; the proof techniques from

[6], [8] at least are relativizing. And even non-relativizing

proof techniques such as (in the classical setting) [25] tend

to use specially designed (and more complicated) protocols

than their relativizing counterparts, so our results might give

some evidence that the specific protocols we investigate here

have no proofs at all, whether relativizing or non-relativizing.

Furthermore, oracle-based impossibilities can give ideas for

non-oracle-based impossibilities. If we can find computational

problems that exhibit similar properties as our oracles, we might

get analogous impossibilities without resorting to oracles (using

computational assumptions instead).3 However, we should

stress that even if we get rid of the oracles, our results do

not state that all sigma-protocols lead to insecure schemes. It

would not be excluded that, e.g., the graph-isomorphism sigma-

protocol [7] is still a proof of knowledge. What our approach

aims to show is the impossibility of general constructions that

are secure for all sigma-protocols.
Finally, we mention one point that is important in general

when designing oracle separations in the quantum world: even

relative to an oracle, the structural properties of quantum

circuits should not change. For example, any quantum algorithm

(even one that involves intermediate measurements or other non-

unitary operations) can be replaced by a unitary quantum circuit,

3For example, [26] presents a construction that might allow to implement
an analogue to the oracle OF . Essentially, if the set S (called A in [26]) is a
linear code, then they give a candidate for how to obfuscate OF (called VA

in [26]) such that one can apply OF but does not learn A. Of course, this
does not give us a candidate for how to construct the other oracles needed in
this work, but it shows that the idea of actually replacing our custom made
oracles by computational assumptions may not be far fetched.

and that unitary circuit can be reversed. If we choose oracles

that are not reversible, then we lose this property. (E.g., oracles

that perform measurements or that perform random choices

are non-reversible.) So an impossibility result based on such

oracles would only apply in a world where quantum circuits

are not reversible. Thus for meaningful oracle separations, we

need to ensure that: (a) all oracles are unitary, and (b) all

oracles have inverses. This makes some of the definitions of

oracles in our work (Definition 6) more involved than would

be necessary if we had used non-unitary oracles.
Organization. Section II introduces security definitions. Sec-

tion III develops the pick-one trick. Section IV shows the

insecurity of computationally binding commitments, Section V

that of sigma-protocols, Section VI that of the Fiat-Shamir

construction, and Section VII that of Fischlin’s construction.

Additional details and full proofs are given in the full ver-

sion [27].

II. SECURITY DEFINITIONS

A sigma-protocol for a relation R is a three message

proof system. It is described by the lengths �com , �ch , �resp
of the messages, a polynomial-time prover (P1, P2) and a

polynomial-time verifier V . The first message from the prover

is com ← P1(s, w) with (s, w) ∈ R and is called commitment,
the uniformly random reply from the verifier is ch

$← {0, 1}�ch
(called challenge), and the prover answers with resp ← P2(ch)
(the response). We assume P1, P2 to share state. Finally

V (s, com, ch, resp) outputs whether the verifier accepts.
We will make use of the following standard properties

of sigma-protocols. Note that we have chosen to make the

definition stronger by requiring honest entities (simulator,

extractor) to be classical while we allow the adversary to

be quantum.
Definition 1 (Properties of sigma-protocols): Let

(�com , �ch , �resp , P1, P2, V, R) be a sigma-protocol. We

define:
• Completeness: For all (s, w) ∈ R, Pr[ok = 0 :

com ← P1(s, w), ch
$← {0, 1}�ch , resp ← P2(ch), ok ←

V (s, com, ch, resp)] is negligible.

• Perfect special soundness: There is a polynomial-time

classical algorithm EΣ (the extractor) such that for

any (s, com, ch, resp, ch ′, resp′) with ch �= ch ′, we

have that Pr[(s, w) /∈ R ∧ ok = ok ′ = 1 : ok ←
V (s, com, ch, resp), ok ′ ← V (s, com, ch ′, resp′), w ←
EΣ(s, com, ch, resp, ch ′, resp′)] = 0.

• Computational special soundness: There is a

polynomial-time classical algorithm EΣ (the extractor)

such that for any polynomial-time quantum algorithm A
(the adversary), we have that Pr[(s, w) /∈ R ∧ ch �=
ch ′ ∧ ok = ok ′ = 1 : (s, com, ch, resp, ch ′, resp′) ← A,
ok ← V (s, com, ch, resp), ok ′ ← V (s, com, ch ′, resp′),
w ← EΣ(s, com, ch, resp, ch ′, resp′)] is negligible.

