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Abstract—There has been a recent surge of interest in the
role of information in strategic interactions. Much of this
work seeks to understand how the realized equilibrium of a
game is influenced by uncertainty in the environment and the
information available to players in the game. Lurking beneath
this literature is a fundamental, yet largely unexplored, algo-
rithmic question: how should a “market maker” who is privy to
additional information, and equipped with a specified objective,
inform the players in the game? This is an informational
analogue of the mechanism design question, and views the
information structure of a game as a mathematical object to
be designed, rather than an exogenous variable.

We initiate a complexity-theoretic examination of the de-
sign of optimal information structures in general Bayesian
games, a task often referred to as signaling. We focus on
one of the simplest instantiations of the signaling question:
Bayesian zero-sum games, and a principal who must choose
an information structure maximizing the equilibrium payoff
of one of the players. In this setting, we show that optimal
signaling is computationally intractable, and in some cases
hard to approximate, assuming that it is hard to recover a
planted clique from an Erdős-Rényi random graph. This is
despite the fact that equilibria in these games are computable
in polynomial time, and therefore suggests that the hardness of
optimal signaling is a distinct phenomenon from the hardness
of equilibrium computation.

Necessitated by the non-local nature of information struc-
tures, en-route to our results we prove an “amplification
lemma” for the planted clique problem which may be of
independent interest. Specifically, we show that even if we plant
many cliques in an Erdős-Rényi random graph, so much so that
most nodes in the graph are in some planted clique, recovering
a constant fraction of the planted cliques is no easier than the
traditional planted clique problem.

I. INTRODUCTION

Mechanism design is concerned with designing the rules

of a game so as to effect desirable outcomes at equilibrium.

This form of intervention, through the design of incentives,

is fundamentally algorithmic in nature, and has led to a large

body of work which examines the computational complexity

of incentive-compatible mechanisms. This paper concerns

a different, though arguably equally important, mode of

intervention: through making available the right information.

A classic example illustrating the importance of informa-

tion in games is Akerlof’s “market for lemons” [2]. Each

∗A full version of this paper is available at http://arxiv.org/abs/1402.4194.
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Figure 1. An incomplete information variant of the prisoners’ dilemma.

seller in this market is looking to sell a used car which is

equally likely to be a “peach” (high quality) or a “lemon”

(low quality). Prospective buyers values peaches at $1000,

and lemons at $0, whereas sellers value keeping a peach

at $800 and a lemon at $0. If both buyers and sellers are

informed, then peaches are traded at some price between

$800 and $1000, increasing the social welfare by $200 per

trade. In contrast, when only sellers are informed, each buyer

would only be willing to pay his expected value of $500 for

a random car. Since this is less than a seller’s reservation

value for a peach, the sellers of peaches are driven out of

the market, and only lemons are ever traded.

The previous example illustrates that information defi-

ciency can reduce the payoff of some or all players in

a game. Somewhat counter-intuitively, revealing additional

information can also degrade the payoffs of some or all

players, and in fact optimal information structures may

reveal some but not all the information available. For an

illustrative example, consider the incomplete-information

variant of the classical prisoners’ dilemma shown in Figure

1, in which the game’s payoffs are parametrized by a state

of nature θ. When θ = 0, this is the traditional prisoners’

dilemma in which cooperation is socially optimal, yet the

unique Nash equilibrium is the one where both players

defect, making both worse off. When, however, the reward

from cooperation is uncertain, the equilibrium depends on

players’ beliefs about θ.

Assuming that θ is uniformly distributed in [−3, 3], and

that players are risk-neutral and know nothing about θ be-

sides its distribution, they play as if θ equals its expectation

and the defection equilibrium persists. On the other hand, if

both players learn the realization of θ before making their

decisions, they would cooperate at equilibrium when θ ≥ 1,

and defect otherwise, improving both their expected utilities.
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What is surprising, however, is that neither the opaque

nor the transparent signaling scheme is optimal. Consider

the following partially-informative scheme: when θ > −1,

both players receive the signal High, and otherwise receive

the signal Low. On signal High, the posterior expected

value of θ for both players is 1, inducing cooperation. On

signal Low, the players defect. This information structure

induces cooperation with greater probability than either of

the opaque or transparent schemes, and thus improves the

expected utility of both players.
Motivated by these intricacies, this paper begins a sys-

tematic complexity-theoretic examination of optimal infor-

mation structure design in games, henceforth referred to

as signaling. Our choice of backdrop is the simplest and

most fundamental of all in game theory: 2-player zero-

sum games. We consider incomplete-information zero-sum

games, in which a state of nature θ determines the entries of

the payoff matrix, and is drawn from a common-knowledge

prior distribution λ represented explicitly. We then ask the

following question: how should a principal privy to the

realization of θ release information to players in order to

effect a desired outcome at minimax equilibrium? Such a

principal may be interested in maximizing some weighted

combination of the players’ utilities, or more generally some

(possibly linear) function of their chosen mixed strategies.

Most such natural classes of objective functions include, as

a special case, the task of maximizing one player’s utility

at equilibrium. Therefore, we adopt that as our objective of

choice for our hardness results.
Before describing our results and techniques, we elaborate

on our modeling assumptions and chosen class of games.

First we note that, like much of the prior work, we constrain

ourselves to the design of symmetric signaling schemes:

those which reveal the same information regarding θ to

every player in the game. We believe such a restriction to

a shared communication channel is natural and justified in

many foreseeable applications. Moreover, the equilibria of

a Bayesian game when agents have symmetric beliefs are

simpler to characterize, better understood, and more often

admits a canonical choice for equilibrium selection.1 That

being said, the complexity of asymmetric signaling schemes

is an exciting avenue for future work.2

Second, we note that in addition to being simple and fun-

damental, zero-sum games admit a canonical and tractable

choice of equilibrium — the minimax equilibrium. In ad-

dition to simplifying our analysis, this drives a larger con-

ceptual point: the hardness of optimal signaling is a distinct

phenomenon from the hardness of equilibrium computation.

