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Abstract—A program obfuscator takes a program and out-
puts a “scrambled” version of it, where the goal is that the
obfuscated program will not reveal much about its structure
beyond what is apparent from executing it. There are several
ways of formalizing this goal. Specifically, in indistinguisha-
bility obfuscation, first defined by Barak et al. (CRYPTO
2001), the requirement is that the results of obfuscating any
two functionally equivalent programs (circuits) will be compu-
tationally indistinguishable. Recently, a fascinating candidate
construction for indistinguishability obfuscation was proposed
by Garg et al. (FOCS 2013). This has led to a flurry of discovery
of intriguing constructions of primitives and protocols whose
existence was not previously known (for instance, fully deniable
encryption by Sahai and Waters, STOC 2014). Most of them
explicitly rely on additional hardness assumptions, such as one-
way functions.

Our goal is to get rid of this extra assumption. We cannot
argue that indistinguishability obfuscation of all polynomial-
time circuits implies the existence of one-way functions, since if
P = NP, then program obfuscation (under the indistinguisha-
bility notion) is possible. Instead, the ultimate goal is to argue
that if P �= NP and program obfuscation is possible, then one-
way functions exist.

Our main result is that if NP �⊆ io-BPP and there is an
efficient (even imperfect) indistinguishability obfuscator, then
there are one-way functions. In addition, we show that the
existence of an indistinguishability obfuscator implies (uncon-
ditionally) the existence of SZK-arguments for NP. This, in
turn, provides an alternative version of our main result, based
on the assumption of hard-on-the average NP problems. To get
some of our results we need obfuscators for simple programs
such as 3CNF formulas.
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I. INTRODUCTION

The goal of program obfuscation is to transform a given

program (say described as a boolean circuit) into another

“scrambled” circuit which is functionally equivalent by “hid-

ing” its implementation details (making it hard to “reverse-

engineer”). The theoretical study of obfuscation was initiated

by Barak et al. [1], [2]. They studied several notions of

obfuscation, primarily focusing on virtual black-box ob-
fuscation (henceforth VBB). Virtual black-box obfuscation

requires that anything that can be efficiently computed from

the obfuscated program, can also be computed efficiently

from black-box (i.e., input-output) access to the program.

Their main result was that this notion of obfuscation cannot

be achieved for all circuits. Moreover, the existence of

virtual black-box obfuscators for various restricted families

of functions is still a major open problem.

As a way to bypass their general impossibility result,

Barak et al. [2] introduced the notion of indistinguisha-
bility obfuscation (henceforth iO). An indistinguishability

obfuscator is an algorithm that guarantees that if two circuits

compute the same function, then their obfuscations are

computationally indistinguishable.

Recently, there have been two significant developments

regarding indistinguishability obfuscation: first, candidate

constructions for obfuscators for all polynomial-time pro-

grams were proposed [3], [4], [5], [6], [7], [8] and second,

intriguing applications of iO have been demonstrated, e.g.,

general-purpose functional encryption scheme [3], deniable

encryption with negligible advantage [9], two-round secure

MPC [10], traitor-tracing schemes with very short messages

[11], secret-sharing for NP [12] and more. However, es-

sentially all these applications (and others) explicitly rely

on some additional hardness assumption (such as one-way

functions).1 This should not come as a surprise: As noted

already by Barak et al. [2], if P = NP, then there are no

1Two notable exceptions are witness encryption [13] and functional
witness encryption [14]. However, Boyle et al. [14] showed that these can
be viewed as special cases of iO.
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one-way functions but iO does exist.2

We consider both “perfect” obfuscators with perfect func-

tionality (i.e., the obfuscator always preserves the func-

tionality of the input circuit) and “imperfect” obfuscators,

where the functionality is preserved only with overwhelming

probability. Our goal is to deepen our understanding of the

relation between several notions of obfuscation and one-way

functions. We ask the following question:

Under which assumptions is it redundant to assume
one-way functions on top of an efficient and possibly

imperfect obfuscator?

Our Main Result: In this paper, we provide an answer

to the above question. We show that if NP �⊆ io-BPP
and there is an efficient, even imperfect, iO, then one-way

functions exist, where io-BPP is the class of languages that

can be decided by a probabilistic polynomial-time algorithm

for infinitely many input lengths.3

In addition, we also provide a completely different proof

of a somewhat weaker statement. We first show that the exis-

tence of efficient indistinguishability obfuscators for 3CNF
formulas implies (unconditionally) the existence of SZK-

arguments for NP. Then, we use a result of Ostrovsky [15]

which states that SKZ-arguments for hard-on-the average

languages implies the existence of one-way functions. Thus,

we get that the existence of one-way functions can be based

on the existence of a hard-on-the average NP-problem and,

even imperfect, iO for 3CNFs. This result is weaker than

the result above since the existence of hard-on-the average

NP-problems implies that NP �⊆ io-BPP (however, it only

requires an obfuscator for 3CNF formulas, as opposed to all

polynomial-size circuits).

Finally, we generalize a result of [2] and show that even

if imperfect VBB obfuscators exist (even for a very simple

family of functions such as point functions4), then one-way

functions exist. We summarize our results in the following

theorem.

Main Theorem. Any of the following three conditions
implies that one-way functions exist:

1) NP �⊆ io-BPP and an efficient, even imperfect, iO for
polynomial-size circuits exists.

2) Hard-on-the average functions in NP exist and an
efficient, even imperfect, iO for 3CNF formulas exists.