• Statistical honest-verifier zero-knowledge (HVZK):4
There is a polynomial-time classical algorithm SΣ (the

4In the context of this paper, HVZK is equivalent to zero-knowledge because
our protocols have logarithmic challenge length �ch [6].
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simulator) such that for any (possibly unlimited) quantum

algorithm A and all (s, w) ∈ R, the following is

negligible:∣∣Pr[b = 1 : com ← P1(s, w), ch
$← {0, 1}�ch ,

resp ← P2(ch), b← A(com, ch, resp)]

−Pr[b = 1 : (com, ch, resp)← S(s),

b← A(com, ch, resp)]
∣∣

• Strict soundness: For any (s, com, ch) and any resp �=
resp′ we have Pr[ok = ok ′ = 1 : ok ←
V (s, com, ch, resp), ok ′ ← V (s, com, ch, resp′)] = 0.

• Computational strict soundness:5 For any polynomial-

time quantum algorithm A (the adversary), we

have that Pr[ok = ok ′ = 1 ∧ resp �=
resp′ : (s, com, ch, resp, resp′) ← A, ok ←
V (s, com, ch, resp), ok ′ ← V (s, com, ch, resp′)] is neg-

ligible.

• Commitment entropy: For all (s, w) ∈ R and com ←
P1(s, w), the min-entropy of com is superlogarithmic.

In a relativized setting, all quantum algorithms additionally get

access to all oracles, and all classical algorithms additionally

get access to all classical oracles. �
In this paper, we will mainly be concerned with proving

that certain schemes are not proofs of knowledge. Therefore,

we will not need to have precise definitions of these concepts;

we only need to know what it means to break them.

Definition 2 (Total breaks): Consider an interactive or non-

interactive proof system (P, V ) for a relation R. Let LR :=
{s : ∃w.(s, w) ∈ R} be the language defined by R. A total
break is a polynomial-time quantum algorithm A such that the

following probability is overwhelming:

Pr[ok = 1 ∧ s /∈ LR : s← A, ok ← 〈A, V (s)〉]
Here 〈A, V (s)〉 denotes the output of V in an interaction

between A and V (s). (Intuitively, the adversary performs a total

break if the adversary manages with overwhelming probability

to convince the verifier V of a statement s that is not in the

language LR.)

A total knowledge break is a polynomial-time quantum algo-

rithm A such that for all polynomial-time quantum algorithms

E we have that:

• Adversary success: Pr[ok = 1 : s← A, ok ← 〈A, V (s)〉]
is overwhelming.

• Extractor failure: Pr[(s, w) ∈ R : s ← A,w ← E(s)] is
negligible.

Here E has access to the final state of A. (Intuitively, the

adversary performs a total knowledge break if the adversary

manages with overwhelming probability to convince the verifier

V of a statement s, but the extractor E cannot extract a witness

w for that statement.)

When applied to a proof system relative to an oracle O,

both A and E get access to O. In settings where R and O are

5Also known as unique responses in [15].

probabilistic, the probabilities are averaged over all values of

R and O. �
Note that these definitions of attacks are quite strong. In

particular, A does not get any auxiliary state. And A needs to

succeed with overwhelming probability and make the extraction

fail with overwhelming probability. (Usually, proofs / proofs of

knowledge are considered broken already when the adversary

has non-negligible success probability.) Furthermore, we require

A to be polynomial-time.

In particular, a total break implies that a proof system is

neither a proof nor an argument. And total knowledge break

implies that it is neither a proof of knowledge nor an argument

of knowledge, with respect to all definitions the authors are

aware of.6

III. THE PICK-ONE TRICK

In this section, we first show a basic case of the pick-one

trick which focusses on the core query complexity aspects. In

Section III-A, we extend this by a number of additional oracles

that will be needed in the rest of the paper.

Definition 3 (Two values problem): Let X,Y be finite sets

and let k ≤ |X| be a positive integer. For each y ∈ Y , let Sy be

a uniformly random subset of X of cardinality k, let |Ψ(y)〉 :=∑
x∈Sy

|x〉/√k. Let |ΣΨ〉 =
∑

y∈Y |y〉|Ψ(y)〉/√|Y | and

|ΣΦ〉 =∑y∈Y,x∈X |y〉|x〉/
√|Y | · |X|. The Two Values prob-

lem is to find y ∈ Y and x1, x2 ∈ Sy such that x1 �= x2 given

the following resources:

• one instance of the state
⊗h

�=1(α�,0|ΣΨ〉 + α�,1|ΣΦ〉),
where h and the coefficients α are independent of the

Sy’s and are such that this state has unit norm;

• an oracle OV such that for all y ∈ Y , x ∈ X , OV (y, x) =
0 if x /∈ Sy and OV (y, x) = 1 if x ∈ Sy .