1e.g., as apparent in [1], auctions with information asymmetries suffer
from the multiplicity of equilibria, and their analysis requires nontrivial
refinements of standard equilibrium concepts.

2Asymmetric information introduces interdependencies and correlations
in agents’ posterior estimates of the game’s payoffs. Asymmetric signaling
appears related to optimization over the space of correlated equilibria. We
refer the reader to the characterization of Bergemann and Morris [7].

Indeed, it is not hard to see that the optimal signaling task

must, in general, “inherit” the computational complexity of

the adopted equilibrium concept. Our choice of a class of

games for which equilibrium can be easily computed es-

sentially “disentangles” the complexity of optimal signaling

from that of equilibrium computation.

Results and Techniques

Our results are based on the conjectured hardness of the

planted clique problem. Specifically, we assume that it is

hard to recover a planted k-clique from an Erdős-Rényi

random graph random graph G(n, p) for p = 1
2 and some

k = k(n) satisfying k = ω(log2 n) and k = o(
√
n).

We prove two main results assuming this conjecture in

Section IV. For explicitly-represented 2-player Bayesian

zero-sum games, we prove that no algorithm computes a

player-optimal signaling scheme in polynomial time. We

strengthen this to a hardness of approximation result, for

an additive absolute constant, for an implicitly-represented

zero-sum game which nevertheless permits efficient equilib-

rium computation.

Our hardness results hold for a Bayesian zero-sum game

in which the states of nature, as well as each player’s

pure strategies, are the nodes V of a graph G. Specifically,

we construct such a game in which signaling schemes

correspond to “fractional partitions” of the states of nature

V . Roughly speaking, the first player’s utility function favors

signaling schemes which (fractionally) partition the graph

into large yet highly connected clusters of nodes. If G is a

random graph in which many k-cliques have been planted

randomly throughout, so much so that the planted cliques

roughly cover the nodes of G, then the best signaling scheme

roughly corresponds to a partition of G into the planted

cliques. Moreover, we exhibit an algorithm which, given a

near-optimal signaling scheme, recovers a constant fraction

of the planted clique cover.

In order to base our results on the planted clique con-

jecture, in Section III we prove an “amplification lemma”

extending the hardness of recovering a planted clique to

recovering a constant fraction of a planted clique cover. This

lemma, which may be of independent interest, appears sur-

prising because its analogue for the “distinguishing version”

of the planted cover and planted clique problems is false.

Additional Related Work

The study of the effects of information on strategic inter-

actions, and mechanisms for signaling, has its roots in the

early works of Akerlof [2] and Spence [32]. Hirshleifer [22]

was the first to observe that more information sometimes

leads to worse market outcomes, in contrast to earlier work

by Blackwell [9] which implied that more information

is always better for a single agent in a non-competitive

environment. Since then, many works have examined the

effects of additional information on players’ utilities. Lehrer
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et al. [28] showed that information improves players’ utilities

in common interest games — games where players have

identical payoffs in each outcome, and Bassan et al. [6]

exhibited a polyhedral characterization of games in which

more information improves the individual utility of every

player. The work of Peski [31] is related to ours, and con-

siders asymmetric information structures in zero-sum games.

They show that maximizing one player’s utility requires

revealing as much information as possible to that player,

and withholding as much as possible from his opponent.

Many recent works have established striking characteri-

zations of the space of equilibria attainable by signaling, in

natural game domains. Bergemann et al. [8] considers sig-

naling in a buyer/seller price-discrimination game, and pro-

vides a polyhedral characterization of the space of potential

equilibria and their associated payoffs. Syrgkanis et al. [33]

characterize the equilibrium of a 2-player common value

auction supplemented with a signaling scheme. Bergemann

and Morris [7] characterize the space of equilibria attainable

by (asymmetric) information structures in general games,

and relate it to the space of correlated equilibria.

Despite appreciation of the importance of information in

strategic interactions, it is only recently that researchers have

started viewing the information structure of a game as a

mathematical object to be designed, rather than merely an

exogenous variable. Kamenica and Gentzkow [26] examine

settings in which a sender must design a signaling scheme

to convince a less informed receiver to take a desired action.

Recent work in the CS community, including by Emek

et al. [14], Bro Miltersen and Sheffet [10] and Guo and

Deligkas [20], examines revenue-optimal signaling in an

auction setting, and presents polynomial-time algorithms

and hardness results for computing it. Dughmi et al. [13]

examine welfare-optimal signaling in an auction setting

under exogenous constraints, and presents polynomial-time

algorithms and hardness results.

II. PRELIMINARIES

A. Games

At its most general, a Bayesian game is a family of games

of complete formation parametrized by a state of nature

θ, where θ is assumed to be drawn from a known prior

distribution. In this paper, we focus on finite, Bayesian,

2-player zero-sum games, each of which is described by

the following parameters: Nonnegative integers r and c,
denoting the number of pure strategies of the row player and

column player respectively; a finite family Θ = {1, . . . ,M}
of states of nature, which we index by θ; a family of payoff

matrices Aθ ∈ R
r×c, indexed by states of nature θ ∈ Θ;

and a prior distribution distribution λ ∈ ΔM on the states

of nature. Naturally, Aθ(i, j) denotes the payoff of the row

player when the row player plays i, the column player plays

j, and the state of nature is θ. The column player’s payoff

in the same situation is −Aθ(i, j).

We use two different representations of zero-sum games.

In the explicit representation, the matrices
{
Aθ

}
θ
, as well

as the prior distribution λ, are given explicitly. We also

relax this somewhat for our second result; specifically, we

consider a game in which the individual matrices Aθ are

given implicitly, since one of the players has a number of

strategies which is exponential in the natural description of

the game. Nevertheless, a low-rank bilinear structure permits

efficient computation of equilibria, and the value of the

game, in the implicitly represented game we consider.3

B. Signaling Schemes

We examine policies whereby a principal reveals partial

information regarding the state of nature θ to the players.

