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Abstract—We prove exponential lower bounds on the size of
homogeneous depth 4 arithmetic circuits computing an explicit
polynomial in VP. Our results hold for the Iterated Matrix
Multiplication polynomial - in particular we show that any
homogeneous depth 4 circuit computing the (1, 1) entry in the
product of n generic matrices of dimension nO(1) must have
size nΩ(

√
n).

Our results strengthen previous works in two significant
ways.

1) Our lower bounds hold for a polynomial in VP. Prior
to our work, Kayal et al [KLSSa] proved an exponential
lower bound for homogeneous depth 4 circuits (over fields
of characteristic zero) computing a poly in VNP. The
best known lower bounds for a depth 4 homogeneous
circuit computing a poly in VP was the bound of nΩ(logn)

by [KLSSb], [KLSSa].
Our exponential lower bounds also give the first expo-
nential separation between general arithmetic circuits
and homogeneous depth 4 arithmetic circuits. In par-
ticular they imply that the depth reduction results of
Koiran [Koi12] and Tavenas [Tav13] are tight even
for reductions to general homogeneous depth 4 circuits
(without the restriction of bounded bottom fanin).

2) Our lower bound holds over all fields. The lower bound
of [KLSSa] worked only over fields of characteristic zero.
Prior to our work, the best lower bound for homogeneous
depth 4 circuits over fields of positive characteristic was
nΩ(logn) [KLSSb], [KLSSa].

Keywords-Lower bounds; arithmetic circuits; depth reduc-
tion

I. INTRODUCTION

In a seminal work [Val79], Valiant defined the classes

VP and VNP as the algebraic analogs of the classes P and

NP. The problem of separating VNP from VP has since

been one of the most important open problems in algebraic

complexity theory. Although the problem has received a

great deal of attention in the following years, the best lower

bounds known for general arithmetic circuits are barely

super linear [Str73], [BS83]. The absence of progress on

the general problem has led to much attention being devoted

to proving lower bounds for restricted classes of arithmetic

circuits. Arithmetic circuits of small depth are one such class

that has been intensively studied.

Depth Reduction:: Following a long line of structural

results by Valiant et al [VSBR83], Agrawal-Vinay [AV08],

Koiran [Koi12] and Tavenas [Tav13], it is known that in

order to separate VNP form VP, it would suffice to prove

strong enough (nω(
√
n)) lower bounds for just homogeneous

depth 4 circuits computing an explicit polynomial of degree

n in nO(1) variables.

Lower bounds for homogeneous bounded depth cir-
cuits:: In an extremely influential work, Nisan and Wigder-

son [NW95] proved the first super-polynomial (and in fact

exponential) lower bound for the class of homogeneous

depth 3 circuits using dimension of the space of partial
derivatives as a measure of complexity of a polyomial.

For several years thereafter, there were no improved lower

bounds - even for the case of depth 4 homogeneous circuits,

the best lower bounds were just mildly super-linear [Raz10].

This seemed surprising until the depth reduction results

of Agrawal-Vinay [AV08] and later Koiran [Koi12] and

Tavenas [Tav13], which demontrated that in some sense, ho-

mogeneous depth 4 circuits capture the inherent complexity

of general arithmetic circuits.

In a breakthrough result in 2012, Gupta et al showed

a lower bound of 2Ω(
√
n) for homogeneous depth four

circuit, with bottom fan-in at most
√
n (we denote this

class by ΣΠΣΠ[
√
n]) computing a polynomial of degree n

in nO(1) variables. This was later improved to 2Ω(
√
n logn)

in a follow up work of Kayal, Saha, Saptharishi [KSS].

These results were all the more remarkable in the light

of the results of Koiran [Koi12] and Tavenas [Tav13] who

had in fact showed that 2ω(
√
n logn) lower bounds even for

homogeneous ΣΠΣΠ[
√
n] circuits would suffice to separate

VP from VNP. Thus, any asymptotic improvement in the

exponent, in either the upper bound on depth reduction or the

lower bound of [KSS] would separate VNP from VP. Both

papers [GKKSa], [KSS] used the notion of the dimension

of shifted partial derivatives as a complexity measure, a

refinement of the Nisan-Wigderson complexity measure of

dimension of partial derivatives.

The most tantalizing questions left open by these works

was to improve either the depth reduction or the lower

bounds. In [FLMS], the lower bounds of [KSS] were

strengthened by showing that they also held for a polynomial
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in VP. These were further extended in [KSa], where the

same exponential (nΩ(
√
n)) lower bounds were also shown to

hold for very simple polynomial sized formulas of just depth

4 (if one requires them to be computed by homogeneous

ΣΠΣΠ[
√
n] circuits). On one hand, these results give us

extremely strong lower bounds for an interesting class of

depth 4 homogeneous circuits. On the other hand, since these

lower bounds also hold for polynomials in VP and for homo-

geneous formulas [FLMS], [KSa], it follows that the depth

reduction results of Koiran [Koi12] and Tavenas [Tav13] to

the class of homogeneous ΣΠΣΠ[
√
n] circuits are tight and

cannot be improved even for homoegeneous formulas.

Although these results represent a lot of exciting progress

on the problem of proving lower bounds for homogeneous

ΣΠΣΠ[
√
n] circuits, and these results seemed possibly to be

on the brink of proving lower bounds for general arithmetic

circuits, they still seemed to give almost no nontrivial results

for general homogeneous depth 4 circuits with no bound

on bottom fanin (homogeneous ΣΠΣΠ circuits). Moreover,

it was shown in [KSa] that general homogeneous ΣΠΣΠ
circuits are exponentially more powerful than homogeneous

ΣΠΣΠ[
√
n] circuits1. Till very recently, the only lower

bounds we knew for general homogeneous depth 4 circuits

were the slightly super-linear lower bounds by Raz using

the notion of elusive functions [Raz10] (these worked even

for non-homogeneous circuits).