• on oracle OF that, for all y ∈ Y , maps |y,Ψ(y)〉 to

−|y,Ψ(y)〉 and, for any |Ψ⊥〉 orthogonal to |Ψ(y)〉, maps

|y,Ψ⊥〉 to itself. �
The two values problem is at the core of the pick-one trick:

if we give an adversary access to the resources described in

Definition 3, he will be able to search for one x ∈ Sy satisfying

a predicate P (shown in Theorem 5 below). But he will not be

able to find two different x, x′ ∈ Sy (Theorem 4 below); we

will use this to foil any attempts at extracting by rewinding.

Theorem 4 (Hardness of the two values problem): Let A
be an algorithm for the Two Values problem that makes qV and

qF queries to oracles OV and OF , respectively. The success

probability for A to find y ∈ Y and x1, x2 ∈ Sy such that

x1 �= x2 is at most

O

(
h

|Y |1/2
+

(qV + qF )
1/2k1/4

|X|1/4
+

(qV + qF )
1/2

k1/4

)
. �

The proof uses the adversary-method from [23], [24] as

described in the introduction. In Section III-A we extend this

hardness result to cover additional oracles.

6Definitions that would not be covered would be such where the extractor
gets additional auxiliary input not available to the adversary. We are, however,
not aware of such in the literature.
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Theorem 5 (Searching one value): Let Sy ⊆ X and

OF ,OV be as in Definition 3.

There is a polynomial-time oracle algorithm E1 that on input

|ΣΨ〉 returns a uniformly random y ∈ Y and |Ψ(y)〉. There
is a polynomial-time oracle algorithm E2 such that: For any

δmin > 0, for any y ∈ Y , for any predicate P on X with

|{x ∈ Sy : P (x) = 1}|/|Sy| ≥ δmin, and for any n ≥ 0 we

have

Pr[x ∈ Sy ∧ P (x) = 1 : x← EOV ,OF ,P
2 (n, δmin, y, |Ψ(y)〉)]

≥ 1− 2−n.

(The running time of E2 is polynomial-time in n, 1/δmin, |y|.)
�

This theorem is proven with a variant of Grover’s algorithm

[2]: Using Grover’s algorithm, we search for an x with P (x) =
1. However, we do not search over all x ∈ {0, 1}� for some

�, but instead over all x ∈ Sy. When searching over Sy, the

initial state of Grover’s algorithm needs to be
∑

x
1√
|Sy|
|x〉 =

|Ψ(y)〉 instead of
∑

x 2
−�/2|x〉 =: |Φ〉. And the diffusion

operator I−2|Φ〉〈Φ| needs to be replaced by I−2|Ψ(y)〉〈Ψ(y)|.
Fortunately, we have access both to |Ψ(y)〉 (given as input),

and to I − 2|Ψ(y)〉〈Ψ(y)| (through the oracle OF ). To get

an overwhelming success probability, Grover’s algorithm is

usually repeated until it succeeds. (In particular, when the

number of solutions is not precisely known [28].) We cannot

do that: we have only one copy of the initial state. Fortunately,

by being more careful in how we measure the final result, we

can make sure that the final state in case of failure is also a

suitable initial state for Grover’s algorithm.

A. Additional oracles

In this section, we extend the hardness of the two values

problem to cover additional oracles that we will need in various

parts of the paper.

Definition 6 (Oracle distribution): Fix integers

�com , �ch , �resp (that may depend on the security parameter)

such that �com , �resp are superlogarithmic and �ch is

logarithmic. Let �rand := �com + �resp .
Let Oall = (OE ,OP ,OR,OS ,OF ,OΨ,OV ) be chosen

according to the following distribution:

• Let s0 be arbitrary but fixed (e.g., s0 := 0). Pick w0
$←

{0, 1}�rand .
• Choose Sy, OV , OF as in Definition 3 with Y :=
{0, 1}�com and X := {0, 1}�ch × {0, 1}�resp and k :=
2�ch+��resp/3�.

• For each z ∈ {0, 1}�rand , pick y
$← Y and x

$← Sy, and

set OS(z) := (y, x).
• Let |⊥〉 be a quantum state orthogonal to all

|com, ch, resp〉 (i.e., we extend the dimension of the

space in which |ΣΨ〉 lives by one). OΨ|⊥〉 := |ΣΨ〉,
OΨ|ΣΨ〉 := |⊥〉, and OΨ|Φ〉 := |Φ〉 for |Φ〉 orthogonal
to |ΣΨ〉 and |⊥〉.

