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Abstract—We consider the problem of testing whether
an unknown Boolean function f : {−1, 1}n → {−1, 1} is
monotone versus ε-far from every monotone function. The
two main results of this paper are a new lower bound and
a new algorithm for this well-studied problem.

Lower bound: We prove an Ω̃(n1/5) lower bound on
the query complexity of any non-adaptive two-sided error
algorithm for testing whether an unknown Boolean func-
tion f is monotone versus constant-far from monotone.
This gives an exponential improvement on the previous
lower bound of Ω(log n) due to Fischer et al. [1]. We show
that the same lower bound holds for monotonicity test-
ing of Boolean-valued functions over hypergrid domains
{1, . . . ,m}n for all m ≥ 2.

Upper bound: We present an Õ(n5/6)poly(1/ε)-query
algorithm that tests whether an unknown Boolean function
f is monotone versus ε-far from monotone. Our algorithm,
which is non-adaptive and makes one-sided error, is a
modified version of the algorithm of Chakrabarty and
Seshadhri [2], which makes Õ(n7/8)poly(1/ε) queries.

Keywords-Boolean functions; Property testing; Mono-
tonicity testing.

I. INTRODUCTION

Monotonicity is a basic and natural property of func-

tions. In the field of property testing, the problem of

efficiently testing whether an unknown function f is

monotone has been the focus of a long and fruitful line

of research, with many works (see e.g. [1]–[17]) study-

ing this problem for functions with various domains and

ranges.

In this work we will be concerned with the classical

problem of testing monotonicity of Boolean functions
f : {−1, 1}n → {−1, 1}, which was first posed and

considered explicitly by Goldreich et al. [3]. Recall a

Boolean function f is monotone if f(x) ≤ f(y) for all

x ≺ y, where ≺ denotes the bitwise partial order on the

hypercube. Let

dist(f, g) := Prx∈{−1,1}n [f(x) �= g(x)];

we say that f is ε-close to monotone if dist(f, g) ≤ ε
for some monotone Boolean function g, and that f is

ε-far from monotone otherwise. We will be interested

in query-efficient randomized testing algorithms for the

following task: Given as input a distance parameter ε >
0 and oracle access to an unknown Boolean function
f : {−1, 1}n → {−1, 1}, output Yes with probability
at least 2/3 if f is monotone, and No with probability
at least 2/3 if f is ε-far from monotone.

The work of Goldreich et al. [3] proposed a simple

“edge tester” which queries uniform random edges of

{−1, 1}n hoping to find an edge whose two endpoints

violate monotonicity. [3] proved an O(n2 log(1/ε)/ε)
upper bound on the query complexity of the edge tester,

which was subsequently improved to O(n/ε) in the

journal version [5]. Fischer et al. [1] established the first

lower bounds shortly after, showing that there exists a

constant distance parameter ε0 > 0 such that Ω(logn)
queries are necessary for any non-adaptive tester (one

whose queries do not depend on the oracle’s responses

to prior queries). This directly implies an Ω(log log n)
lower bound for adaptive testers, since any q-query

adaptive tester can be simulated by a non-adaptive one

that simply carries out all 2q possible executions. These

upper and lower bounds were the best known for more

than a decade, until the recent work of Chakrabarty and

Seshadhri [2] improved on the linear upper bound of

Goldreich et al. with an Õ(n7/8ε−3/2)-query tester.

Our main contributions in this work are (i) a new

lower bound that improves on the lower bound of [1]

by an exponential factor, and (ii) a new algorithm that

improves on the upper bound of [2] (in terms of the

dependence on n) by a polynomial factor. We now

describe these contributions in more detail.