Lower bounds for general homogeneous depth 4 cir-
cuits:: Recently, the first super-polynomial lower bounds

for general homogeneous depth 4 (ΣΠΣΠ) circuits were

proved independently by the authors of this paper [KSb]

who showed a lower bound of nΩ(log logn) for a polynomial

in VNP and Limaye, Saha and Srinivasan [KLSSb], who

showed a lower bound of nΩ(logn) for a polynomial in

VP. Subsequently, Kayal, Limaye, Saha and Srinivasan

greatly improved these lower bounds to obtain exponential

(2Ω(
√
n logn)) lower bounds for a polynomial in VNP (over

fields of characteristic zero). Notice that this result also ex-

tends the results of [GKKSa] and [KSS] who proved similar

exponential lower bounds for the more restricted class of

homogeneous ΣΠΣΠ[
√
n] circuits. The result by [KLSSa]

shows the same lower bound without the restriction of

bottom fanin. Again, any asymptotic improvement of this

lower bound in the exponent would separate VP from VNP.

This class of results represents an important step forward,

since homogeneous depth 4 circuits seem a much more

natural class of circuits than homogeneous depth 4 circuits

with bounded bottom fanin. The results of the current paper

build upon and strengthen the results of Kayal et al [KLSSa].

Before we describe our results we first highlight some

important questions left open by [KLSSa] and place them

1It was demonstrated that even very simple homogeneous ΣΠΣΠ circuits

of polynomial size might need nΩ(
√
n) sized homogeneous ΣΠΣΠ[

√
n]

circuits to compute the same polynomial.

in the context of several of the other recent results in this

area.

• Dependence on the field: Several of the major results

on depth reduction and lower bounds have heavily

depended on the underlying field one is working over.

For instance, in a beautiful result [GKKSb], it was

shown that if one is working over the field of real

numbers, one can get surprising depth reduction of

general circuits to just depth 3 circuits2! We know that

such a depth reduction is not possible over small finite

fields. Thus at least for depth 3 circuits, we know that

there is a vast difference between the computational

power of circuits for different fields.

The lower bounds of [KLSSa] work only over fields of

characteristic zero. This is because in order to bound

the complexity of the polynomial being computed,

the proof reduces the question to lower bounding the

rank of a certain matrix. This computation ends up

being highly nontrivial and is done by using bounds

on eigenvalues. However a similar analysis does not

go through for other fields. In particular it was an

open question if working over characteristic zero was

necessary in order to prove the lower bounds.

• Explicitness of the hard polynomial: The result

of [KLSSa] only proved a lower bound for a polynomial

in VNP. It is conceivable/likely that much more should

be true, that even polynomials in VP should not be

computable by depth 4 homogeneous circuits. The best

lower bound known for homogeneous depth 4 circuits

computing a poly in VP is the lower bound of nΩ(logn)

by [KLSSb], [KLSSa]. Recall that when one introduces

the restriction on bounded bottom fanin, then stronger

exponential lower bounds are indeed known [FLMS],

[KSa]. This fact is also related to the next bullet point

below.

• Tightness of depth reduction: The result of [FLMS]

(which showed an explicit polynomial of degree n

in nO(1) variables in VP requiring an nΩ(
√
n) sized

homogeneous ΣΠΣΠ[
√
n] to compute it), in par-

ticular showed the the depth reduction results of

Koiran [Koi12] and Tavenas [Tav13] (showing that

every polynomial of degree n in nO(1) variables in

VP can be computed by an nO(
√
n) sized homoge-

neous ΣΠΣΠ[
√
n] circuit) are tight. Given the new

lower bounds for the more natural class of depth 4

homogeneous circuits (with no restriction on bottom

fanin), and especially the exponential lower bounds

of [KLSSa], the most obvious question that arises is

the following: If one relaxes away the requirement of

bounded bottom fanin, i.e. all one requires is to reduce

to the class of general depth 4 homogeneous circuits,

can one improve upon the upper bounds obtained by

2albeit with loss of homogeneity.
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Koiran and Tavenas? If we could do this over the

reals/complex numbers, then given the [KLSSa] result,

this would also suffice in separating VP from VNP!

• Shifted partial derivatives and variants: The results

of [KSb], [KLSSb], [KLSSa] all use variants of the

method of shifted partial derivates to obtain the lower

bounds. All 3 works use different variants and they

are all able to give nontrivial results. This suggests

that we do not really fully understand the potential of

these methods, and perhaps they can be used to give

even much stronger lower bounds for richer classes of

circuits.

A. Our results
In this paper, we show a lower bound of 2Ω(

√
n logn)

on the size of homogeneous depth 4 circuits computing a

polynomial in VP. We first give a new, more combinatorial

proof of the 2Ω(
√
n logn) lower bound for a polynomial in

VNP, which holds over all fields. This result is much simpler

to prove than our result for a polynomial in VP and thus we

prove it first. This will also enable us to develop methods

and tools for the more intricate analysis of the lower bounds

for VP.

Theorem I.1. Let F be any field. There exists an explicit
family of polynomials (over F) of degree n and in N =
nO(1) variables in VNP, such that any homogeneous ΣΠΣΠ
circuit computing it has size at least nΩ(

√
n).

The lower bound in Theorem I.1 is shown for a family

of polynomials (denoted by NWn,D) whose construction

is based on the idea of Nisan-Wigderson designs . These

are the same polynomials for which [KLSSa] show their

lower bounds. We give a formal definition in Section III.