• Let OE(com, ch, resp, ch ′, resp′) := w0 iff

(ch, resp), (ch ′, resp′) ∈ Scom∧(ch, resp) �= (ch ′, resp′)
and OE := 0 everywhere else.

• Let OR(s0, w0) := 1 and OR := 0 everywhere else.

• For each com ∈ {0, 1}�com , ch ∈ {0, 1}�ch , z ∈ {0, 1}�rand ,
let OP (w0, com, ch, z) be assigned a uniformly random

resp with (ch, resp) ∈ Scom . (Or ⊥ if no such resp
exists.) Let OP (w, ·, ·, ·) := 0 for w �= w0. �

The following corollary is a strengthening of Theorem 4 to

the oracle distribution from Definition 6. For later convenience,

we express the soundness additionally in terms of guessing w0.

Corollary 7 (Hardness of two values 2): Let

Oall = (OE ,OP ,OR,OS ,OF ,OΨ,OV ), w0 be as

in Definition 6. Let A be an oracle algorithm

making at most qE , qP , qR, qS , qF , qΨ, qV queries to

OE ,OP ,OR,OS ,OF ,OΨ,OV , respectively. Assume that

qE , qP , qR, qS , qF , qV are polynomially-bounded (and

�com , �resp are superlogarithmic by Definition 6). Then:

(i) Pr[(ch, resp) �= (ch ′, resp′) ∧ (ch, resp), (ch ′, resp′) ∈
Scom : (com, ch, resp, ch ′, resp′)← AOall ] is negligible.

(ii) Pr[w = w0 : w ← AOall ] is negligible. �
This corollary is shown by reduction to Theorem 4 (Hardness

of the two values problem). Given an adversary that violates (ii),

we remove step by step the oracles that are not covered by

Theorem 4. First, we remove the oracles OP ,OR. Those do not

help the adversary (much) to find w0 because OP and OR only

give non-zero output if their input already contains w0. Next

we change A to output a collision (ch, resp) �= (ch ′, resp′) ∧
(ch, resp), (ch ′, resp′) ∈ Scom instead of the witness w0; since

w0 can only be found by querying OE with such a collision,

this adversary succeeds with non-negligible probability, too.

Furthermore, A then does not need access to OE any more

since OE only helps in finding w0. Next we get rid of OΨ:

OΨ can be emulated (up to an inversely polynomial error)

using (suitable superpositions on) copies of the state |ΣΨ〉.
Finally we remove OS : Using the “small range distribution”

theorem from [17], OS can be replaced by an oracle that

provides only a polynomial number of triples (com, ch, resp).
Those triples the adversary can produce himself by measuring

polynomially-many copies of |ΣΨ〉 in the computational basis.

Thus we have shown that without loss of generality, we can

assume an adversary that only uses the oracles OF ,OV and

(suitable superpositions of) polynomially-many copies of |ΣΨ〉,
and that tries to find a collision. But that such an adversary

cannot find a collision was shown in Theorem 4.

And (i) is shown by observing that an adversary violating

(ii) leads to one violating (i) using one extra OE-query.

IV. ATTACKING COMMITMENTS

In the classical setting, a non-interactive commitment scheme

is usually called computationally binding if it is hard to output

a commitment and two different openings (Definition 8 below).

We now show that in the quantum setting, this definition is

extremely weak. Namely, it may still be possible to commit

to a value and then to open the commitment to an arbitrary

value (just not to two values at the same time).
Security definitions. To state this more formally, we define

the security of commitments: A non-interactive commitment

479479



scheme consists of algorithms COM,COMverify , such that

(c, u) ← COM(m) returns a commitment c on the message

m, and an opening information u. The sender then sends c to

the recipient, who is not supposed to learn anything about m.

Only when the sender later sends m,u, the recipients learns

m. But, intuitively speaking, the sender should not be able to

“change his mind” about m after sending c (binding property).

We require perfect completeness, i.e., for any m and (c, u)←
COM(m), COMverify(c,m, u) = 1 with probability 1. In our

setting, c,m, u are all classical.

Definition 8 (Computationally binding): A commitment

scheme COM,COMverify is computationally binding iff for

any quantum polynomial-time algorithm A the following

probability is negligible:

Pr[ok = ok ′ = 1 ∧ m �= m′ : (c,m, u,m′, u′)← A,

ok ← COMverify(c,m, u), ok ← COMverify(c,m
′, u′)]

�
We will show below that this definition is not the right one in

the quantum setting.