3) An efficient, even imperfect, VBB obfuscator for point
functions exists.

2If P = NP, then the polynomial hierarchy collapses to P, thus we
can efficiently find the lexicographically first circuit that has the same
functionality as some given circuit.

3If we assume efficient and perfect iO, then we give a simple argument
that proves that NP �⊆ io-coRP implies one-way functions. See Section II
for further details.

4A Boolean function is a point function if it is the constant 0 function
or it assumes the value 1 at exactly one point (and 0 everywhere else).

A corollary of our main theorem is that many applications

that assume (even imperfect) iO and one-way functions

can be obtained by assuming iO and NP �⊆ io-BPP. Two

notable examples are the construction of deniable encryption

of Sahai and Waters [9] and the construction of a traitor-

tracing scheme of Boneh and Zhandry [11]. In addition, we

view our results as making the claim of Sahai and Waters [9]

that iO is a “central hub” of cryptography more cohesive.

Borrowing from Impagliazzo’s terminology [16], if (even

imperfect) iO exists, then our result rules out Pessiland,

where hard-on-the average languages exist but one-way

functions do not. We observe that if NP ⊆ BPP, then one-

way functions do not exist but iO does. Therefore, ignoring

the issue of infinitely-often input lengths, we can state Item 1

of our main result as follows: NP ⊆ BPP if and only if
there exists an efficient indistinguishability obfuscator and
one-way functions do not exist.

More Related Work: Subsequently to [2], Goldwasser

and Kalai [17] and Goldwasser and Rothblum [18] intro-

duced other variants of definitions of obfuscation and proved

that they are also impossible to achieve in general.

Recently, a work of Garg et al. [3] proposed the first

candidate construction of indistinguishability obfuscators

relying on multilinear graded encodings. Different variants

of this construction that are secure in idealized algebraic

models have been proposed in [4], [5], [7], and [6] presents

a construction of an iO whose security can be reduced to the

assumption that semantically-secure graded encodings exist.

Paper Organization: In Section II we give a high level

overview of our main techniques. In Section III we provide

preliminary definitions and set up notation. In Sections IV

to VI we prove Items 1 to 3 of our main theorem, respec-

tively. In Section VII we prove that an approximate notion

of iO is equivalent to the imperfect notion of iO, thus one

can get similar results to Items 1 and 2 of our main theorem

while assuming approximate iO.

II. OUR TECHNIQUES

We focus on Item 1 of the main theorem and present

our main ideas and techniques. We say that an indistin-

guishability obfuscator iO is perfect if it perfectly preserves

functionality (i.e., it always outputs a circuit that agrees with

the input circuit on every input), and we say that iO is

imperfect if it preserves functionality with overwhelming

probability (i.e., with overwhelming probability it outputs a

circuit that agrees with the input circuit on every input).

For the exact definition we refer to Definition III.4. By

default, we assume that an indistinguishability obfuscator

is imperfect (i.e., if we require it to be perfect, we explicitly

say so).

Our starting observation is that if we assume the existence

of an efficient perfect indistinguishability obfuscator, then

assuming that NP �⊆ io-coRP there are one-way functions,
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where io-coRP is the class of languages that can be coRP-

decided (i.e., efficiently and probabilistically with a one-

sided error) for infinitely many input lengths.

Observation II.1. Assume that NP �⊆ io-coRP. If there
exists an efficient perfect indistinguishability obfuscator for
3CNF formulas, then one-way functions exist.

The idea behind the proof of Observation II.1 is sim-

ple and borrows the construction from [18, Theorem 4.1].

Given an efficient and perfect indistinguishability obfusca-

tion scheme iO(C;x) (that uses randomness x to obfuscate

an input 3CNF formula C), our candidate one-way function

is defined as

f(x) = iO(Z;x), (1)

where Z is a circuit of appropriate size and input length

that always outputs zero. Assuming that iO satisfies both

perfect functionality and indistinguishability, we show how

to use an adversary A that can (infinitely-often) invert the

function f with non-negligible advantage (over the choice

of a random input x) in order to (one-sided, infinitely-

often) probabilistically decide the circuit (un)satisfiability of

a given 3CNF formula C. This is done by simply observing

whether A succeeds in inverting or not. The key observations

in our argument are the following:

• If C is unsatisfiable, then by the indistinguishability

of the iO scheme, A inverts f with non-negligible

advantage even if we replace f(x) = iO(Z;x) with

f(x) = iO(C;x).
• If C is satisfiable, then by the perfect functionality of

the iO scheme, iO(Z;x) can never be a satisfiable

circuit. Thus, no inverse of iO(C;x) exists and A fails

to invert f when we replace f(x) = iO(Z;x) with

f(x) = iO(C;x).

The full proof of Observation II.1 can be found in [19].

We note that the intuition above (as well as the formal

proof in [19]) makes strong use of the perfect functionality

required from iO.

Indeed, if the obfuscator is imperfect, then we cannot

claim that if C is satisfiable, then iO(C;x) cannot be a

circuit that always outputs zero: By the imperfect func-

tionality of iO we are only guaranteed that for a random
string x, with overwhelming probability, it will be the case

that iO(C;x) is functionally equivalent to C. Therefore, for

every satisfiable circuit C it is possible that there exists a

string x such that iO(Z;x) is functionally equivalent to C.

In this case, the inverter A can just output that x, causing

us to answer incorrectly.