The combinatorial nature of our proof allows us to prove

our results over all fields. The combinatorial nature of the

proof also gives us much more flexibility and this is what

enables the proof of our lower bounds for a polynomial in

VP. Though our lower bound for the polynomial in VP is

at a high level similar to the VNP lower bound, the analysis

is much more delicate and the choice of parameters ends

up being quite subtle. We will elaborate more on this in the

proof outline given in Section II.

Theorem I.2 (Main Theorem). Let F be any field. There
exists an explicit family of polynomials (over F) of degree
n and in N = nO(1) variables in VP, such that any
homogeneous ΣΠΣΠ circuit computing it has size at least
nΩ(

√
n).

As an immediate corollary of the result above, we con-

clude that the depth reduction results of Koiran [Koi12] and

Tavenas [Tav13] are tight even when one wants to depth

reduce to the class of general homogeneous depth 4 circuits.

Corollary I.3 (Depth reduction is tight). There exists a
polynomial in VP of degree n in N = nO(1) variables such

that any homogeneous ΣΠΣΠ circuit computing it has size
at least nΩ(

√
n). In other words, the upper bound in the

depth reduction of Tavenas [Tav13] is tight, even when the
bottom fan-in is unbounded.

The polynomial in Theorem I.2 is the Iterated Ma-
trix Multiplication (IMMñ,n) polynomial. From the fact

that the determinant polynomial is complete for the class

VQP [Val79], we obtain the first exponential lower bounds

for the polynomial Detn (which is the determinant of an

n×n generic matrix) computed by a homogeneous ΣΠΣΠ
circuit.

Corollary I.4. There exists a constant ε > 0 such that
any homogeneous ΣΠΣΠ circuit computing the polynomial
Detn has size at least 2Ω(nε).

We have not optimized the value of ε in the statement

above, but our proof gives a value of ε > 1/22.

B. Organisation of the paper

In Section II, we provide a broad overview of the proofs

of Theorem I.1 and Theorem I.2. In Section III, we define

some preliminary notions and set up some notations used

in the rest of the paper. We state an upper bound on the

dimension of the projected shifted partial derivatives of a

homogeneous depth 4 circuit of bounded bottom support in

Section IV. We lay down our strategy for obtaining a lower

bound on the complexity of the polynomials of interest in

Section V. Finally in Sections VI, we give an outline of

the proof of Theorem I.1. For the lack of space, we have

omitted many of the details from the proofs and the proof

of Theorem I.2, which can be found in the full version of

the paper [KS14].

II. PROOF OVERVIEW

Let C be a homogeneous ΣΠΣΠ circuit computing the

polynomial P (either NWn,D or IMMñ,n). The broad

outline of the proof of lower bound on the size of C is

as follows.

1) If C is large (≥ nε
√
n) to start with, we have nothing

to prove. Else, the size of C is small (< nε
√
n).

2) We choose a random subset V of the variables from

some carefully defined distribution D, and then restrict

P and C to be the resulting polynomial and circuit

after setting the variables not in V to zero. We will let

C|V and P |V be the resulting circuit and polynomial.

Since C computed P , thus C|V still computes P |V .

This choice of distribution D has to be very carefully

designed in order to enable the rest of the proof to

go through. When P = NWn,D, V will be a random

subset of variables which is chosen by picking each

variable independently with a certain probability. In

the case that P = IMMñ,n, our distribution is much

more carefully designed.
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3) We show that with a very high probability over the

choice of V ← D, no product gate in the bottom level

of C|V has large support. Thus C|V is a homogeneous

ΣΠΣΠ{√n} circuit (this is the class of ΣΠΣΠ circuits

where every product gate at the bottom layer has only√
n distinct variables feeding into it, and we formally

define this class in Section III).

4) For any homogeneous ΣΠΣΠ{√n} circuit, we obtain

a good estimate on the upper bound on its complexity

ΦM,m(C|V ) (this is the complexity measure of pro-

jected shifted partial derivatives that we use, and we

define it formally in Section III) in terms of its size.

This step is very similar to that in [KLSSa], and is

fairly straightforward.

5) We show that with a reasonably high probability over

V ← D, the complexity of P |V remains large. This

step is the most technical and novel part of the proof.

Unlike the proof of the earlier exponential bound

by [KLSSa], our proof is completely combinatorial.

We lower bound the complexity measure ΦM,m(P |V )
by counting the number of distinct leading monomials
that can arise after differentiating, shifting and project-

ing. This calculation turns out to be quite challenging.

We first define three related quantities T1, T2 and T3

and show that T1 − T2 − T3 is a lower bound on

ΦM,m(P |V ). We elaborate on what these quantities

are in Section V. These quantities are easier to com-

pute when P = NWn,D, and we are able to show that

EV←D[T1 − T2 − T3] is large. Using variance bounds

then lets us conclude that ΦM,m(P |V ) is large with

high probability. When P = IMMñ,n however, all we

are able to show is that T2+T3 is not too much larger

than T1 in expected value (it will still be exponentially

larger). We then use some sampling arguments to

handle this and deduce anyway that ΦM,m(P |V ) is

large. We refer the interested reader to the full version

of this paper [KS14] for details.

6) Then, we argue that both the events in the above two

items happen simultaneously with non-zero probabil-

ity. Now, comparing the complexities P |V and C|V ,

we deduce that the size of C|V and hence C must be

large.

At a high level, the proof uses several ingredients

from [KSb] and [KLSSa]. We remark that in [KSb], the

complexity measure and the notion of random restrictions

used is very different from this work. Compared to [KLSSa],

our strategy for proving a lower bound on the complexity

of the polynomial is much more combinatorial and based

on elementary ideas. This essentially ensures that our proof

works over all fields, as opposed to fields of characterstic

zero, as needed in [KLSSa].

III. PRELIMINARIES

Arithmetic Circuits: An arithmetic circuit over a field F

and a set of variables x1, x2, . . . , xN is a directed acyclic

graph with internal nodes labelled by the field operations and

the leaf nodes labelled by input variables or field elements.