[8] also introduces a stronger variant of the binding property,

called strict binding, which requires that also the opening

information u is unique (not only the message). The results

from [8] show that strict binding commitments can behave

better under rewinding, so perhaps strict binding commitments

can avoid the problems that merely binding commitments have?

We define a computational variant of this property here:

Definition 9 (Computationally strict binding): A commit-

ment scheme COM,COMverify is computationally strict bind-
ing iff for any quantum polynomial-time algorithm A the

following probability is negligible:

Pr[ok = ok ′ = 1 ∧ (m,u) �= (m′, u′) : (c,m, u,m′, u′)← A,

ok ← COMverify(c,m, u), ok ← COMverify(c,m
′, u′)]

�
We will show below that this stronger definition is also not

sufficient.

Definition 10 (Statistically hiding): A commitment scheme

COM,COMverify is statistically hiding iff for all m1,m2 with

|m1| = |m2| and ci ← COM(mi) for i = 1, 2, c1 and c2 are

statistically indistinguishable.

The attack. We now state the insecurity of computationally

binding commitments. The remainder of this section will prove

the following theorem.

Theorem 11 (Insecurity of binding commitments): There is

an oracle O and a non-interactive commitment scheme

COM,COMverify such that:

• The scheme is perfectly complete, computationally bind-

ing, computationally strict binding, and statistically hiding.

• There is a quantum polynomial-time adversary B1, B2

such that for all m,

Pr[ok = 1 : c← B1(|m|), u← B2(m),

ok ← COMverify(c,m, u)]

is overwhelming. (In other words, the adversary can open

to a value m that he did not know while committing.) �
In the rest of this section, when referring to the sets Scom

from Definition 6, we will call them Sy and we refer to

their members as x ∈ Sy. (Not (ch, resp) ∈ Scom .) In

particular, oracles such as OS will returns pairs (y, x), not
triples (com, ch, resp), etc.

We construct a commitment scheme relative to the oracle

Oall from Definition 6. (Note: that oracle distribution contains

more oracles than we need for Theorem 11. However, we will

need in later sections that our commitment scheme is defined

relative to the same oracles as the proof systems there.)

Definition 12 (Bad commitment scheme): Let biti(x) de-

note the i-th bit of x. We define COM,COMverify as follows:

• COM(m): For i = 1, . . . , |m|, pick zi
$←

{0, 1}�rand and let (yi, xi) := OS(zi). Let pi
$←

{1, . . . , �ch + �resp}. Let bi := mi ⊕ bitpi(xi). Let

c := (p1, . . . , p|m|, y1, . . . , y|m|, b1, . . . , b|m|) and u :=
(x1, . . . , x|m|). Output (c, u).

• COMverify(c,m, u) with c =
(p1, . . . , pn, y1, . . . , yn, b1, . . . , bn) and u = (x1, . . . , xn):
Check whether |m| = n. Check whether OV (yi, xi) = 1
for i = 1, . . . , n. Check whether bi = mi ⊕ bitpi(xi) for

i = 1, . . . , n. Return 1 if all checks succeed. �
For the results of the current section, there is actually no need

for the values pi which select which bit of xi is used for

masking the committed bit mi. (E.g., we could always use

the least significant bit of xi.) But in Section VII (attack

on Fischlin’s scheme) we will need commitments of this

particular form to enable a specific attack where we need

to open commitments to certain values while simultaneously
searching for these values in the first place.

Lemma 13 (Properties of COM): The scheme from Def-

inition 12 is perfectly complete, computationally binding,

computationally strict binding, and statistically hiding. (Relative

to Oall .) �
The computational binding and computational strict binding

property are a consequence of Corollary 7 (Hardness of two
values 2): to open a commitment to two different values, the

adversary would need to find one yi (part of the commitment)

and two xi ∈ Syi
(part of the two openings). Corollary 7 states

that this only happens with negligible probability. Statistical

hiding follows from the fact that for each yi, there are

superpolynomially many xi ∈ Syi , hence bitpi(xi) is almost

independent of yi.
Lemma 14 (Attack on COM): There is a quantum

polynomial-time adversary B1, B2 such that for all

m, Pr[ok = 1 : c ← B1(|m|), u ← B2(m), ok ←
COMverify(c,m, u)] is overwhelming. �

Basically, the adversary B1, B2 commits to a random

commitment. And to unveil to a message m, he needs to

find values xi ∈ Syi
with bitpi

(xi) = mi ⊕ bi. Since half of

all xi have this property, such xi can be found using Theorem 5

(Searching one value).