Our lower bound. We give an exponential improve-

ment on the lower bounds of Fischer et al. [1]:

Theorem 1. There exists a universal constant ε0 > 0
such that any non-adaptive algorithm for testing whe-
ther an unknown Boolean function is monotone versus
ε0-far from monotone must make Ω(n1/5(log n)−2/5)
queries. Consequently, any adaptive algorithm must
make Ω(logn) queries.
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While the aforementioned results of Fischer et al. [1]

represent the previous best lower bounds on the gen-

eral testing problem as defined above, additional lower

bounds are known for several restricted versions of the

problem. In the same paper [1], Fischer et al. gave

an Ω(
√
n) lower bound on the query complexity of

any non-adaptive one-sided tester, i.e. one that always

outputs Yes when f is monotone (again, this directly

implies an Ω(logn) lower bound for adaptive one-

sided testers). Restricting further, a pair tester is a non-

adaptive one-sided tester that independently draws pairs

of comparable points x ≺ y from some distribution and

rejects if and only if some pair that is drawn violates

monotonicity. Briët et al. [13] proved an Ω(n/(ε log n))
lower bound on the query complexity of pair testers

whose query complexity can be written as q(n)/ε for

some function q.
In addition to Theorem 1, we show that essentially

the same lower bound holds for monotonicity testing

of Boolean-valued functions over hypergrid domains

{1, . . . ,m}n for m ≥ 2. (Below and throughout this

paper we write [m] to denote {1, 2, . . . ,m}.) Our most

general lower bound is the following:

Theorem 2. There exists a universal constant ε0 > 0
such that for all m ≥ 2, any non-adaptive algorithm
for testing whether an unknown function f : [m]n →
{−1, 1} is monotone versus ε0-far from monotone must
make Ω̃(n1/5) queries.

To the best of our knowledge, Theorem 2 is the first

lower bound for testing monotonicity of Boolean val-
ued functions over hypergrid domains. Recent papers

of Chakrabarty and Seshadhri [15], [16] and Blais

et al. [17] essentially closed the problem of testing

monotonicity of functions f : [m]n → �, showing

that Θ(n logm) queries are both necessary and suffi-

cient; however, their lower bounds crucially depend on

the functions considered having range � rather than

{−1, 1}.

Our algorithm. We present a new algorithm for

monotonicity testing, and prove the following result

about its performance:

Theorem 3. There is a Õ(n5/6ε−4)-query one-sided
non-adaptive algorithm for testing whether an unknown
n-variable Boolean function is monotone versus ε-far
from monotone.

Recall that the one-sided, non-adaptive tester of

Chakrabarty and Seshadhri [2] makes Õ(n7/8ε−3/2)
queries. Thus, while the query complexity of our tester

is worse as a function of 1/ε (though still polynomial),

its query complexity is polynomially better as a function

of n.1 Like the [2] algorithm, our algorithm is a pair

tester, but it evades the Ω(n/(ε log n)) lower bound of

[13] because its query complexity is not of the form

q(n)/ε. Our algorithm builds on the tools developed

in [2]; its high-level structure is similar to that of the

[2] algorithm, but with an important difference that

enables an improved analysis. See Section I-B for more

discussion on this point.

A. The lower bound approach

Our lower bound for testing monotonicity builds on

previous lower bounds for testing restricted classes

of linear threshold functions (LTFs). Recall that f :
{−1, 1}n → {−1, 1} is a linear threshold function if

there exist w = (w1, . . . , wn) ∈ �n and θ ∈ � such

that f(x) = sign(w · x− θ) for all x ∈ {−1, 1}n.
Background. A signed majority function is a linear

threshold function of the special form f(x) = sign(w ·
x) where w ∈ {−1, 1}n. While [18] showed that the

class of all LTFs is ε-testable using poly(1/ε) queries

(independent of n), in [19] Matulef et al. gave an

Ω(logn) lower bound for non-adaptive algorithms that

ε0-test whether f : {−1, 1}n → {−1, 1} is a signed

majority function, where ε0 > 0 is a universal constant.

Like many lower bound arguments in property testing,

the proof of [19] employs Yao’s minimax principle [20],

and works by exhibiting two distributions Dyes and

Dno over LTFs — more precisely, Dyes is the uniform

distribution over all 2n signed majority functions, and

Dno is the uniform distribution over a set of LTFs

almost all of which are constant-far from every signed

majority function — and arguing that for q = o(log n),
any deterministic q-query algorithm cannot distinguish

between the two distributions with non-negligible suc-

cess probability. (We note that a typical function from

Dyes is far from being monotone, and that the same

holds for a typical LTF drawn from the Dno distribution

of [19].) A key tool in the [19] proof is the Berry–

Esséen “central limit theorem (CLT) with error bounds”

for sums of independent real-valued random variables.