By the size of the circuit, we mean the total number of

nodes in the underlying graph and by the depth of the circuit,

we mean the length of the longest path from the output

node to a leaf node. A circuit is said to be homogeneous if

the polynomial computed at every node is a homogeneous

polynomial. By a ΣΠΣΠ circuit or a depth 4 circuit, we

mean a circuit of depth 4 with the top layer and the third

layer only have sum gates and the second and the bottom

layer have only product gates. A homogeneous polynomial

P of degree n in N variables, which is computed by a

homogeneous ΣΠΣΠ circuit can be written as

P (x1, x2, . . . , xN ) =

T∑
i=1

di∏
j=1

Qi,j(x1, x2, . . . , xN ) (1)

Here, T is the top fan-in of the circuit. Since the circuit

is homogeneous, therefore, for every i ∈ {1, 2, 3, . . . , T},

di∑
j=i

deg(Qi,j) = n

Support of a polynomial: By the support of a polynomial

P , denoted by Supp(P ), we mean the set of monomials

which have a non zero coefficient in P . When we consider

this set, we will ignore the information in the coefficients of

the monomials and just treat them to be 1. We will also use

the notion of the support of a monomial α defined as the

subset of variables which have degree at least 1 in α. We

will follow the notation that when we invoke the function

Supp for a monomial, we mean the support in the latter

sense. When we invoke it for a polynomial, we mean it in

the former sense.

For any monomial α and a set of polynomials S, we define

the set α · S = {αβ : β ∈ {S}}. For two monomials α and

β, we say that α is disjoint from β if the supports of α and

β are disjoint.

Multilinear projections of a polynomial: For any mono-

mial α, we define σ(α) to be α if α is multilinear and

define it to be 0 otherwise. The map can be then extended

by linearity to all polynomials and sets of polynomials.

Homogeneous ΣΠΣΠ{s} Circuits: A homogeneous ΣΠΣΠ
circuit as in Equation 1, is said to be a ΣΠΣΠ{s} circuit if

every product gate at the bottom level has support at most

s (i.e. each monomial in each Qij has at most s distinct

variables feeding into it). Observe that there is no restriction

on the bottom fan-in except that implied by the restriction

of homogeneity.
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Restriction of homogeneous ΣΠΣΠ circuit C|V : For a ho-

moegeneous ΣΠΣΠ{s} circuit C in variables v1, v2, . . . , vN ,

and a subset of variables V ⊂ {v1, v2, . . . , vN}, we define

C|V to be the new homogeneous ΣΠΣΠ circuit obtained

after setting the variables outside V to zero. Equivalently

we can think of this as the circuit obtained after removing

all multiplication gates at the bottom layer which have a

variable not in V that feeds into it.

The complexity measure:
The notion of shifted partial derivatives was introduced

in [Kay12] and was subsequently used as a complexity mea-

sure in proving several recent lower bound results [FLMS],

[GKKSa], [KSS], [KSb], [KSa]. In this paper, we use a

variant of the method which first introduced in [KLSSa].

For a polynomial P and a monomial γ, we denote by

∂γ(P ) the partial derivative of P with respect to γ. For

every polynomial P and a set of monomials M, we define

∂M(P ) to be the set of partial derivatives of P with

respect to monomials in M. We now define the space of

(M,m)-projected shifted partial derivatives of a polynomial

P below.

Definition III.1 ((M,m)-projected shifted partial deriva-

tives). For an N variate polynomial P ∈ F[x1, x2, . . . , xN ],
set of monomials M and a positive integer m ≥ 0, the
space of (M,m)-projected shifted partial derivatives of P
is defined as

〈∂M(P )〉m def
= F-span{σ(

∏
i∈S

xi · g)

: g ∈ ∂M(P ), S ⊆ [N ], |S| = m}
(2)

In this paper, we carefully choose a set of monomials M
and a parameter m and use the quantity ΦM,m(P ) defined

as

ΦM,m(P ) = Dim(〈∂M(P )〉m)

as a measure of complexity of the polynomial P .

We will now elaborate on this definition of the measure

in words - we look at the space of (M,m)-projected shifted

partial derivatives as the space of polynomials obtained at

the end of the following steps, starting with the polynomial

P .

1) We fix a set of monomials M and a parameter m.

2) We take partial derivatives of P with every monomial

in M, to obtain the set ∂M(P ).
3) We obtain the set of shifted partial derivatives of P

by taking the product of every polynomial in ∂M(P )
with every monomial of degree m. In this paper, we

will often be working with restrictions of polynomial

P obtained by setting some of the input variables to

zero. Even for such restrictions, we consider product

of the derivatives by all multilinear monomials of

degree m over the complete set of input variables

{x1, x2, . . . , xN}.

4) Then, we consider each polynomial in the set defined

in the item above and project it to the polynomial

composed of only the multilinear monomials in its

support. The span of this set over F is defined to be

〈∂M(P )〉m.

5) We define the complexity of the polynomial ΦM,m(P )
to be the dimension of 〈∂M(P )〉m over F.

It follows easily from the definitions that the complexity

measure is subadditive. We formalize this in the lemma

below.

Lemma III.2 (Sub-additivity). Let P and Q be any two
multivariate polynomials in F[x1, x2, . . . , xN ] any set of
monomials. Let M be any set of monomials and m be any
positive integer. Then, for all scalars α and β

ΦM,m(α · P + β ·Q) ≤ ΦM,m(P ) + ΦM,m(Q)

P |V and ΦM,m(P |V ): For a polynomial P and a subset of

its variables V , we define P |V to be the polynomial obtained

after setting variables not in V to zero (i.e. removing all

monomials containing a variable not in V in its support).