Theorem 11 then follows immediately from
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Lemmas 13 and 14.

V. ATTACKING SIGMA-PROTOCOLS

We will now show that in general, sigma-protocols with

special soundness are not necessarily proofs of knowledge.

[8] showed that if a sigma-protocol additionally has strict

soundness, it is a proof of knowledge. It was left as an open

problem whether that additional condition is necessary. The

following theorem resolves that open question by showing that

the results from [8] do not hold without strict soundness (not

even with computational strict soundness), relative to an oracle.

Theorem 15 (Insecurity of sigma-protocols): There is an or-

acle Oall and a relation R and a sigma-protocol relative

to Oall with logarithmic �ch (challenge length), completeness,

perfect special soundness, computational strict soundness, and

statistical honest-verifier zero-knowledge for which there exists

a total knowledge break.

In contrast, a sigma-protocol relative to Oall with complete-

ness, perfect special soundness, and statistical honest-verifier

zero-knowledge is a classical proof of knowledge.

Note that a corresponding theorem with polynomially bounded

�ch follows immediately by parallel repetition of the sigma-

protocol.

The remainder of this section will prove Theorem 15. As a

first step, we construct the sigma-protocol.

Definition 16 (Sigma-protocol): Let COM,COMverify be

the commitment scheme from Definition 12.7

Relative to the oracle distribution from Defi-

nition 6, we define the following sigma-protocol

(�com , �ch , �resp , P1, P2, V, R) for the relation

R := {(s0, w0)}:
• P1(s, w) picks com

$← {0, 1}�com . For each

ch ∈ {0, 1}�ch , he picks zch
$← {0, 1}�rand and

computes respch := OP (w, com, ch, zch) and

(cch , uch) ← COM(respch). Then P1 outputs

com∗ := (com, (cch)ch∈{0,1}�ch ).
• P2(ch) outputs resp∗ := (respch , uch).
• For com∗ = (com, (cch)ch∈{0,1}�ch ) and

resp∗ = (resp, u), let V (s, com∗, ch, resp∗) := 1
iff OV (com, ch, resp) = 1 and s = s0 and

COMverify(cch , resp, u) = 1. �
The commitments cch are only needed to get computational

strict soundness. A slightly weaker Theorem 15 without

computational strict soundness can be achieved using the sigma-

protocol from Definition 16 without the commitments cch ; the
proofs stay the same, except that the steps relating to the

commitments are omitted.

Lemma 17 (Security of the sigma-protocol): The sigma-

protocol from Definition 16 has: completeness, perfect

special soundness, computational strict soundness, statistical

honest-verifier zero-knowledge, commitment entropy. �
7The commitment described there has the property that it is computationally

binding, but still it is possible for the adversary to open the commitment to
any value, only not to several values at the same time. The commitment is
defined relative to the same oracle distribution as the sigma-protocol here,
which is why we can use it.

Perfect special soundness follows from the existence of

the oracle OE . That oracle provides the witness w0 given

two accepting conversations, as required by perfect special

soundness. Computational strict soundness stems from the

fact that the message com∗ contains commitments cch to all

possible answers. Thus to break computational strict soundness

(i.e., to find two different accepting resp∗), the adversary

would need to open one of the commitments cch in two

ways. This happens with negligible probability since COM is

computationally strict binding. Statistical honest-verifier zero-

knowledge follows from the existence of the oracle OS which

provides simulations. (And the commitment cch that are not

opened can be filled with arbitrary values due to the statistical

hiding property of COM.)

Lemma 18 (Attack on the sigma-protocol): Assume that

�ch is logarithmically bounded. Then there exists a total

knowledge break (Definition 2) against the sigma-protocol

from Definition 16. �
To attack the sigma protocol, the malicious prover uses

Theorem 5 (Searching one value) to get a com and a correspond-

ing state |Ψ(com)〉. Then, when receiving ch , he needs to

find (ch ′, resp) ∈ Scom with ch ′ = ch. Since an inversely

polynomial fraction of (ch ′, resp) satisfy ch ′ = ch (�ch is

logarithmic), this can be done with Theorem 5. This allows the

prover to succeed in the proof with overwhelming probability.

(He additionally needs to open the commitments cch to suitably.

This can be done using Lemma 14 (Attack on COM).) However,

an extractor that has the same information as the prover (namely,

access to the oracle Oall ) will fail to find w0 by Corollary 7

(Hardness of two values 2).