An embedded majority function of size k is an LTF

f : {−1, 1}n → {−1, 1} of the form f(x) = sign(w ·x)
where w ∈ {0, 1}n is a vector with exactly k ones. In

[21] Blais and O’Donnell showed that for k = n/2,

any non-adaptive testing algorithm for the class of all

1Recall that in property testing the dependence on the size parame-
ter “n” is typically viewed as more important than the dependence on
the “closeness” parameter ε. Indeed, ε is often viewed as a constant,
so testers with query complexities that are exponential (or worse) as
a function of 1/ε but independent of n are commonly referred to as
“constant-query testers.”
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embedded majority functions of size exactly n/2 must

make Ω(n1/12) queries. Their proof employed a Dyes

distribution which is the uniform distribution over all

embedded majority functions of size n/2, and a Dno

distribution which is supported on certain monotone

LTFs (which are far from embedded majority functions

of size n/2). A key technical ingredient in the proofs

of [21] is a multidimensional extension of the Berry–

Esséen theorem (to independent sums of �q-valued ran-

dom variables) which was essentially established in the

work of [22], building on ingredients from [23]. Subse-

quently Ron and Servedio [24] adapted the arguments of

[21] to give an improved analysis of the same Dyes and

Dno distributions from [19] and establish an Ω(n1/12)-
query lower bound for non-adaptive algorithms that ε0-

test whether f : {−1, 1}n → {−1, 1} is a signed

majority function, thus exponentially improving over the

[19] lower bounds for this problem.

This work. Neither the [21] construction nor the

[19], [24] construction can be used directly to establish

a lower bound for monotonicity testing of functions

f : {−1, 1}n → {−1, 1}; as described above, in the

[21] construction both the Dyes and Dno functions

are monotone, and in the [19], [24] construction a

typical function from either distribution is far from

monotone. Nevertheless, in this work we show that

ingredients from [21], [24] can be leveraged to obtain

a polynomial lower bound for testing monotonicity of

functions f : {−1, 1}n → {−1, 1}. Like these earlier

works we employ Yao’s principle: we define a Dyes

distribution that is supported on monotone LTFs, and

a Dno distribution over LTFs that is almost entirely

supported on LTFs that are constant-far from every

monotone function, and use an analysis which is fairly

similar to that of [21], [24], to prove Theorem 1. Using

the multidimensional Berry–Esséen theorem of [22] to

analyze our Dyes and Dno distributions would result

in an Ω(n1/12) lower bound. To obtain our improved

Ω(n1/5 log−2/5 n) lower bound, we instead adapt a

multidimensional CLT of Valiant and Valiant [25] (for

Wasserstein distance) to our context.

B. The approach of our algorithm

Our algorithm builds on ingredients from [2], so

to explain our approach we first recall the necessary

ingredients from that work. Fix a Boolean function2f :
{0, 1}n → {0, 1}, and let us say that a pair of inputs

(x, y) with x ≺ y is a violated edge if f(x) = 1, f(y) =
0 and (x, y) is an edge in {0, 1}n (i.e. the Hamming

2For our algorithmic result it will be more convenient to view
Boolean functions as mapping {0, 1}n to {0, 1}.

distance between them is 1). [2] establishes a very

useful “dichotomy theorem” about Boolean functions

f : {0, 1}n → {0, 1} that are ε-far from monotone: for

any s > 0, any such function either must have Ω(εs2n)
violated edges, or must have a matching (i.e. a vertex-

disjoint set) of Ω(ε2n/s) violated edges.

To use this dichotomy theorem, Chakrabarty and

Seshadhri [2] define a “path tester” which works es-

sentially as follows: it selects a random directed path

p of n edges from 0n up to 1n, draws two uniform

random points x ≺ y from the “middle layers” of

p, and rejects if x and y violate monotonicity, i.e.

f(x) = 1 and f(y) = 0.3 They prove that if f
has a matching of Ω(σ2n) violated edges, then their

path tester will uncover a violation and reject with

probability Ω̃(σ3/
√
n). (Roughly speaking, they show

that about an Ω(σ) fraction of possible outcomes of

y, corresponding to the σ2n upper endpoints of the

edges in the matching, are such that with probability

Ω̃(σ2/
√
n) over the random draw of x, the pair y

and x together constitute a violation.) On the other

hand, if f does not have a matching of this size then

(by the dichotomy theorem) it must have Ω((ε2/σ)2n)
violated edges, so the edge tester of [3] (querying

the endpoints of a uniform random edge) will hit a

violated edge with probability Ω(ε2/(σn)). Their final

algorithm runs their path tester with probability 1/2 and

queries a random edge with probability 1/2. Choosing σ
suitably to equalize the two rejection probabilities, this

is a two-query algorithm which succeeds in uncovering

a violation for any ε-far-from-monotone function f
with probability Ω̃(ε3/2/n7/8), giving them a one-sided

non-adaptive tester which makes Õ(n7/8/ε3/2) queries

overall.