Crucially, we require that the principal reveal the same infor-

mation to both players in the game. A symmetric signaling

scheme is given by a set Σ of signals, and a (possibly

randomized) map ϕ from states of nature Θ to signals Σ.

Abusing notation, we use ϕ(θ, σ) to denote the probability

of announcing signal σ ∈ Σ when the state of nature is

θ ∈ Θ. We restrict attention to signaling schemes with a

finite set of signals Σ, and this is without loss of generality

when Θ is finite. We elaborate on this after describing the

convex decomposition interpretation of a signaling scheme.
We note that signaling schemes are in one-to-one corre-

spondence with convex decompositions of the prior λ ∈ ΔM

— namely, distributions supported on the simplex ΔM , and

having expectation λ. Formally, a signaling scheme ϕ : Θ→
Σ corresponds to the convex decomposition λ =

∑
σ∈Σ ασ ·

xσ, where ασ = Pr[ϕ(θ) = σ] =
∑

θ∈Θ λ(θ)ϕ(θ, σ), and

xσ(θ) = Pr[θ|ϕ(θ) = σ] = λ(θ)ϕ(θ,σ)
ασ

. Note that xσ ∈ ΔM

is the posterior distribution of θ conditioned on signal σ,

and ασ is the probability of signal σ. The proof of the

converse direction, namely that every convex decomposition

of λ corresponds to a signaling scheme, is elementary yet

thought provoking, and hence left to the reader.
We judge the quality of a signaling scheme by the out-

come it induces signal by signal. Specifically, the principal

is equipped with an objective function of the form
∑

σ ασ ·
f(xσ), where f : ΔM → R is some function mapping a

posterior distribution to the quality of the equilibrium chosen

by the players. For example, f may be the social welfare at

the induced equilibrium, a weighted combination of players’

utilities at equilibrium, or something else entirely. In this

setup, one can show that there always exists an signaling

scheme with a finite set of signals which maximizes our

objective, so long as the states of nature are finitely many.

The optimal choice of signaling scheme is related to the

concave envelope f+ of the function f .4 Specifically, such

3Implicitly-represented 2-player zero-sum games often admit efficient
algorithms for equilibrium computation. Fairly general conditions under
which this is possible are well exposited by Immorlica et al. [23].

4f+ is the point-wise lowest concave function h for which h(x) ≥ f(x)
for all x in the domain. Equivalently, the hypograph of f+ is the convex
hull of the hypograph of f .
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a signaling scheme achieves
∑

σ ασ · f(xσ) = f+(λ).
Application of Caratheodory’s theorem to the hypograph of

f , therefore, shows that M + 1 signals suffice.

Our impossibility results rule out algorithms for comput-

ing near optimal signaling schemes, almost agnostic to how

such schemes are represented as output. For concreteness,

the reader can think of a signaling scheme ϕ as represented

by the matrix of pairwise probabilities ϕ(θ, σ). Since we

only consider games where the states of nature, and therefore

also the number of signals w.l.o.g., are polynomially many

in the description size of the game, this is a compact

representation. The representation of ϕ as a convex decom-

position would do equally well, as both representations can

be efficiently computed from each other.

C. Strategies, Equilibria, and Objectives

Given a Bayesian game, a symmetric signaling scheme

(α, x) with signals Σ induces |Σ| sub-games, one for each

signal. The subgame corresponding to signal σ ∈ Σ is

played with probability ασ , and players’ (common) beliefs

regarding the state of nature in this subgame are given by the

posterior distribution xσ ∈ ΔM . The quality of a symmetric

signaling scheme in such a game is contingent on a choice

of an equilibrium concept and an objective function.

Equilibrium Concept: An equilibrium concept distin-

guishes a mixed strategy profile for every posterior belief

x ∈ ΔM . This permits defining an objective function on

signaling schemes, as described in Section II-B. In general

Bayesian games, evaluating the quality of a signaling scheme

may be complicated by issues of equilibrium selection — for

example, general sum games often admit many Bayes-Nash

equilibria. However, our restriction to two-player zero-sum

games side-steps such complications: all standard equilib-

rium concepts are payoff-equivalent in zero-sum games, and

correspond to the minimax equilibrium in each subgame.

Our restriction to zero-sum games avoids an additional

complication, which arises for more general games. Equi-

librium computation in full-information zero-sum games is

tractable, permitting efficient computation of equilibrium in

the Bayesian game, for every posterior distribution over the

states of nature. This avoids “inheriting” the computational

complexity of equilibrium computation into our optimal

signaling problems, and therefore suggests that the hardness

of optimal signaling is a distinct phenomenon from the

complexity of computing equilibria.

Formally, given a Bayesian zero-sum game (
{
Aθ

}M

θ=1
, λ)

as described in Section II-A, and a signaling scheme cor-

responding to the convex decomposition (α, x) of λ, this

induces a distribution over sub-games. Specifically, for each

signal σ ∈ Σ, the Bayesian zero-sum game (
{
Aθ

}M

θ=1
, xσ)

is played with probability ασ . We use Aσ = Eθ∼xσ
[Aθ] to

denote the matrix of posterior expected payoffs conditioned

on signal σ. A Bayesian Nash equilibrium corresponds to

an equilibrium of each sub-game (
{
Aθ

}M

θ=1
, xσ) in which

players play as they would in the complete information

zero-sum game Aσ . In the sub-game corresponding to

signal σ, the row player’s payoff is simply his payoff

in the complete information zero-sum game Aσ , namely

ur(Aσ) = maxy∈Δr
minc

j=1(y
ᵀAσ)j . The expected payoff

of the row player over the entire game is then given by

ur(α, x) =
∑

σ∈Σ ασur(Aσ).
Objective Function: We adopt ur, as given above, as

our objective function. By symmetry, this is technically

equivalent to adopting objective function uc, the utility of the

column player. To justify this choice for our hardness results,

observe that most natural classes of objective functions —

say weighted combination of players’ utilities, or linear

functions of players’ mixed strategies — include ur and uc

as special cases.