Remark II.2. Observe that all we need for Observation II.1
is an indistinguishability obfuscator for 3CNF formulas.
However, for Item 1 of our main theorem (see Theorem IV.1
for a formal statement) we require iO for polynomial-size
circuits. It is a very interesting open problem to get a

similar result to that of Theorem IV.1 but only relying on
an obfuscator for 3CNFs.

A. Going Beyond Perfect iO
As we noted above, the simple construction given in

Equation (1) does not work when iO is only guaranteed to be

imperfect. We continue the overview by introducing a useful

notation: For a circuit C we denote by Ĉ a random variable

that corresponds to a random obfuscation of C. Moreover,

for two circuits C and Ĉ we denote by ϕ(C, Ĉ) the set of

random strings x for which iO(C;x) = Ĉ.

Observe that, with the new set of notation, the inverter

A of f from above is given a circuit Ĉ and, if successful,

finds an x such that x ∈ ϕ(Z, Ĉ). Thus, with high enough

probability for any unsatisfiable circuit C it holds that

|ϕ(Z, Ĉ)| ≥ 1, however, by the perfect functionality of iO,

for any satisfiable circuit C, it holds that |ϕ(Z, Ĉ)| = 0.

Hence, using A we can efficiently determine if the set

ϕ(Z, Ĉ) is empty or not, that is, whether C is satisfiable

or not.

Unfortunately, as we have said, when iO is imperfect this

difference no longer holds. Thus, we seek for a stronger

separation by ϕ of satisfiable and unsatisfiable circuits.

Towards a Strong Separation: One of our main obser-

vations (see Lemma IV.4) is that if C is a satisfiable circuit,

then with high probability it holds that

|ϕ(C, Ẑ)| � |ϕ(Z, Ẑ)|. (2)

At this point we wish to prove a complementary inequality

(expression), that is, if C is unsatisfiable, then with high

probability it holds that

|ϕ(C, Ẑ)| ≈ |ϕ(Z, Ẑ)|. (3)

If this were true, then ϕ would act as a measure that

can separate satisfiable and unsatisfiable circuits. Then, we

would be left proving that there exists an efficient procedure

ϕ≈ that can estimate the value of |ϕ(·, Ẑ)|. We would decide

satisfiability of a given circuit C by computing Ẑ ← iO(Z),
ϕ≈(C, Ẑ) and ϕ≈(Z, Ẑ), and checking whether the latter

two are roughly the same or not.

However, the complementary inequality (Equation (3))

does not seem to follow from the basic properties of iO.5

Moreover, it seems hard to establish the estimator ϕ≈ (as

defined above) for reasons we will discuss later.

A Strong Separation via Double Obfuscation: Our

main idea, that solves both problems raised in the previous

paragraph, is to consider the double obfuscation of a circuit.

Denote by C the double obfuscation of a circuit C (i.e.,

C ← iO(iO(C))). By the functionality property of iO,

5If we assume there are one-way functions, then the complementary
inequality is false. However, in a world without one-way functions, it is
unclear.
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a natural corollary of Equation (2) is that for a satisfiable

circuit C with high probability it holds that

|ϕ(Ĉ, Z)| � |ϕ(Ẑ, Z)|. (4)

Now assume that we have an estimator ϕ≈ that can

efficiently estimate ϕ(·, Z). Unlike before, by the indistin-

guishability property of iO, the complementary inequality

of this corollary is true! That is, if C is unsatisfiable, then

with high probability it holds that

|ϕ(Ĉ, Z)| ≈ |ϕ(Ẑ, Z)|. (5)

Indeed, since Ĉ is indistinguishable from Ẑ, it must hold that

any efficient algorithm that estimates |ϕ(·, Z)| is unable to

distinguish between whether it was given Ĉ or Ẑ.

At this point, we can decide satisfiability of a given circuit

C by computing Ẑ ← iO(Z), Z ← iO(iO(Z)), Ĉ ←
iO(C), ϕ≈(Ĉ, Z) and ϕ≈(Ẑ, Z), and checking whether the

latter two are roughly the same or not. We are left to prove

that ϕ(·, Z) can be efficiently estimated.

Towards Efficiently Estimating ϕ: We start with a

standard trick for estimating the size of such sets, that was

originally used by Impagliazzo and Luby [20] (see also

[21]). Recall Equation (1) which defines the function f . We

append to f a description of a (pairwise independent) hash

function h and its evaluation on x. That is, we define the

function

f ′(x, h, k) = Z ◦ iO(Z;x) ◦ h ◦ h(x)|k, (6)

where ◦ denotes string concatenation operator and h(x)|k
is the k bit long prefix of h(x). Assuming that f ′ is not

one-way, we have an efficient algorithm A′ that inverts f ′

on random inputs with non-negligible probability. Using the

leftover hash lemma [22], [23], the inverter A′ and the

indistinguishability feature of iO, one can obtain an efficient

procedure ϕ≈ that estimates |ϕ(Z, Ĉ)| for any circuit C.

Unfortunately, as we have noted, we are interested in

estimating |ϕ(Ĉ, Z)| and not |ϕ(Z, Ĉ)|. A possible direction

that might be useful is to try and estimate |ϕ(C, Ẑ)|.
Recall that this is not what we ultimately want, however,

the following example emphasizes a step towards the final

solution. To do this, consider an inverter for the function

defined as follows

f ′C(x, h, k) = C ◦ iO(C;x) ◦ h ◦ h(x)|k. (7)

This direction, however, has an immediate drawback: for

each circuit C, f ′C might have a different inverter A′C , which

cannot be found efficiently, thus yielding a non-uniform

estimator ϕ≈. We remark that if we assume that deciding

circuit satisfiability is hard-on-the-average, then this problem

can be solved. This is true since, in this case, C is sampled

at random and can be thought of as an input to the function

and not part of its description,6 which results in having only

a single inverter.