When we consider ΦM,m(P |V ), we will be computing

the complexity of the new polynomial with respect to the

original set of variables, not just the variables in V . I.e. we

set the variables outside V to zero only in order to compute

P |V . Once we get this new polynomial, we do not think of

the variables outside V to be set to zero when computing

ΦM,m(P |V ).
Nisan-Wigderson Polynomials: We will now define the

family of polynomials NWn,D in VNP which were used

for the first time in the context of lower bounds in [KSS].

The key motivation for this definition is that over any

finite field, any two distinct low degree polynomials do not

agree at too many points, and hence we use this property

to construct a polynomial with monomials that have large

distance. Let Fn be a finite field of size n3 and let Fn2 be

its quadratic extension. For the set of N = n3 variables

{xi,j : i ∈ [n], j ∈ [n2]} and D < n, we define the degree

n homogeneous polynomial NWn,D as

NWn,D =
∑

f(z)∈Fn2 [z]
deg(f)≤D−1

∏
i∈[n]

xi,f(i)

From the definition, we can observe the following prop-

erties of NWn,D.

1) The number of monomials in NWn,D is exactly n2D.

2) Each of the monomials in NWn,D is multilinear.

3) Each monomial corresponds to evaluations of a uni-

variate polynomial of degree at most D−1 at all points

of Fn. Thus, any two distinct monomials agree in at

most D − 1 variables in their support.

3We are assuming for simplicity that n is a prime power, but the
definitions can be easily adapted for when n is not.
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Monomial Ordering and Distance: We will also use the

notion of a monomial being an extension of another as

defined below.

Definition III.3. A monomial θ is said to be an extension
of a monomial θ̃, if θ divides θ̃.

We will also consider the following total order on the

variables. xi1,j1 > xi2,j2 if either i1 < i2 or i1 = i2 and

j1 < j2. This total order induces a lexicographic order on

the monomials. For a polynomial P , we use the notation

Lead-Mon(P ) to indicate the leading monomial of P under

this monomial ordering.

We will use the following notion of distance between two

monomials which was also used in [CM13].

Definition III.4 (Monomial distance). Let m1 and m2 be
two monomials over a set of variables. Let S1 and S2 be
the multiset of variables in m1 and m2 respectively, then the
distance Δ(m1,m2) between m1 and m2 is the min{|S1|−
|S1 ∩ S2|, |S2| − |S1 ∩ S2|} where the cardinalities are the
order of the multisets.

In this paper, we invoke this definition only for multilinear

monomials of the same degree. In this special case, we have

the following crucial observation.

Observation III.5. Let α and β be two multilinear mono-
mials of the same degree which are at a distance Δ from
each other. If Supp(α) and Supp(β) are the supports of α
and β respectively, then

|Supp(α)| − |Supp(α) ∩ Supp(β)| =
|Supp(β)| − |Supp(α) ∩ Supp(β)| = Δ

(3)

For any two multilinear monomials α and β of equal

degree, we say that α and β have agreement t if |Supp(α)∩
Supp(β)| = t. When t = 0, we say that α and β are disjoint.

Approximations: We will repeatedly refer to the following

lemma to approximate expressions during our calculations.

Lemma III.6 ([GKKSa]). Let a(n), f(n), g(n) : Z>0 →
Z>0 be integer valued functions such that (f + g) = o(a).
Then,

log
(a+ f)!

(a− g)!
= (f + g) log a±O

(
(f + g)2

a

)
In this paper, we invoke Lemma III.6 only in situations

where (f + g)2 will be O(a). In this case, the error term

will be bounded by an absolute constant. Hence, up to

multiplication by constants,
(a+f)!
(a−g)! = a(f+g). We will use

the symbol ≈ to indicate equality up to multiplication by

constants.

Probability lemma: We will now state a simple lemma

which we crucially use in our proof.

Lemma III.7. Let X be a random variable sampled from
a distribution R supported on the set R. Let f and g be

functions from R to the set of positive real numbers, such
that the following are true:

• For each x ∈ R, f(x) ≤ g(x)
• EX←R[f(X)] ≥ 0.5 · EX←R[g(X)]
• PrX←R[|g(X) − EX←R[g(X)]| ≥ 0.1 ·

(EX←R[g(X)])] ≤ 0.01

Then,

PrX←R[f(X) ≥ 0.01 · (EX←R[f(X)])] ≥ 0.1

IV. UPPER BOUND ON THE COMPLEXITY OF

HOMOGENEOUS ΣΠΣΠ{s} CIRCUITS

In this section, we state and prove the upper bound on

the complexity of a ΣΠΣΠ{s} circuit. A very similar bound

was proved by Kayal et al in [KLSSa]. We defer the proof

to the full version of the paper [KS14].

Lemma IV.1. Let C be a depth 4 homogeneous circuit
computing a polynomial of degree u in N variables such
that the support of the bottom product gates in C is at most
s. Let M be a set of monomials of degree equal to r and
let m be a positive integer. Then,

ΦM,m(C) ≤ Size(C)

(� 2u
s �+ r

r

)(
N

m+ rs

)

for any choice of m, r, s,N satisfying m+ rs ≤ N/2.

V. STRATEGY FOR PROVING A LOWER BOUND ON THE

COMPLEXITY OF NWn,D AND IMMñ,n

To show a lower bound on the complexity of the polyno-

mial P (which will be IMMñ,n or NWn,D in this paper),

we choose an appropriate set of monomials M and a

parameter m and then obtain a lower bound on the value

of ΦM,m(P ). When M and m are clear from the context,

we use ΦM,m(P ) and Φ(P ) interchangeably. We will now

try to gain a more concrete understanding of the space of

polynomials, whose dimension we want to lower bound. We

will need some notations first.