Additionally, we are motivated by the fact that the space

of all payoff profiles achievable by signaling is spanned

by the two schemes maximizing the utility of one of the

players, in the following sense. Let ϕr be a signaling scheme

maximizing the row player’s utility, and ϕc be a signaling

scheme maximizing the column player’s utility. Moreover,

let umax
r = −umin

c denote the row player’s maximum utility

(equivalently, the negation of the column player’s minimum

utility), and similarly let umax
c = −umin

r denote the column

player’s maximum utility (equivalently, the negation of the

row player’s minimum utility). If there exists a signaling

scheme ϕ inducing a utility profile (ur, uc), then it can be

formed as a convex combination of the two extreme schemes

ϕr and ϕc — specifically, by running ϕr with probability
ur−umin

r

umax
r

−umin
r

and ϕc otherwise. Consequently, “mapping out”

the space of possible payoff profiles, as well constructing

a signaling scheme attaining a desired payoff profile, both

reduce to computing the extreme schemes ϕr and ϕc.

D. Graphs, Clusters, and Density

An undirected graph G is a pair (V,E), where V is a

finite set of nodes or vertices, and E ⊆
(
V
2

)
is a set of

undirected edges. We usually use n to denote the number of

vertices of a graph, and m to denote the number of edges.

Given a graph G = (V,E), a cluster is some S ⊆ V . Given

a cluster S, we define the intra-cluster edges E(S) as those

edges with both endpoints in S. The induced subgraph of S
is the graph H = (S,E(S)). Moreover, given two clusters

S, T ⊆ V , we define the inter-cluster edges E(S, T ) as the

edges with at least one endpoint in each of S and T .

The density of G is the fraction of all potential edges

in E — namely density(G) = 2|E|
|V |(|V |−1) . More gen-

erally, the density of a cluster S in G is the den-

sity of the subgraph of G induced by S, specifically

densityG(S) = 2|E(S)|
|S|(|S|−1) . To precisely state and prove

our results, we require a slightly different notion of den-

sity, defined between pairs of clusters. We define the bi-

density between clusters S and T as the fraction of all

pairs (u, v) ∈ S × T connected by an edge; formally,
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bi-density(S, T ) = 1
|S||T | · | {(u, v) ∈ S × T | {u, v} ∈ E} |.

Equivalently, the bi-density between S and T can be

thought of in terms of the adjacency matrix of A of

G; specifically, bi-density(S, T ) = 1
|S||T |

∑
i∈S

∑
j∈T Aij .

Observe that density and bidensity are closely related, in that

bi-density(S, S) = density(S)(1− 1
|S|).

E. Random Graphs

We make use of Erdős-Rényi random graphs. Given

n ∈ N and p ∈ [0, 1], the random graph G(n, p) has

vertices V = {1, . . . , n}, and its edges include every

e ∈
(
V
2

)
independently with probability p. Naturally, for

G ∼ G(n, p), every cluster S of G has expected density

p. Moreover, every pair of clusters S and T has expected

bi-density p
(
1− |S∩T |

|S||T |

)
.5 We make use of the following

standard probabilistic bound, proved in the full version.

Proposition II.1. Let p ∈ (0, 1) and α > 1 be absolute

constants (independent of n), and let G ∼ G(n, p). There

is an absolute constant β = β(p, α) such that, with high

probability, bi-densityG(X,Y ) ≤ αp simultaneously for all

clusters X and Y with |X |, |Y | > β logn.

As in the above proposition, we make references through-

out this paper to guarantees which hold with high probability

over a family of graphs parametrized by the number of nodes

n. By this we mean that the claimed property holds with

probability at least 1− 1/ poly(n), for some polynomial in

the number of nodes.

III. PLANTING CLIQUES AND CLIQUE COVERS

A. The Planted Clique Problem

For our hardness results, we assume that it is hard

to recover a planted clique from an Erdős-Rényi random

graph. Specifically, we consider the following problem for

parameters n, k ∈ N and p ∈ [0, 1].

Definition III.1 (The Planted Clique Problem

PCLIQUE(n,p,k)). Let G ∼ G(n, p, k) be a random

graph with vertices [n] = {1, . . . , n}, constructed as

follows: (1) Every edge is included in G independently with

probability p; (2) A set S ⊆ [n] with |S| = k is chosen

uniformly at random; (3) All edges with both endpoints in

S are added to G. Given a sample from G ∼ G(n, p, k),
recover the planted clique S.

We refer to the parameter p as the background density, S as

the planted clique, and k as the size of the clique. Typically,

we will think of k as a function of n, and p as an absolute

constant independent of n. Our results will hinge on the

conjectured hardness of recovering the clique with constant

probability. We use the following conjecture.

Assumption III.2. For some function k = k(n) satisfying

k = ω(log2 n) and k = o(
√
n), there is no probabilistic

5The discrepancy from p is due to the absence of self-loops.

polynomial-time algorithm for PCLIQUE(n, 1
2 , k) with

constant success probability.

By constant success probability, we mean that the prob-

ability of the algorithm recovering the clique is bounded

below by a constant independent of n, over the random draw

of the graph G ∼ G(n, p, k) as well as the internal random

coins of the algorithm.

The problem of recovering a planted clique, as well as the

(no harder) problem of distinguishing a draw from G(n, p)
from a draw from G(n, p, k), has been the subject of much

work since it was introduced by Jerrum [24] and Kučera

[27]. Almost all of this work has focused on p = 1
2 . On

the positive side, there is a quasipolynomial time algorithm

for recovering the clique when k ≥ 2 logn. The best known

polynomial-time algorithms, on the other hand, can recover

planted cliques of size Ω(
√
n), through a variety of different

algorithmic techniques (e.g. [3, 29, 11, 15, 5, 17, 12]).