Estimating ϕ via Double Obfuscation: This step can

intuitively be seen as a worst-case to average-case reduction.

Roughly speaking, the double obfuscation allows us to

re-randomize unsatisfiable instances while maintaining the

separating by ϕ, yielding a uniform estimator ϕ≈ for the

measures in Equations (4) and (5).

The idea is, as we discussed above, to obfuscate the
obfuscation of Z. That is, we define the following variant

of f ′ which is our final construction:

f ′′(x, y, h, k) = (8)

iO(Z; y) ◦ iO(iO(Z; y);x) ◦ h ◦ h(x)|k,
Assuming that f ′′ is not one-way, then, there exists an

inverter A′′ for f ′′. As opposed to the previous construction,

here we have a single inverter A′′ that can be used for

any circuit C. Using similar estimation techniques as before

(sampling combined with the leftover hash lemma), we

are able to use A′′ to construct an estimator ϕ≈ that can

estimate |ϕ(Ẑ, Z)| and |ϕ(Ĉ, Z)| for satisfiable circuits C
(we remark that we only require and achieve estimation in

some suffice sense). For unsatisfiable circuits C, in this case,

any efficient estimator for |ϕ(Ẑ, Z)| is also a good estimator

for |ϕ(Ĉ, Z)|, since Ĉ and Ẑ are indistinguishable.

At this point, we have all the ingredients. Given a circuit

C, we can use ϕ≈ to efficiently estimate KC = |ϕ(Ĉ, Z)|
and KZ = |ϕ(Ẑ, Z)|. Using the guarantees of Equations (4)

and (5) we can determine if C is satisfiable or not by the

difference between KC and KZ . For the exact details and

the full proof we refer to Section IV.

III. PRELIMINARIES

We start with some general notation. We denote by [n] the

set of numbers {1, 2, . . . , n}. We denote by neg : N → R

a function such that for every positive integer c there exists

an integer Nc such that for all n > Nc, neg(n) < 1/nc. For

two strings x ∈ {0, 1}n and y ∈ {0, 1}m we denote by x◦y
the string concatenation of x and y.

For a set S, we let US denote the uniform distribution

over S. For an integer m ∈ N, we let Um denote the uniform

distribution over {0, 1}m, the bit-strings of length m. For a

distribution or random variable X we write x← X to denote

the operation of sampling a random x according to X . For

a set S, we write s ← S as shorthand for s ← US . For

a randomized algorithm A, we write PrA[·] (resp., EA[·])
to state that the probability (resp., expectation) is over the

internal randomness of the algorithm A. Finally, throughout

this paper we denote by log the base 2 logarithm and we

define log 0 = 0.

6That is, we can define the function f ′(C, x, h, k) � f ′
C(x, h, k).
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Throughout this paper we deal with Boolean circuits. We

denote by |C| the size of a circuit C and define it as the

number of wires in C.

A. Computational Indistinguishability

Definition III.1 (Computational Indistinguishability). Two
sequences of random variables X = {Xn}n∈N and Y =
{Yn}n∈N are computationally indistinguishable if for ev-
ery probabilistic polynomial time algorithm A there exists
an integer N such that for all n ≥ N ,

|Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| ≤ neg(n).

where the probabilities are over Xn, Yn and the internal
randomness of A.

B. One-Way Functions

Definition III.2 (One-Way Functions). A function f is said
to be one-way if the following two conditions hold:

1) There exists a polynomial-time algorithm A such that
A(x) = f(x) for every x ∈ {0, 1}∗.

2) For every probabilistic polynomial-time algorithm A
and all sufficiently large n,

Pr[A′(1n, f(x)) ∈ f−1(f(x))] < neg(n),

where the probability is taken uniformly over all
possible x ∈ {0, 1}n and the internal randomness of
A′.

Definition III.3 (Weak One-Way Functions). A function f is
said to be weakly one-way if the following two conditions
hold:

1) There exists a polynomial-time algorithm A such that
A(x) = f(x) for every x ∈ {0, 1}∗.

2) There exists a polynomial p such that for every
probabilistic polynomial-time algorithm A and all
sufficiently large n,

Pr[A′(1n, f(x)) ∈ f−1(f(x))] < 1− 1

p(n)
,

where the probability is taken uniformly over all
possible x ∈ {0, 1}n and the internal randomness of
A′.

C. Obfuscation

We say that two circuits C and C ′ are equivalent and

denote it by C ≡ C ′ if they compute the same function

(i.e., ∀x : C(x) = C ′(x)).
Indistinguishability Obfuscation:

Definition III.4 (Perfect/Imperfect Indistinguishability Ob-

fuscator). Let C = {Cn}n∈N be a class of polynomial-size
circuits, where Cn is a set of circuits operating on inputs of
length n. A uniform algorithm iO is called an (imperfect)
indistinguishability obfuscator for the class C if it takes as

input a security parameter and a circuit in C and outputs a
new circuit so that following properties are satisfied:

1) (Perfect/Imperfect) Preserving Functionality:
There exists a negligible function α such that for any
input length n ∈ N, any λ and any C ∈ Cn it holds
that

Pr
iO

[
C ≡ iO(1λ, C)

] ≥ 1− α(λ),

where the probability is over the internal randomness
of iO. If α(·) = 0, then we say that iO is perfect.