We denote by M(α) the set of monomials Supp(∂α(P )).
We will use the two interchangeably. For any monomial α ∈
M and any monomial β ∈ Supp(∂α(P )), define the set

SP
m(α, β) = {γ : deg(γ) = Supp(γ) = m and

Supp(γ) ∩ Supp(β) = φ} (4)

to be the set of all multilinear monomials of degree m
which are disjoint from β. We define the set S̃P

m(α, β) to

be the subset of multilinear monomials γ in SP
m(α, β) such

that β · γ is the leading monomial of σ(γ · ∂α(P )). Define

AP
m(α, β) = {γ · β : γ ∈ S̃P

m(α, β)}
When the polynomial P is clear from the context, we

drop the P from AP
m(α, β), SP

m(α, β) and S̃P
m(α, β) and

instead denote them by Am(α, β), Sm(α, β) and S̃m(α, β)
respectively.

369369



The following simple lemma relates the size of the union

of the sets Am(α, β) to ΦM,m(P ) We refer the interested

reader to the full version of this paper [KS14] for the proof.

Lemma V.1. Let P be a polynomial in N variables and let
M be any set of monomials on these variables. Let m ≤ N
be a positive integer and let ΦM,m(P ) and Am(α, β) be as
defined. Then,

ΦM,m(P ) ≥

∣∣∣∣∣∣∣∣
⋃

α∈M
β∈Supp(∂α(P ))

Am(α, β)

∣∣∣∣∣∣∣∣
By the principle of inclusion-exclusion, we get the following

corollary.

Corollary V.2. Let P be a polynomial in N variables and
let M be any set of monomials on these variables. Let m ≤
N be a positive integer and let ΦM,m(P ) and Am(α, β) be
as defined. Then,

ΦM,m(P ) ≥
∑
α∈M

β∈Supp(∂α(P ))

|Am(α, β)|

−
∑

α1,α2∈M
β1∈Supp(∂α1 (P ))

β2∈Supp(∂α2 (P ))

(α1,β1)�=(α2,β2)

|Am(α1, β1) ∩Am(α2, β2)| (5)

Therefore, to get a lower bound on ΦM,m(P ), we show

that
∑

α∈M,β∈∂α(P ) |Am(α, β)| is large and the second term

in the expression above is small. The following lemma re-

lates
∑

β∈∂α(P ) |Am(α, β)| to the size of the sets Sm(α, β),
which, in principle are somewhat simpler objects to describe.

Lemma V.3. Let P be a polynomial in N variables and let
α ∈ M be a monomial on these variables such that ∂α(P )
is not identically zero. Let Sm(α, β) and Am(α, β) be sets
as defined. Then,

∑
β∈Supp(∂α(P ))

|Am(α, β)| ≥
∣∣∣∣∣∣

⋃
β∈Supp(∂α(P ))

Sm(α, β)

∣∣∣∣∣∣
Proof: Consider the sets Z = {(β, γ) : β ∈

Supp(∂α(P )), γ ∈ Am(α, β)} and

W =
⋃

β∈Supp(∂α(P )) Sm(α, β). The proof follows by show-

ing a one one map from W to Z.

A. Obtaining the lower bound on ΦM,m(P )

For a polynomial P , a set of monomials M and a

positive integer m, we now outline the general sequence

of arguments which we use to lower bound ΦM,m(P ). The

exact sequence of arguments used in the proofs vary slightly

for NWn,D and IMMñ,n. To express this outline more

concretely, we will need some notations. For a polynomial

P and a monomials α, α′ ∈ M, we define

T1(α, P ) =
∑

β∈Supp(∂α(P ))

|Sm(α, β)|

T2(α, P ) =
∑

β1,β2∈Supp(∂α(P ))
β1 �=β2

|Sm(α, β1) ∩ Sm(α, β2)|

and

T3(α, α
′, P ) =

∑
β1∈Supp(∂α(P ))
β2∈Supp(∂α′ (P ))
(α,β1)�=(α′,β2)

|Am(α, β1) ∩Am(α′, β2)|

We also define

T1(P ) =
∑
α∈M

T1(α, P )

T2(P ) =
∑
α∈M

T2(α, P )

and

T3(P ) =
∑

α,α′∈M
T3(α, α

′, P )

At places where P is clear from the context, we drop the P
in T1(α, P ), T2(α, P ) and T3(α, α

′, P ) and denote them by

T1(α), T2(α) and T3(α, α
′) respectively.

From the Corollary V.2 and Lemma V.3, it follows that

for any polynomial P , set of monomials M and a parameter

m,

ΦM,m(P ) ≥ T1(P )− T2(P )− T3(P )

Outline for Nisan-Wigderson polynomials In the proof of

the lower bound for the NWn,D polynomial, we observe that

over the random restrictions of NWn,D, the expected value

of T1 − T2 − T3 is almost as large as the expected value

of T1. We will then use Lemma III.7 to argue that with

a sufficiently high probability, the complexity of a random

restriction of NWn,D is high.

VI. LOWER BOUND FOR NWn,D

In this section, we prove lower bound on the size of

homogeneous ΣΠΣΠ circuits which compute the NWn,D

polynomial.

A. Random restrictions

From the definition, it follows that the total number of

variables N in NWn,D is N = n3. Let the set of all these

variables be V . We will now define our random restriction

procedure by defining a distribution D over subsets V ⊂ V .

The random restriction procedure will sample V ← D and

then keep only those variables “alive” that come from V and

set the rest to zero. The restriction of the set of variables

induces a restriction on any polynomial of these variables.

We will use the notation NWn,D|V for the restriction of
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NWn,D obtained by setting every variable outside V to 0.

Therefore, any distribution D also induces a distribution on

the set of restrictions of NWn,D. Similarly, the distribution

D also induces a distribution over the restrictions of any

circuit computing a polynomial over V . We will use the

notation C|V for the restriction of a circuit C obtained by

setting every input gate in C which is labelled by a variable

outside V to 0.