Despite this extensive body of work, there are no known

polynomial-time algorithms for recovering, or even detect-

ing, planted cliques of size k = o(
√
n). There is evidence

the problem is hard: Jerrum [24] ruled out Markov chain

approach for k = o(
√
n); Feige and Krauthgamer [16]

ruled out algorithms based on the Lovász-Schrijver family of

semi-definite programming relaxations for k = o(
√
n); and

recently Feldman et al. [18] defined a family of “statistical

algorithms,” and ruled out such algorithms for recovering

planted cliques of size k = o(
√
n). Consequently, the

planted clique conjecture has been used as a hardness

assumption in a variety of contexts (e.g. [4, 25, 21, 30]).

B. From Planting Cliques to Planting Covers

For our results, we construct games in which the random

state of nature is a node in some graph G. Recalling that a

signaling scheme is a kind of fractional partition of the states

of nature, with each “fractional part” corresponding to a

signal, we design our games so that the quality of a signal is

proportional to the density of that part of the graph. Since a

signaling scheme’s quality is measured in aggregate over the

entire distribution over states of nature, any hardness result

must rule out recovering a family of dense clusters (one per

signal) scattered throughout the graph, rather than merely a

unique dense cluster as in the planted clique problem. In this

section, we define the planted clique-cover problem in which

many cliques are planted throughout the graph, and prove

a kind “amplification lemma” extending the hardness of

recovering a planted clique to recovering a constant fraction

of the planted cover.

The planted clique-cover problem is parametrized by

n, k, r ∈ N and p ∈ [0, 1], and defined as follows.

Definition III.3 (The Planted Clique Cover Problem

PCCOVER(n,p,k,r)). Let G ∼ G(n, p, k, r) be a random

graph on vertices [n] = {1, . . . , n}, constructed as follows:

(1) Include every edge in G independently with probability
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p; (2) For i = 1 to r, choose Si ⊆ [n] with |Si| = k
uniformly at random, and add all edges with both endpoints

in Si to G. Given a sample from G ∼ G(n, p, k, r), recover

a constant fraction of the planted cliques S1, . . . , Sr.6

As in the planted clique problem, we refer to the param-

eter p as the background density, S1, . . . , Sr as the planted

cliques, k as the size of each clique, and r as the number

of cliques. Moreover, we will think of k and r as functions

of n, and p as an absolute constant independent of n. Note

that the planted clique problem is the special case of the

planted clique-cover problem when r = 1. For our results,

we will use the planted clique-cover problem for r = Θ(n
k
),

guaranteeing that a constant fraction of the nodes are in at

least one of the planted cliques with high probability.

At first glance, it might appear that planting many cliques

as we do here makes the problem easier than planted clique.

Somewhat surprisingly — and we elaborate on why later —

this is not the case. We exhibit a reduction from the planted

clique problem to the planted clique-cover problem with

an arbitrary parameter r, showing that indeed the planted

clique-cover problem is no easier. We prove the following.

Lemma III.4. Let k and r be arbitrary functions of n,

and p be an arbitrary constant. If there is a probabilistic

polynomial-time algorithm for PCCOVER(n, p, k, r) with

constant success probability, then there is such an algorithm

for PCLIQUE(n, p, k).

Proof: The reduction proceeds as follows: Given a

graph G ∼ G(n, p, k) = G(n, p, k, 1), we construct a graph

G′ ∼ G(n, p, k, r) by planting r − 1 additional k-cliques

at random, as in Definition III.3. In a sense, we “continue

where planted clique left off” by adding r− 1 more cliques

placed randomly in the graph. Let S1 denote the original

planted clique, and S2, . . . , Sr be the “additional” cliques

planted through the reduction.

The key observation is that the cliques S1, . . . , Sr are

indistinguishable to any algorithm operating on a sample

from G(n, p, k, r). This is by a symmetry argument: permut-

ing the order in which cliques are planted does not change

the distribution G(n, p, k, r). As a result, any algorithm

which recovers a constant fraction of the planted cliques

from G′ with constant probability must recover each of

S1, . . . , Sr with constant probability. In particular, applying

an algorithm for the planted cover problem to the outcome

of our reduction yields a list of cliques which includes S1

— the original planted clique — with constant probability.

This leads to an algorithm for the planted clique problem

with constant success probability.

Lemma III.4 is surprising since it does not appear to

hold for the distinguishing variants of PCCOVER and

6By this we mean that the algorithm should output a list of k-cliques
in G, at least αr of which are in {S1, . . . , Sr}, for some constant α
independent of n.

PCLIQUE. Specifically, when k = nγ for a constant

γ < 1
2 , whereas it is conjectured that no algorithm can

distinguish a sample from G(n, 1
2 ) from a sample from

G(n, 1
2 , k) with constant probability, a simple statistical test

succeeds in distinguishing a sample from G(n, 1
2 ) from a

sample from G(n, 1
2 , k, n/k) with constant probability. The

test in question simply counts the edges in the graph. The

random graph G(n, 1
2 ) has n2

4 ±O(n) edges with probability

approaching 1, whereas G(n, 1
2 , k, n/k) has n2

4 +Ω(n
k
·k2) =

n2

4 + Ω(n1+γ) edges in expectation — well above the

confidence interval for the number of edges in G(n, 1
2 ).

C. Approximate Recovery

To simplify our hardness results, we show that producing a

set of vertices with sufficient overlap with a planted clique is

polynomial-time equivalent to recovering that entire clique,

with high probability.

Lemma III.5. Let ε > 0 and p ≤ 1
2 be constants, k = k(n)

satisfy k = ω(log2 n) and k = o(
√
n), and r = O(n

k
). There

is a probabilistic polynomial-time algorithm which takes as

input G ∼ G(n, p, k, r) and a cluster T ⊆ [n] , and outputs

every planted k-clique S in G for which |T ∩S| > ε|T ∪S|,
with high probability.

In other words, to recover a planted k-clique S it suffices

to produce a set T of size O(k) for which |T ∩ S| = Ω(k).
The analogous statement for the (single) planted clique

problem is folklore. Our proof is similar, though requires

some additional accounting because our cliques may overlap.