2) Polynomial Slowdown:
There exists a polynomial p(·) such that: For any input
length n ∈ N, any λ and any circuit C ∈ Cn it holds
that

∣∣iO(1λ, C)
∣∣ ≤ p(|C|).

3) Indistinguishable Obfuscation:
For any probabilistic polynomial-time algorithm D,
any n ∈ N, any two equivalent circuits C1, C2 ∈ Cn
of the same size and large enough λ, it holds that

| Pr
iO,D

[
D

(
iO (

1λ, C1

))
= 1

]−
Pr

iO,D

[
D

(
iO (

1λ, C2

))
= 1

] | ≤ neg(λ).

We say that iO is efficient if it runs in polynomial-time.

Virtual Black-Box Obfuscation:

Definition III.5 (Perfect/Imperfect VBB Obfuscator). Let
C = {Cn}n∈N be a class of polynomial-size circuits, where
Cn is a set of circuits operating on inputs of length n. A uni-
form algorithm O is called an (imperfect) VBB obfuscator
for the class C if it takes as input a security parameter and
a circuit in C and outputs a new circuit so that following
properties are satisfied:

1) (Perfect/Imperfect) Preserving Functionality:
There exists a negligible function α such that for any
input length n ∈ N, any λ and any C ∈ Cn it holds
that

Pr
O

[
C ≡ O(1λ, C)

] ≥ 1− α(λ),

where the probability is over the internal randomness
of O. If α(·) = 0, then we say that O is perfect.

2) Polynomial Slowdown:
There exists a polynomial p(·) such that: For any input
length n ∈ N, any λ and any circuit C ∈ Cn it holds
that

∣∣O(1λ, C)
∣∣ ≤ p(|C|).

3) Virtual Black-Box:
For any probabilistic polynomial-time algorithm D,
any predicate π : Cn → {0, 1}, any n ∈ N and any
circuit C ∈ Cn, there is a polynomial-size simulator
S such that for large enough λ it holds that

| Pr
O,D

[
D

(O (
1λ, C

))
= π(C)

]−
Pr
S

[
D

(
SC

(
1λ

))
= π(C)

] | ≤ neg(λ).

We say that O is efficient if it runs in polynomial-time.
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Notation: For ease of notation, 1λ, the first parameter

of iO and O, is sometimes omitted when it is clear from

the context.

D. Leftover Hash Lemma

Definition III.6 (Statistical Distance). The statistical dis-
tance between two random variables X,Y is defined by

SD(X,Y ) � 1

2
·
(∑

x

|Pr[X = x]− Pr[Y = x]|
)

Definition III.7 (Pairwise Independence). A family Hk
n :

{h : {0, 1}n → {0, 1}k} of functions is called pairwise
independent if for all distinct x, y ∈ {0, 1}n and every
a1, a2 ∈ {0, 1}k, it holds that

Pr
h←Hk

n

[h(x) = a1 ∧ h(y) = a2] = 2−2k.

The following formulation of the leftover hash lemma is

taken from [24, Theorem D.5].

Theorem III.8 (Leftover Hash Lemma). Let Hk
n be a family

of pairwise independent hash functions and S ⊆ {0, 1}n. Let
ε = 3

√
2k/ |S|. Consider random variables X and H that

is uniformly distributed on S and Hk
n, respectively. Then,

SD (H ◦H(X), H ◦Um) ≤ 2ε.

IV. FROM IMPERFECT iO TO ONE-WAY FUNCTIONS

In this section we prove Item 1 of our main theorem and

show that if an efficient indistinguishability obfuscator exists

and NP �⊆ io-BPP, then one-way functions exist.

Theorem IV.1. Assume that NP �⊆ io-BPP. If there exists
an efficient (even imperfect) indistinguishability obfuscator
for polynomial-size circuits, then one-way functions exist.

To prove Theorem IV.1, we assume towards contradiction

that there are no one-way functions (and, in particular, there

are no weakly one-way functions (see e.g., [25, Theorem

2.3.2]). Note, however, that the latter only guarantees that

for every function there is an efficient inverter that succeeds

on infinitely many inputs length. We use the existence of

this efficient inverter to solve an NP-complete problem in

probabilistic polynomial-time with two sided error. Thus, we

get that an algorithm that solves the NP-complete problem

infinitely-often (io), and thus NP ⊆ io-BPP contradicting

our assumption. In the rest of the proof, for simplicity, we

ignore this infinitely-often issue.

Let iO(1λ, C; r) be an efficient indistinguishability obfus-

cator, where λ is a security parameter, C is the input circuit

and r is the randomness used by the obfuscator. Let Zs,n

be the canonical zero circuit of size s that accepts n inputs.

Throughout the proof, we use several parameters: λ the

security parameter, n the number of input bits, s the size

of the circuit and |r| the number of random bits used by

the obfuscator (the latter might depend on λ and s). For

simplicity of exposition, we will assume that they are all

equal and denote them by n (otherwise, one could always

increase the security parameter and add dummy inputs to

make them equal).

Let Hm = {h : {0, 1}m → {0, 1}m} be a pairwise

independent hash function family (see Definition III.7). For

a function h ∈ Hm, an input x ∈ {0, 1}m and an integer

k ∈ [m] we denote by h(x)|k the k bit long prefix of h(x).
Define the function family F = {fn : {0, 1}n × {0, 1}n ×
Hn × {0, 1, . . . , n} → {0, 1}∗}n∈N where

fn(r1, r2, h, k) = iO(1n, Zn,n; r2)◦
◦ iO (1s, iO(1n, Zn,n; r2); r1) ◦ h ◦ k ◦ h(r1)|k.