Now Theorem 15 follows from Lemmas 17 and 18. (The fact

that the sigma-protocol is a classical proof of knowledge is

shown in [29].)

Note that we cannot expect to get a total break (as opposed

to a total knowledge break): Since the sigma-protocol is a

classical proof of knowledge, it is also a classical proof. But a

classical proof is also a quantum proof, because an unlimited

classical adversary can simulate a quantum adversary. However,

this argument does not apply when we consider computationally

limited provers, see Section V-A below.

A. The computational case

We now consider the variant of the impossibility result from

the previous section. Namely, we consider sigma-protocols that

have only computational security (more precisely, for which

the special soundness property holds only computationally)

and show that these are not even arguments in general (the

results from the previous section only say that they are not

arguments of knowledge).

Theorem 19 (Insecurity of sigma-protocols, computational):
There is an oracle Oall and a relation R′ and a sigma-protocol

relative to Oall with logarithmic �ch (challenge length),

completeness, computational special soundness, and statistical

honest-verifier zero-knowledge for which there exists a total
break.
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In contrast, a sigma-protocol relative to Oall with complete-

ness, computational special soundness, and statistical honest-

verifier zero-knowledge is a classical argument. �
Note that a corresponding theorem with polynomially

bounded �ch follows immediately by parallel repetition of

the sigma-protocol. The remainder of this section is dedicated

to proving Theorem 19.

Definition 20 (Sigma-protocol, computational): We define

a sigma-protocol (�com , �ch , �resp , P1, P2, V, R
′) as in Defi-

nition 16, except that the relation is R′ := ∅. �
Lemma 21 (Security of the sigma-protocol, computational):

The sigma-protocol from Definition 20 has: completeness.

computational special soundness. computational strict

soundness. statistical honest-verifier zero-knowledge.

commitment entropy. �
Most properties are either immediate or shown as in

Lemma 17 (Security of the sigma-protocol). However, perfect

special soundness does not hold for the sigma-protocol from

Definition 20: There exist pairs of accepting conversations

(ch, resp), (ch ′, resp′) ∈ Scom . But these do not allow us to

extract a valid witness for s0 (because R′ = ∅, so no witnesses

exist). However, we have computational special soundness: by

Corollary 7 (Hardness of two values 2), it is computationally

infeasible to find those pairs of conversations.

Lemma 22 (Attack on the sigma-protocol, computational):
Assume that �ch is logarithmically bounded. Then there exists

a total break (Definition 2) against the sigma-protocol from

Definition 20. �
In this lemma, we use the same malicious prover as in

Lemma 18 (Attack on the sigma-protocol). That adversary proves

the statement s0. Since R′ = ∅, that statement is not in the

language, thus this prover performs a total break.

Now Theorem 19 follows from Lemmas 21 and 22. (And

sigma-protocols with computational special soundness are

arguments of knowledge and thus arguments; we are not aware

of an explicit write-up in the literature, but the proof from [29]

for sigma-protocols with special soundness applies to this case,

too.)

VI. ATTACKING FIAT-SHAMIR

Definition 23 (Fiat-Shamir): Fix a sigma-protocol

(�com , �ch , �resp , P1, P2, V, R) and an integer r > 0. Let

H : {0, 1}∗ → {0, 1}r·�ch be a random oracle. The Fiat-Shamir
construction (PFS , VFS ) is the following non-interactive proof

system:

• Prover PFS (s, w): For (s, w) ∈ R, invoke comi ←
P1(s, w) for i = 1, . . . , r. Let ch1‖ . . . ‖chr :=
H(s, com1, . . . , comr). Invoke respi ← P2(chi). Return

π := (com1, . . . , comr, resp1, . . . , respr).
• Verifier VFS (s, (com1, . . . , comr, resp1, . . . , respr)): Let
ch1‖ . . . ‖chr := H(s, com1, . . . , comr). Check whether

V (s, comi, chi, respi) = 1 for all i = 1, . . . , r. If so,

return 1. �
Theorem 24 (Insecurity of Fiat-Shamir): There is an oracle

Oall and a relation R and a sigma-protocol relative to Oall

with logarithmic �ch (challenge length), completeness, perfect

special soundness, computational strict soundness, statistical

honest-verifier zero-knowledge, and commitment entropy, such

that there is total knowledge break on the Fiat-Shamir con-

struction.

In contrast, the Fiat-Shamir construction based on a sigma-

protocol with the same properties is a classical argument of

knowledge (assuming that r�ch is superlogarithmic). �
As the underlying sigma-protocol, we use the one from

Definition 16. The attack on Fiat-Shamir is analogous to that

on the sigma-protocol itself. The only difference is that the

challenge ch now comes from H and not from the verifier;

this does not change the attack strategy.