We relegate the proof of Lemma III.5 to the full version.

IV. ZERO-SUM GAMES

In this section, we show the intractability of optimal

signaling in zero sum games, when the objective is max-

imizing one player’s payoff at equilibrium. We prove two

results which follow from Assumption III.2: Hardness of

optimal signaling for explicit zero sum games — those

games with a polynomial number of strategies and matrices

given explicitly, and hardness of approximation for implicit

zero-sum games. Our former result, for explicit games,

requires the real numbers in the payoff matrices to scale

with the input size, and therefore does not qualify as a

hardness of approximation result per se. Our latter result for

implicitly-described games does rule out a constant additive

approximation relative to range of possible payoffs, and

crucially holds for a game in which equilibrium computation

is tractable, in the sense described in Section II-C.

Theorem IV.1. Assumption III.2 implies that there is

no polynomial-time algorithm which computes a signaling

scheme maximizing a player’s payoff in an explicitly repre-

sented 2-player Bayesian zero-sum game.

Theorem IV.2. Assumption III.2 implies there is an

implicitly-described, yet tractable, Bayesian zero-sum game
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with payoffs in [−1, 1], and an absolute constant ε, such

that there is no polynomial-time algorithm for computing a

signaling scheme which ε-approximately maximizes (in the

additive sense) one player’s payoff.

For both our results, we use variants of the following

security game. In a security game, an attacker chooses a

target to attack, and a defender chooses targets to defend.

The payoff of both players depends on the choice of target

and the extent to which it is protected. We consider a zero-

sum security game on a network, in which an attacker is

looking to take down edges of the network, and a defender is

looking to defend those edges. The state of nature determines

a vulnerable node θ, and an attacker can only take down

edges adjacent to θ by attacking its other endpoint. The

defender, on the other hand, can select a small set of nodes

and protect the edges incident on them from attack.

Definition IV.3 (Network Security Game). Instances of

this Bayesian zero-sum security game are described by an

undirected graph G = (V,E) with n nodes and m edges,

representing a communication network, an integer d ≥ 1
equal to the number of nodes the defender can simultane-

ously protect, and a real number ρ ≥ 0 equal to the utility

gain to the defender for protecting a vulnerable or attacked

node. States of nature correspond to vertices V . When the

realized state of nature is θ = v, this indicates that the edges

incident on node v are vulnerable to attack. We assume that

θ ∼ λ, where the prior λ is the uniform distribution over

V . The attacker’s strategies also correspond to the nodes V .

The defender’s strategies correspond to subsets of V of size

at most d, representing the choice of nodes to defend. When

the state of nature is θ ∈ V , the attacker attacks a ∈ V ,

and the defender defends D ⊆ V with |D| ≤ d, the payoff

of the attacker is defined as follows:

Aθ(a,D) = |{(θ, a)} ∩E| − ρ|D ∩ {θ, a}|
When d is a constant, the size of the matrices Aθ is

polynomial in the representation size of the game, and we

can think of the game as being represented explicitly as a

set of n matrices Aθ ∈ [−2ρ, 1]n×(nd). However, when d
is superconstant, the game matrices have a superpolynomial(
n
d

)
number of columns. Nevertheless, even then equilibrium

computation is still tractable in the sense described in Sec-

tion II-C — i.e., our representation permits computation of

the equilibrium, and corresponding utilities, for every poste-

rior distribution x ∈ Δn over states of nature. This is a con-

sequence of the “low dimensional” nature of the defender’s

mixed strategy space, and linearity of players’ utilities in

this low-dimensional representation. Specifically, a mixed

strategy of the defender can be summarized as a vector

in the matroid polytope Pd = {z ∈ [0, 1]n :
∑n

i=1 zi ≤ d}.
A vector z ∈ Pd encodes the probability by which the

defender defends each target. It is not hard to see that

this representation is loss-less, in that (a) the vector z

summarizing a defender’s mixed strategy, together with the

attacker’s mixed strategy y ∈ Δn, suffices for computing

the payoff of each player in a subgame with beliefs x —

specifically, using A to denote the adjacency matrix of graph

G, the attacker’s payoff is xᵀAy− ρ(zᵀx+ zᵀy); (b) Given

a vector z ∈ Pd, a corresponding mixed strategy of the

defender with small support can be efficiently recovered as

the convex decomposition of z into the corner points of

the matroid polytope Pd;7 and (c) Given a vector z ∈ Pd

summarizing the defender’s mixed strategy in a subgame

with beliefs x, a best response for the attacker can be

computed efficiently.

Theorems IV.1 and IV.2 follow from the two lemmas

below, as well as Lemma III.4. Specifically, Theorem IV.1

instantiates both lemmas below with d = 1 and ρ = k
150 ,

and Theorem IV.2 sets d = k
150 and ρ = 1.

Lemma IV.4. Let k and r be such that r = 3n
k

. For a

network security game on G ∼ G(n, 1
2 , k, r) with d, ρ ≥ 1

satisfying ρd = k
150 , with high probability there is a signal-

ing scheme attaining expected attacker utility at least 0.8.

Lemma IV.5. Let ε > 0 be an absolute constant, k satisfy

k = ω(log2 n) and k = o(
√
n), and r = Θ(n

k
). For a

network security game on G ∼ G(n, 1
2 , k, r) with with d, ρ ≥

1 satisfying ρd = Θ(k), there is a probabilistic polynomial-

time algorithm which, given any signaling scheme obtaining

attacker utility at least 0.5 + ε, outputs an Ω(ε) fraction of

the planted cliques in G, with high probability.

Lemma IV.4 follows from analyzing a deterministic sig-

naling scheme which groups together states of nature in the

same planted clique (breaking ties arbitrarily). The proof

is simple, and is relegated to the full version. We prove

Lemma IV.5 next.