Note that since iO is efficiently computable then so is fn.

Suppose, towards contradiction, that F is not weakly

one-way. Then, there exists a probabilistic polynomial-time

adversary A that can invert outputs of fn on random inputs

with probability at least 1− 1/n50.7 We show that using A
we are able to (probabilistically and) efficiently solve circuit

satisfiability. Let f = fn.

Notation: Recall that for every two circuits C and C ′

we define

ϕ(C,C ′) � {r ∈ {0, 1}n | iO(C; r) = C ′}.
That is, ϕ(C,C ′) is the set of random strings r for which

applying iO on C with randomness r leads to C ′. For a

circuit C, we denote by Ĉr � iO(C; r) a shorthand for the

obfuscation of the circuit C when applied with randomness

r. Moreover, we denote by Cr1,r2 = iO(iO(C; r2); r1)
the shorthand for the (double) obfuscation of the circuit C
when applied with randomness r2 and then applied with

randomness r1.

Proof Overview: Roughly speaking, the proof follows

the ideas presented in Section II. In what follows, we give

an overview of these main steps and how they are used

to prove our main result. Let C be a circuit. Let Ĉ be a

uniform obfuscation of C and Z be a uniform obfuscation

of a uniform obfuscation of the canonical zero circuit Z.

Our main claims are the following:

1) Lemma IV.2 - We prove that there exists a proce-

dure that gives a good estimation for |ϕ(Ĉ, Z)| (see

Lemma IV.2 for the exact details). This result uses the

assumption that f is not one-way in a very strong way.

2) Lemma IV.3 - We prove that since we can efficiently

estimate |ϕ(Ĉ, Z)| (by the previous item), then it

must be that case that with high probability for every

unsatisfiable circuit it holds that

|ϕ(Ĉ, Z)| ≈ |ϕ(Ẑ, Z)|.
7More precisely, we are only guaranteed that A is able to invert random

outputs of fn infinitely-often (i.e., for infinitely many n’s). However, as we
said, in order not to complicate the proof, we ignore this issue throughout
the analysis.
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This is true since otherwise we get an efficient al-

gorithm that breaks the indistinguishability feature of

iO.

3) Corollary IV.5 - We prove that if C is a satisfiable
circuit, then with very high probability

|ϕ(Ĉ, Z)| � |ϕ(Ẑ, Z)|.
We emphasize that this inequality is unconditional

and follows from the (possibly imperfect) functionality

feature of iO.

Using Items 1,2 and 3 it is easy to get an algorithm

that distinguishes between a satisfiable and an unsatisfiable

circuit: we compute ϕ≈(Ĉ, Z) and ϕ≈(Ẑ, Z) and check if

they are close or far, and answer accordingly.

The Full Proof: We begin by showing that although we

cannot compute exactly |ϕ(C,C ′)| for any two circuits, in

some cases we can approximate it quite well.

Lemma IV.2. Let C be a circuit. Let Ĉ ← iO(C) and
Z ← iO(iO(Z)) be random variables. The procedure ϕ≈
from Figure 1 (that gets as input Ĉ and Z) satisfies that
with probability at least 1− 1/n10 it holds that:

1) ϕ≈(Ĉ, Z) ≤ log |ϕ(Ĉ, Z)|+ 90 log n.
2) If C is unsatisfiable, then ϕ≈(Ĉ, Z) ≥ log |ϕ(Ĉ, Z)|−

90 log n,

where the probability is over Ĉ, Z and the internal random-
ness of ϕ≈.

The ϕ≈ Procedure

Input: A circuit ̂C ← iO(C) and a circuit Z ← iO(iO(Z)).

1) Initialize maxk ← −∞.
2) For k = 0 . . . n do:

a) Sample uniformly at random a hash function h ∈ Hn

and a random strings s of length k.

b) Set y ← ̂C ◦ Z ◦ h ◦ k ◦ s.
c) Run r′1, r

′
2, h

′, k′ ← A(y).
d) If f(r′1, r

′
2, h

′, k′) = y, set maxk ← k.

3) Return maxk.

Figure 1. ϕ Estimation Procedure.

The proof of Lemma IV.2 can be found in the full version

[19].

Next, we show that for every two unsatisfiable circuits Z

and C with high probability |ϕ(Ĉ, Z)| and |ϕ(Ẑ, Z)| are

roughly the same.

Lemma IV.3. Let Z and C be any two unsatisfiable circuits
that are of the same size. Let Ẑ ← iO(Z), Ĉ ← iO(C)

and Z ← iO(iO(Z)) be random variables. Then, with
probability 1− neg(n) over the internal randomness of iO

it holds that∣∣∣log |ϕ(Ĉ, Z)| − log |ϕ(Ẑ, Z)|
∣∣∣ ≤ 400 log n.

Proof: Assume towards a contradiction that the claim is

false. That is, there is a polynomial q(·) such that with prob-

ability 1/q(n) it holds that | log |ϕ(Ĉ, Z)|−log |ϕ(Ẑ, Z)|| >
400 logn.