The distribution: Each variable in V is independently kept

alive with a probability p = n−ε, where ε is an absolute

constant such that 0 ≤ ε ≤ 0.01. This gives a distribution

over the subsets of V . We call it D.

B. Choice of parameters

We enumerate the values of the parameters used in this

proof below.

1) n. (This is the degree of the polynomial NWn,D)

2) N = n3. (This is the total number of variables)

3) r = 1.1
√
n

5 . (This is the order of the derivatives

involved)

4) s =
√
n. (This indicates the support of a product gate

in the circuit after random restrictions)

5) m = N
2 (1− lnn

5
√
n
). (This is the degree of the multilin-

ear shifts)

6) ε is any absolute constant such that 0 < ε < 0.01.

7) p = n−ε. (This is the probability with which each

variable is kept alive independently)

8) k = n − r. (This is the size of the support of the

monomials in any rth order derivative of NWn,D)

9) d = θ
(

n
logn

)
is a parameter chosen such thatn2d =

1/4 · n−2 (N−k
m )

(N−2k
m−k )

.

10) D = εn
2 + d. (This is the parameter D in NWn,D)

11) D. (This is the distribution on the subsets of V
obtained by keeping each variable in V alive inde-

pendently with a probability p = n−ε )

In the rest of this paper, we always invoke the definition

of the Nisan-Wigderson polynomials for D = εn
2 +d. So, for

the rest of the proof, we use the notation NW for NWn,D.

C. Effect of random restrictions on the circuit

The following lemma gives us an upper bound on the

complexity of small circuits under the random restrictions.

We skip the proof to the full version of this paper [KS14].

Lemma VI.1. Let s =
√
n, r = 1.1

√
n

5 and let m be a
parameter such that m + rs ≤ N/2 and let ε > 0 be a
constant. Let M be any set of monomials of degree equal
to r. Let C be a homogeneous depth 4 circuit of size at
most 2

ε
2

√
n logn computing the polynomial NW . Then, with

probability at least 1− o(1) over V ← D

ΦM,m(C|V ) ≤ Size(C)

(� 2n
s �+ r

r

)(
N

m+ rs

)

Observe that the above lemma implies that if the circuit

was of size at most 2
ε
2

√
n logn, then with probability at least

1− o(1), at the end of the random restriction process, none

of the product gates with support larger than s =
√
n at the

bottom level is alive. Otherwise, the size of the circuit was

larger than 2
ε
2

√
n logn to start with, in which case, we have

nothing to prove.

D. Effect of random restrictions on NWn,D

In this section, we show that with a reasonably high prob-

ability, a random restriction of NW has a large complexity.

We outline the plan and set some notations below.

Plan of the proof: We will show that for V ← D expected

value of the expression T1|V − T2|V − T3|V is large and

then use this to obtain a lower bound on the complexity of

a random restriction of NW . We will do this by proving

a lower bound on the expected value of T1|V and upper

bounds on the expected values of T2|V and T3|V . At this

point, we would like to argue that the complexity remains

close to the expectation with a reasonably high probability.

This observation is proved using Lemma III.7 and the bound

on the variance of the number of monomials alive at the end

of random restrictions obtained in [KLSSa].

Recall that D = n.ε
2 + d for some constant ε and a

parameter d = θ( n
logn ).

Let M[r] = {∏i∈[r] xi,j : j ∈ [n2]} be a set of

monomials. Observe that for r < D, every monomial in

M[r] has an extension in Supp(NW ). This implies that for

every α ∈ M[r], ∂α(NW ) is non zero. In fact, it consists of

exactly n2(D−r) monomials. For our partial derivatives, we

consider the set of partial derivatives of NW with respect

to monomials from M[r]. For brevity, we call this set M
for the rest of the proof.

We will now prove that with a high probability over V ←
D, ΦM,m(NW |V ) is large. Recall that from the discussion

in Section V, it will suffice to show that ΦM,m(NW |V ) =
T1(NW |V )−T2(NW |V )−T3(NW |V ) is large with a good

probability. To this end, we first show that ΦM,m(NW )
is large in expectation and then argue that with a good

probability the complexity measure is not too much less the

mean.

Observe that according to our definitions here, the set

of monomials M is fixed and does not depend upon the

random restrictions. Also, the contribution of any monomial

α ∈ M is a random variable. For example, for any α ∈
M and β ∈ M(α), if α and β both survive the random

restriction procedure, then the contribution of β to Am(α, β)
is |Sm(α, β)| = (

N−k
m

)
whereas if either of them is set to

zero during the random restrictions, then the contribution is

0. Similarly for T2 and T3. Taking this into account, we state

the definitions of T1, T2, T3 which we use in our expectations

calculations below. We need a piece of notation first. For

monomials α1, α2, . . . , αj , we define 1α1,α2,...,αj
to be the
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event that every monomial in {α1, α2, . . . , αj} survives the

random restriction procedure.

• T1(NW |V ) =
∑

α∈M[r]

β∈M(α)

1α,β · |Sm(α, β)|
• T2(NW |V ) =

∑
α∈M[r]

β,γ∈M(α)
β �=γ

1α,β,γ · |Sm(α, γ) ∩

Sm(α, β)|
• T3(NW |V ) =

∑
α1,α2∈M[r]

β1∈M(α1)
β2∈M(α2)

(α1,β1)�=(α2,β2)

1α1,α2,β1,β2 ·

|Am(α1, β1) ∩Am(α2, β2)|
For the ease of notations, for the rest of the proof of lower

bound for NW , we denote T1(NW |V ) by T1|V . Similarly,

we use T2|V for T2(NW |V ) and T3|V for T3(NW |V ). We

know that for any restriction NW |V ,

ΦM,m(NW |V ) ≥ T1|V − T2|V − T3|V (6)

Therefore, by the linearity of expectation is, the expected

complexity of a random restriction of NW ,

EV←D[ΦM,m(NW |V )] ≥ EV←D[T1|V ]
−EV←D[T2|V ]− EV←D[T3|V ]

(7)

We will now bound the expected values of T1|V , T2|V ,

T3|V under random restrictions. More precisely, we use the

following bounds, whose proofs can be found in the full

version at [KS14].