Proof of Lemma IV.5: We exhibit an algorithm which,

given as input a graph G ∼ G(n, 1
2 , k, r) and a signaling

scheme ϕ attaining the claimed attacker utility, outputs a

family of clusters T from which a constant fraction of the

planted cliques can be recovered in polynomial time. Specif-

ically, we show that for a constant fraction of the planted

cliques S1, . . . , Sr, there is a cluster T ∈ T which satisfies

the requirements of Lemma III.5. To simplify our proof, we

assume that ρd/2 is an integer, though unsurprisingly this

assumption can easily be removed.

Consider Algorithm 1. In step (2), the algorithm “zeroes-

out” those vertices which are “overrepresented” in either the

attacker’s strategy or the posterior distribution over states of

nature. This is justified because, as will become clear in the

proof, we designed the game’s payoffs so that overrepre-

sented nodes can easily be protected by the defender, and

hence account for only a small fraction of the attacker’s total

utility. After zeroing-out large entries, the posteriors x̂σ and

7This is the constructive version of Caratheodory’s theorem, as shown
by Grötschel et al. [19].
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Algorithm 1 Algorithm for Computing Approximation of

Planted Cliques from a Signaling Scheme

Input: Graph G = (V,E) with adjacency matrix A ∈ R
n×n

Input: A signaling scheme ϕ : V → Σ, represented in

convex decomposition form (α, x) where α ∈ ΔΣ, and

xσ ∈ ΔV for each σ ∈ Σ.

Output: A list T of subsets of V , each of size ρd/2.

1: For each σ ∈ Σ, compute the attacker’s minimax

strategy yσ ∈ ΔV in the subgame corresponding to

signal σ.

2: For each σ ∈ Σ, discard from each of xσ and yσ all

entries greater than 2
ρd

. Formally, let x̂σ(v) equal xσ(v)

if xσ(v) ≤ 2
ρd

, and equal 0 otherwise. ŷσ(v) is defined

analogously.

3: For each σ ∈ Σ, let zσ ∈ ΔV be an extreme-point

solution of the following linear program. (Note that x̂σ

is fixed)

maximize (x̂σ)
ᵀAzσ

subject to ||zσ||∞ ≤ 2
ρd∑

v∈V zσ(v) ≤ 1
zσ(v) ≥ 0, for v ∈ V.

(1)

4: Let Tσ be the support of zσ ∈ ΔV , for each σ ∈ Σ.

5: Output T = {Tσ : σ ∈ Σ}.

attacker strategies ŷσ have entries no larger than 1/Θ(k), and

therefore behave roughly as uniform distributions over Θ(k)
vertices. Steps (3) and (4) are “cleanup steps”, which convert

the attacker’s mixed strategy to a uniform distribution over
ρd
2 = Θ(k) vertices Tσ. We will show that the resulting

family T of clusters must overlap substantially with the

planted cliques, in the sense of Lemma III.5, for the utility

of the attacker to exceed the background density of 1
2 by

a constant. We formalize all this through a sequence of

propositions.

Proposition IV.6. The attacker’s utility u(ϕ) from signaling

scheme ϕ = (α, x) satisfies u(ϕ) ≤ ∑
σ∈Σ ασx̂

ᵀ

σAŷσ,
where A denotes the adjacency matrix of G, and x̂σ and

ŷσ are as defined in step (2) of Algorithm 1.

Proof: We prove this bound signal-by-signal. Fix a

signal σ ∈ Σ with posterior xσ and attacker strategy yσ, and

as shorthand use x = xσ , y = yσ, x̂ = x̂σ , and ŷ = ŷσ. We

distinguish nodes which are overrepresented in x or y —

specifically, the nodes O =
{
v : max(x(v), y(v)) ≥ 2

ρd

}
.

There are at most ρd such nodes, since each of x and y, by

virtue of being a probability distribution, can have at most

ρd/2 entries exceeding 2/ρd.

We consider a defender who chooses D ⊆ O with

|D| = min(d, |O|) uniformly at random. Observe that such

a defender protects each node in O with probability at least

min(d,|O|)
|O| ≥ d

ρd
= 1

ρ
. The utility of the attacker is equal

to xᵀAy − ρ(Pr[θ ∈ D] + Pr[a ∈ D]). Note that Pr[θ ∈
D] = Pr[θ ∈ O]Pr[θ ∈ D|θ ∈ O] ≥ 1

ρ
Pr[θ ∈ O] = x(O)

ρ
.

Similarly Pr[a ∈ D] ≥ y(O)
ρ

. Therefore we have that

uσ(ϕ) ≤ xᵀAy − (x(O) + y(O)) (2)

Next, we let x = x− x̂ and y = y− ŷ, and bound xTAy.

xᵀAy = x̂ᵀAŷ + x̂ᵀAy + xᵀAŷ + xᵀAy

≤ x̂ᵀAŷ + x̂ᵀy + xᵀŷ + xᵀy

≤ x̂ᵀAŷ + xᵀy + yᵀx

≤ x̂ᵀAŷ + ||x||1||y||∞ + ||y||1||x||∞ (Holder’s ineq.)

≤ x̂ᵀAŷ + ||x||1 + ||y||1
= x̂ᵀAŷ + x(O) + y(O) (3)

Combining (2) with (3) completes the proof.

Proposition IV.7. u(ϕ) ≤∑
σ∈Σ ασx̂

ᵀ

σAzσ

Proof: This follows from Proposition IV.6 and the fact

that that ŷσ is a feasible solution to linear program (1).

Proposition IV.8. zσ is a uniform distribution over ρd/2
vertices, namely Tσ.

Proof: Recall that we assumed that ρd/2 is an integer.

Therefore, a simple argument shows that an extreme-point

solution to LP (1) must set each variable either to 0 or to 2
ρd

.

In particular, the optimal solution must set precisely ρd/2
entries of zσ to 2

ρd
, as needed.