We show that we can use the procedure ϕ≈ from

Lemma IV.2 to distinguish an obfuscation of C from an

obfuscation of Z with high probability. According to the

security guarantee of iO (see Item 3 of Definition III.4), the

latter is a contradiction. Recall that the procedure ϕ≈ from

Lemma IV.2 is given two circuits as input: Ĉ ← iO(C) and

Ẑ ← iO(iO(Z)).
Given Z and C as in the claim, and an obfuscation of one

of them Ŵ , we define a procedure Break-iO that is able to

decide whether this obfuscation is an obfuscation of Z or of

C with non-negligible probability. The procedure Break-iO
is defined as follows: First, it samples Ẑ ← iO(Z) and Z ←
iO(iO(Z)). Then it uses ϕ≈ to estimate KZ = ϕ≈(Ẑ, Z)

and KW = ϕ≈(Ŵ , Z) and output “Z ′′ if and only if these

two estimates are close. The formal description of Break-iO
is given in Figure 2.

The Break-iO Procedure

Input: An obfuscation ̂W of either Z or C.

Let ϕ≈ be the procedure from Lemma IV.2.

1) Sample ̂Z ← iO(Z), Z ← iO(iO(Z)).

2) Compute KZ ← ϕ≈( ̂Z,Z).

3) Compute KW ← ϕ≈(̂W,Z).
4) If |KW −KZ | ≤ 200 log n, then output “Z”; Otherwise,

output “C”.

Figure 2. Break-iO Procedure.

If Ŵ is an obfuscation of Z, then by Lemma IV.2 with

probability 1− 1/n9 it holds that

|KZ −KW | ≤
log |ϕ(Ẑ, Z)|+ 90 log n− (log |ϕ(Ẑ, Z)| − 90 log n) =

180 logn.

Therefore, in this case, Break-iO will output “Z” with high

probability, as required.

If Ŵ is an obfuscation of C, then by Lemma IV.2 and

the assumption, with probability 1− 1/n9− 1/q(n) it holds

that

|KZ −KW | ≥∣∣ log |ϕ(Ẑ, Z)| − log |ϕ(Ĉ, Z)|∣∣− 180 log n ≥
400 log n− 180 logn > 200 logn.
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Therefore, in this case, Break-iO will output “C”. In con-

clusion, Break-iO can distinguish between the obfuscations

of C and Z with high probability, breaking the security

guarantee of iO.

Next, we show that for every circuit C that is functionally

different from the zero circuit Z, with high probability

|ϕ(C, Ẑ)| is much smaller than |ϕ(Z, Ẑ)|.
Lemma IV.4. For any two non-equivalent circuits Z,C and
for any polynomial p(·) it holds that

Pr
r

[
p(n) · |ϕ(C, Ẑr)| < |ϕ(Z, Ẑr)|

]
> 1− neg(n).

Proof: Let p(·) be a polynomial. Assume towards

contradiction that there exists a polynomial q(·) such that

Pr
r

[
p(n) · |ϕ(C, Ẑr)| ≥ |ϕ(Z, Ẑr)|

]
≥ 1

q(n)
. (9)

Denote by Bad the set of r’s for which p(n) · |ϕ(C, Ẑr)| ≥
|ϕ(Z, Ẑr)|. By Equation (9) we have that Prr[r ∈ Bad] ≥
1/q(n). From the completeness of iO we have that Prr[r ∈
Bad ∧ Ẑr ≡ Z] ≥ 1/q(n) − neg(n). Denote by Bad′ the

set of all r ∈ Bad for which Ẑr ≡ Z. In particular, for any

r ∈ Bad′ it holds that |{y ∈ {0, 1}n | iO(C; y) = Ẑr}| ≥
|{y ∈ {0, 1}n | iO(Z; y) = Ẑr}|/p(n). Then,

Pr
y
[iO(C; y) �≡ C] ≥ Pr

y
[iO(C; y) ∈ {Ẑr | r ∈ Bad′}]

≥ Pr
y
[iO(Z; y) ∈ {Ẑr | r ∈ Bad′}] · 1

p(n)

≥ 1

p(n)
·
(

1

q(n)
− neg(n)

)
≥ 1

2p(n) · q(n) .

Clearly, this is a contradiction to the completeness of iO
which proves the claim.

Since for every circuit C it holds that Ĉ ← iO(C) is

functionally equivalent to C with probability 1 − neg(n),
we get the following corollary.

Corollary IV.5. Let C and Z be two non-equivalent circuits
of the same size. Let Ĉ ← iO(C), Ẑ ← iO(Z) and
Z ← iO(iO(Z)). For any positive constant c ∈ N, with
probability at least 1 − neg(n) it holds that c log n +

log |ϕ(Ĉ, Z)| < log |ϕ(Ẑ, Z)|.
A. Proof of Theorem IV.1

We prove Theorem IV.1 by showing how to combine

Lemmas IV.2 and IV.3 and Corollary IV.5 in order to devise

an efficient (probabilistic) algorithm SolveSAT that gets a

circuit C as input and satisfies the following (infinitely-

often):

1) If C is satisfiable, then PrSolveSAT[SolveSAT(C) =
“SAT”] ≥ 2/3.

2) If C is unsatisfiable, then PrSolveSAT[SolveSAT(C) =
“UNSAT”] ≥ 2/3.

SolveSAT samples Ẑ ← iO(Z), Z ← iO(iO(Z)) and

Ĉ ← iO(C) and uses ϕ≈ to estimate ϕ≈(Ẑ, Z) and

ϕ≈(Ĉ, Z). If the distance between the two is large, then it

outputs “SAT”. The formal description appears in Figure 3.

The SolveSAT Procedure

Input: A circuit C that receives n inputs.

Let ϕ≈ be the procedure from Lemma IV.2.