Lemma VI.2.

EV←D[T1|V ] =
(
N − k

m

)
· n2d

Lemma VI.3.

EV←D[T2|V ] ≤ n4d−2r+εr+1 ·
(
N − 2k

m

)

Lemma VI.4.

EV←D[T3|V ] ≤ n4d+2 ·
(
N − 2k

m− k

)

We will now use the bounds given by the lemmas above

to complete the proof of the lower bound.

E. Lower bound on the complexity of NWn,D

Lemma VI.5. For any choice of parameters
m, r, d, ε, n,N, k such that

• n2d−2r+εr+1 ≤ 1/4 · (N−k
m )

(N−2k
m )

• n2d+2 ≤ 1/4 · (N−k
m )

(N−2k
m−k )

the following is true

EV←D[ΦM,m(NW |V )] ≥ 0.5 · EV←D[T1|V ]
Proof: From the choice of parameters and Lemma VI.2,

Lemma VI.3 and Lemma VI.4, it easily follows that

EV←D[T1|V ] ≥ 4 · EV←D[T2|V ] and EV←D[T1|V ] ≥ 4 ·
EV←D[T3|V ]. Thus

EV←D[ΦM,m(NW |V )] ≥ 0.5 · EV←D[T1].

Thus for the above choice of parameters, we get a lower

bound on the expected value of ΦM,m(NW |V ). We would

like to conclude that with a decent (≥ 0.1) probability, the

complexity is large. Observe that we cannot directly use

Markov’s inequality. However we are still able to prove

such a statement (see Lemma VI.9). We make the following

crucial observation. We defer the proof to the full version

of the paper [KS14].

Lemma VI.6. For any V ⊆ V ,

ΦM,m(NW |V ) ≤ |Supp(NW |V )|
(
N − k

m

)
.

We will now use Lemma III.7 to argue that with a decent

probablity, a random restriction of NW has a complexity

very close to its expected value. For a restriction P =
NW |V of NW , define g(P ) = |Supp(P )|·(N−k

m

)
and define

f(P ) = ΦM[r],m(P ). Lemma VI.6 implies that for every

restriction P = NW |V of NW , f(P ) ≤ g(P ). Lemma VI.5

implies that EV←D[f ] ≥ 1/2 · EV←D[g]. The following

lemma of Kayal et al [KLSSa] tells us that g takes values

very close to its expected value with a high probability.

Lemma VI.7 ([KLSSa]). PrV←D[|g(NW |V ) −
EV ′←D[g]| ≥ 0.1 · EV ′←D[g]] ≤ 0.01.

The functions f and g now satisfy the hypothesis of

Lemma III.7. Therefore, we get the following lemma.

Lemma VI.8. PrV←D[f(NW |V ) ≥ 0.01 · EV ′←D[g]] ≥
0.1.

Therefore, the following lemma is true.

Lemma VI.9. For any choice of parameters
m, r, d, ε, n,N, k such that

• n2d−2r+εr+1 ≤ 1/4 · (N−k
m )

(N−2k
m )

• n2d+2 ≤ 1/4 · (N−k
m )

(N−2k
m−k )

the following is true

PrV←D[ΦM,m(NW |V ) ≥ 0.005 · n2d

(
N − k

m

)
] ≥ 0.1

F. Wrapping up the proof

We now complete the proof of the lower bound for the

case of NW polynomial which implies Theorem I.1.

Theorem VI.10. Let C be any homogeneous ΣΠΣΠ circuit
computing NWn,D. Then, the size of C is at least nΩ(

√
n).
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Proof: Recall that, from our choice of parameters, we

have s =
√
n, r = 1.1

√
n

5 , N = n3, m = N
2 (1 − lnn

5
√
n
) =

N
2 (1− lnn

5s ), d such that n2d = 1/4 ·n−2 (N−k
m )

(N−2k
m−k )

, k = n− r,

and ε < 0.01. Observe that m+ rs < N
2 . Let C be a circuit

computing the polynomial NW .

If the size of the circuit is at least n
ε
2

√
n, then we are done.

Else, the size of C is at most n
ε
2

√
n. Lemma VI.1 implies

that with probability at least 1− o(1) the complexity of the

circuit is at most Size(C)
(� 2n

s 	+r
r

)(
N

m+rs

)
.

It can be verified that for the choice of paramters made

above, the hypotheses of Lemma VI.5 hold. More concretely,

the following claim is true.

Claim VI.11. For m, r, d, ε, n,N, k as chosen above,

• n2d−2r+εr+1 ≤ 1/4 · (N−k
m )

(N−2k
m )

• n2d+2 ≤ 1/4 · (N−k
m )

(N−2k
m−k )

Thus by the claim above and Lemma VI.9, we conclude

that with

PrV←D

[
ΦM,m(NW |V ) ≥ Ω

(
n2d

(
N − k

m

))]
≥ 0.1.

So, with probability at least 0.1 − o(1), the complexity

of C|V is low while at the same time the complexity of the

NW |V remains high. Comparing the bounds, we have

Size(C) ≥ Ω

(
n2d

(
N−k
m

)
(� 2n

s 	+r
r

)(
N

m+rs

)
)

Substituting the value of the parameters, and applying

Lemma III.6, we get our desired bound.
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