We now upperbound the contribution of edges outside

the planted cliques to the utility of the attacker. Write the

adjacency matrix A as A = A− + A+, where A− are the

background edges added in Step (1) of Definition III.3, and

A+ are the clique edges added in Step (2) of Definition III.3.

Proposition IV.9. (x̂σ)
ᵀA−zσ ≤ 0.5+ ε

2 simultaneously for

all signals σ ∈ Σ, with high probability.

Proof: Pick an arbitrary signal σ. Since ||x̂σ ||∞ ≤ 2
ρd

,

we have that (x̂σ)
ᵀA−zσ is bounded from above by the

value of the linear program which holds zσ fixed, and

maximizes xᵀA−zσ over x ∈ ΔV with ||x||∞ ≤ 2
ρd

. By an

argument similar to in Proposition IV.8, at optimality x is a

uniform distribution over some ρd/2 vertices R. Therefore,

since zσ is also a uniform distribution over the ρd/2 vertices

Tσ (Proposition IV.8), the value of our linear program is

equal to bi-density(R, Tσ). Since ρd/2 = Θ(k) = ω(logn),
Proposition II.1 implies the claimed bound.

We can now wrap up the proof of Lemma IV.5. We will

show that, on average over our planted cliques S1, . . . , Sr,

there is some T ∈ T output by Algorithm 1 overlapping

with a constant fraction of the clique vertices. As notation,

we let Ai denote the adjacency matrix of the clique Si, for

i = 1, . . . , r. Note that A+ ≤ ∑r

i=1 A
i. First, we show
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that foreground edges contribute Ω(ε) to the outerproduct

(x̂σ)
ᵀAzσ , on average over signals σ ∈ Σ.

0.5 + ε ≤
∑
σ∈Σ

ασx̂
ᵀ

σAzσ (Prop. IV.7)

=
∑
σ∈Σ

ασx̂
ᵀ

σ(A
− + A+)zσ

≤ (0.5 +
ε

2
)
∑
σ∈Σ

ασ +
∑
σ∈Σ

ασx̂
ᵀ

σA
+zσ (Prop. IV.9)

= 0.5 +
ε

2
+

∑
σ∈Σ

ασx̂
ᵀ

σA
+zσ

Therefore
∑

σ∈Σ ασx̂
ᵀ

σA
+zσ ≥ ε

2 . Next, we “break up”

this sum of outerproducts into the constituent contributions

of each planted clique.

ε

2
≤

∑
σ∈Σ

ασx̂
ᵀ

σA
+zσ

≤
∑
σ∈Σ

ασx̂
ᵀ

σ(

r∑
i=1

Ai)zσ

=

r∑
i=1

∑
σ∈Σ

ασx̂
ᵀ

σA
izσ

≤
r∑

i=1

∑
σ∈Σ

ασx̂σ(Si)zσ(Si)

=

r∑
i=1

∑
σ∈Σ

ασx̂σ(Si)
|Tσ ∩ Si|
|Tσ|

Finally, we show that the average planted clique is well

represented by some T ∈ T .

ε

2
≤

r∑
i=1

∑
σ∈Σ

ασx̂σ(Si)
|Tσ ∩ Si|
|Tσ|

≤
r∑

i=1

(∑
σ∈Σ

ασx̂σ(Si)

)(
max
T∈T

|T ∩ Si|
|Tσ|

)

≤
r∑

i=1

|Si|
n

(
max
T∈T

|T ∩ Si|
|Tσ|

)
=

k

n

r∑
i=1

(
max
T∈T

|T ∩ Si|
|Tσ|

)
= O(1) · 1

r

r∑
i=1

(
max
T∈T

|T ∩ Si|
|Tσ|

)
= O(1) · 1

r

r∑
i=1

(
max
T∈T

|T ∩ Si|
k

)
The last inequality follows from

∑
σ ασx̂σ(v) ≤∑

σ ασxσ(v) = λv = 1
n

; the next to last equality from

r = Θ(n
k
); and the last equality from |Tσ| = ρd/2 = Θ(k).

Therefore 1
r

∑r

i=1

(
maxT∈T

|T∩Si|
k

)
≥ Ω(ε); i.e., the

average planted clique intersects at least one of the sets in T
in a constant fraction Ω(ε) of its vertices. This implies that

an Ω(ε) fraction of the planted cliques intersect at least one

of the sets in T in Ω(ε) fraction of its vertices, by a simple

counting argument. Since each set in T is of size Θ(k),
this satisfies the requirements of Lemma III.5 for a constant

fraction of the planted cliques, completing the proof.

V. CONCLUSION

Our results raise several open questions, and we close with

some of them. First, note that our impossibility result for

explicit zero sum games rules out approximation algorithms

with additive error on the order of 1
polylogn

relative to the

range of player payoffs, where n is the number of a player

strategies. Essentially, this rules out a fully polynomial time

approximation scheme (FPTAS) for optimal signaling, but

not a PTAS: an ε additive approximation algorithm for every

constant ε independent of n. A more immediately attainable

goal might be a quasipolynomial time approximation scheme

(QPTAS), since a quasipolynomial time algorithm exists for

the planted clique problem. In the event of such positive

results, it makes sense to examine extensions to more general

(multi-player and non-zero sum) games.

The reader might have noticed some similarities between

optimal signaling and the problem of optimizing over Nash

equilibria, which is known to admit a QPTAS, but not a

PTAS by the reduction of Hazan and Krauthgamer [21] from

the planted clique problem. However, those similarities do

not appear to give any immediate answers for the signaling

question. For example, whereas adaptations of the QPTAS

for the best Nash equilibrium problem might be able to

identify individual “good” signals, piecing those together

into an information structure appears to be nontrivial.

Our results also point towards other potential signaling

questions. Much of the related work mentioned in the

introduction considers particular game domains in which

signaling can be used to effect desirable outcomes. We

believe that our ideas, and in particular the connection with

dense subgraph detection, can shed light on the algorithmic

component of some of these applications — we single out

the auction domains studied in [14, 10, 13] as likely targets.
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