1) Sample ̂Z ← iO(Z), Z ← iO(iO(Z)) and ̂C ← iO(C).

2) Compute KZ ← ϕ≈( ̂Z,Z) and KC ← ϕ≈( ̂C,Z).
3) If KZ−KC > 600 log n, output “SAT”; Otherwise, output

“UNSAT”.

Figure 3. SAT Solver.

By Lemma IV.2 we know that with probability at least

1− 1/n10 it holds that

|KZ − ϕ(Ẑ, Z)| ≤ 90 log n.

Assume that C is an unsatisfiable circuit. By Lemma IV.2

we get that with probability 1− 1/n10 it holds that

|KC − ϕ(Ĉ, Z)| ≤ 90 log n.

Using Lemma IV.3 we also know that with probability 1−
neg(n)

|ϕ(Ẑ, Z)− ϕ(Ĉ, Z)| ≤ 400 logn.

Therefore, using the triangle inequality, with probability 1−
1/n9 it holds that

KZ −KC ≤ 600 logn.

Thus, in this case, SolveSAT outputs “UNSAT” with high

probability, as required.

Next, assume that C is a satisfiable circuit. Using Corol-

lary IV.5 we know that with probability 1− neg(n) it holds

that

ϕ(Ẑ, Z)− ϕ(Ĉ, Z) ≥ 800 logn.

Using Item 2 of Lemma IV.2 we have that with probability

at least 1− 1/n9 it holds that

KZ −KC ≥
ϕ(Ẑ, Z)− 90 log n− (ϕ(Ĉ, Z) + 90 logn) >

600 logn.

Therefore, in this case, SolveSAT outputs “SAT” with high

probability, as required.
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V. FROM IMPERFECT iO TO ONE-WAY FUNCTIONS

THROUGH SZK

In this section we prove Item 2 of our main theorem. We

assume the existence of an (imperfect) indistinguishability

obfuscator for 3CNF formulas. We show that assuming the

existence of hard-on-the average NP problems, one-way

functions exist.

Theorem V.1. Assume the existence of a hard-on-the av-
erage NP-problem. If there exists an efficient imperfect
indistinguishability obfuscator for 3CNF formulas, then one-
way functions exist.

In order to prove Theorem V.1 we need the following

theorem (that might be interesting in its own right) that states

that iO implies unconditionally SZK-arguments for NP.

Theorem V.2. If there exists an efficient (and even im-
perfect) indistinguishability obfuscators for 3CNF formulas,
then there exists a statistical zero-knowledge argument for
NP.

Theorem V.1 follows by combining Theorem V.2 with a

result of Ostrovsky [15] - showing that honest-verifier sta-

tistical zero-knowledge arguments for hard-on-the average

languages implies the existence of one-way functions.8 The

proof of Theorem V.2 can be found in the full version [19].

Remark: In the proof of Theorem V.2, the only thing

we require from C is that it is a “witness encryption” [13]

(at least according to the definition from [14]) of the string

s. Recall that a witness encryption scheme enables one

to encrypt a message m with respect to an NP-language L,

an instance x and a function f , such that anyone that has,

and only those that have, a witness w for x ∈ L can recover

f(m,w). Therefore, we have actually shown that witness

encryption for NP (even with imperfect correctness) implies

statistical zero-knowledge arguments for NP.

VI. FROM IMPERFECT VBB TO ONE-WAY FUNCTIONS

In this section we prove Item 3 of our main theorem. We

show that the existence of efficient, even imperfect, VBB

obfuscators implies (unconditionally) the existence of one-

way functions.

Barak et al. [2, Lemma 3.8] proved that perfect efficient

VBB obfuscators imply one-way functions. Their proof

strongly relies on the assumption that O is a perfect VBB

obfuscator. In the rest of this section we generalize their

result and prove the following theorem.

Theorem VI.1. If an efficient, even imperfect, VBB obfus-
cator for point functions exists, then one-way functions exist.

8Alternatively, using a result of Ostrovsky and Wigderson [26], if we
assume NP �⊆ io-BPP, then we can deduce the existence of “auxiliary
input” one-way functions, which are not sufficient for many cryptographic
applications. However, the result of Theorem IV.1 shows that under the
same assumption (i.e., NP �⊆ io-BPP) we can deduce a stronger result
(i.e., that one-way functions exist).

The proof of Theorem VI.1 can be found in the full

version [19].

VII. FROM APPROXIMATE iO TO ONE-WAY FUNCTIONS

A natural variant of Definition III.4 is to consider ap-
proximate indistinguishability obfuscators.9 In this variant

we require from iO the second and third requirements

from Definition III.4 (i.e., polynomial slowdown and indis-
tinguishability) but replace the first requirement with the

following:

1) (Approximate) Preserving Functionality:

There exists a negligible function α such that for any

input length n ∈ N, any λ, any C ∈ Cn and every

x ∈ {0, 1}n it holds that

Pr
iO

[
C(x) = iO(1λ, C)(x)

] ≥ 1− α(λ).

We observe that by standard error amplification we have

that if approximate indistinguishability obfuscators exist,

then imperfect indistinguishability obfuscators exist. We note

that the other direction is trivial.

Lemma VII.1. If there is an approximate indistinguishabil-
ity obfuscator, then there exists an imperfect indistinguisha-
bility obfuscator, and vice-versa.

As a corollary, we obtain that our main results (Theo-

rems IV.1 and V.1) are true even if we assume the existence

of approximate iO instead of imperfect iO. The proof of

Lemma VII.1 can be found in the full version [19].
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