Again, we get even stronger attacks if the special soundness

holds only computationally.

Theorem 25 (Insecurity of Fiat-Shamir, computational):
There is an oracle Oall and a relation R and a sigma-protocol

relative to Oall with logarithmic �ch (challenge length),

completeness, computational special soundness, computational

strict soundness, statistical honest-verifier zero-knowledge, and

commitment entropy, such that there is a total break on the

Fiat-Shamir construction.

In contrast, the Fiat-Shamir construction based on a sigma-

protocol with the same properties is a classical argument of

knowledge (assuming that r�ch is superlogarithmic). �
The proof is along the lines of those of Theorem 24 and

Lemma 22.

VII. ATTACKING FISCHLIN’S SCHEME

In the preceding sections we have used the pick-one trick to

give negative results for the (knowledge) soundness of sigma

protocols and of the Fiat-Shamir construction. Classically, both

protocols are shown sound using rewinding. This leads to the

conjecture that the pick-one trick is mainly useful for getting

impossibilities for protocols with rewinding-based security

proofs. Yet, in this section we show that this is not the case;

we use the pick-one trick to give an impossibility result for

Fischlin’s proof system with online-extractors [15]. The crucial

point of that construction is that in the classical security proof,

no rewinding is necessary. Instead, a witness is extracted

by passively inspecting the list of queries performed by the

adversary.

Definition 26 (Fischlin’s scheme): Fix a sigma-protocol

(�com , �ch , �resp , P1, P2, V, R). Fix integers b, r,S, t such that

br and 2t−b are superlogarithmic, b, r, t are logarithmic,

S ∈ O(r) (S = 0 is permitted), and b ≤ t ≤ �ch .
Let H : {0, 1}∗ → {0, 1}b be a random oracle. Fischlin’s

construction (PFis , VFis) is the non-interactive proof system

is defined as follows:

• PFis(s, w): See [15]. (Omitted here since we only need

to analyze VFis for our results.)

• VFis(s, π) with π = (comi, chi, respi)i=1,...,r: Check if

V (comi, chi, respi) = 0 for all i = 1, . . . , r. Check if∑r
i=1 H(x, (comi)i, i, chi, respi) ≤ S (where H(. . . ) is

interpreted as a binary unsigned integer). If all checks

succeed, return 1. �
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The idea (in the classical case) is that, in order

to produce triples (comi, chi, respi) that make

H(x, (comi)i, i, chi, respi) sufficiently small, the prover

needs try out several accepting chi, respi for each comi. So

with overwhelming probability, the queries made to H will

contain at least two chi, respi for the same comi. This then

allows extraction by just inspecting the queries.

In the quantum setting, this approach towards extraction does

not work: the “list of random oracle queries” is not a well-

defined notion, because the argument of H is not measured

when a query is performed. In fact, we show that Fischlin’s

scheme is in fact not an argument of knowledge in the quantum

setting (relative to an oracle):

Theorem 27 (Insecurity of Fischlin’s construction): There

is an oracle Oall and a relation R and a sigma-protocol

relative to Oall with logarithmic �ch (challenge length),

completeness, perfect special soundness, computational strict

soundness, statistical honest-verifier zero-knowledge, and

commitment entropy, such that there is a total knowledge

break of Fischlin’s construction.

Yet, Fischlin’s construction based on a sigma-protocol with

the same properties is a classical argument of knowledge. �
As the underlying sigma-protocol, we use the one from

Definition 16. The basic idea is that the malicious prover

finds conversations (com∗i , chi, resp
∗
i ) by first fixing the

values com∗i , and then using Theorem 5 to find ch, resp∗

where resp∗i contains respi such that (chi, respi) ∈ Scomi

and H(x, (com∗i )i, i, chi, resp
∗
i ) = 0. If resp∗i would not

additionally contain commitments cch (see Definition 16),

this would already suffice to break Fischlin’s scheme. To

additionally make sure we can open the commitments to the

right value, we use a specific fixpoint property of COM.

Theorem 28 (Insecurity of Fischlin, computational): There

is an oracle Oall and a relation R and a sigma-protocol

relative to Oall with logarithmic �ch (challenge length),

completeness, computational special soundness, computational

strict soundness, statistical honest-verifier zero-knowledge,

and commitment entropy, such that there is a total break on

Fischlin’s construction.

Yet, Fischlin’s construction based on a sigma-protocol with

the same properties is a classical argument of knowledge. �
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