Our algorithm follows the same high-level framework

described above, but differs from [2] by employing

a different path tester. After selecting a random path

p, instead of (essentially) drawing two independent

uniform points from the middle layers of the path as

is done in [2], our path tester draws a correlated pair

of points from p. More precisely, it selects the first

point y uniformly from the middle layers of p, and

preferentially selects the second point x from p in a

way which favors points which are closer to y. Via

a careful analysis we are able to show that if f has a

matching of Ω(σ2n) violated edges, then our path tester

3Here the “middle layers” of p are the points on the path that
have n/2 ± Oε(

√
n) many coordinates which are 1; intuitively, at

most an ε-fraction of all points in {0, 1}n lie outside these “middle
layers” of the hypercube. We note that the above description is a slight
simplification of the actual [2] path tester, omitting some details which
are not necessary at this stage of our description.
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will uncover a violation and reject with probability

Ω̃(σ2/
√
n)·poly(ε). Roughly speaking, we show that if

y is a uniform random upper endpoint of the σ2n edges

in the matching (which occurs with probability about

σ), then the probability that our tester selects a point x
which gives a violation with y is Ω̃(σ/

√
n) · poly(ε).

Trading this off against the success probability of the

edge tester using the dichotomy theorem, we obtain our

improved query bound.

Organization of this paper. Our lower bound for

the hypercube domain (i.e. Theorem 1) is established

in Sections II and III. In Section II we define the

two distributions Dyes and Dno and show that unless

q = Ω(n1/5(log n)−2/5), any deterministic q-query

algorithm cannot distinguish between the two distribu-

tions with non-negligible success probability. The key

technical ingredient in our proof of the latter is a lemma

that adapts the Valiant–Valiant multidimensional CLT

for Wasserstein distance to our context; we prove this

lemma in Section III. Theorem 2, showing that the

same lower bound of Ω̃(n1/5) also applies to the query

complexity of testers for monotonicity of functions

f : [m]n → {0, 1} over general hypergrid domains,

is established via a reduction to the m = 2 case

(Theorem 1); we defer its proof to the full version of

the paper.

Our algorithmic result is established in Section IV.

In Section IV-A we describe two useful distributions

over comparable pairs (x,y) from the middle layers

of {0, 1}n and bound the probability of having both

points landing in a fixed set A of size σ2n. Then in

Section IV-B we define the score of a point x with

respect to a set A of points, and use the result of

Section IV-A to lower bound the sum of score(x,A)
over all points x ∈ A. Finally in Section IV-C we

present our modified path tester as well as the analysis

of its success probability, and we combine this tester and

the dichotomy theorem of [2] to obtain our improved

upper bound.

C. Preliminaries

All probabilities and expectations are with respect to

the uniform distribution unless otherwise stated; we will

use boldface letters (e.g. x and X) to denote random

variables. For a q × n matrix Q ∈ �q×n, we write

Qi∗ ∈ �n to denote its i-th row, Q∗j ∈ �q its j-th

column, and Qi,j ∈ � its entry in the i-th column and

j-th row. We use ≺ to denote the coordinate-wise partial

order on {−1, 1}n, where x ≺ y iff xi ≤ yi for all

i ∈ [n] and x �= y. We also say that x, y ∈ {−1, 1}n
are comparable if x ≺ y, y ≺ x, or x = y. Given

two functions f, g : {−1, 1}n → {−1, 1} we will use

dist(f, g) to denote the (normalized Hamming) distance

Prx∈{−1,1}n [f(x) �= g(x)] between f and g.

Recall that f : {−1, 1}n → {−1, 1} is monotone if

f(x) ≤ f(y) for all x, y ∈ {−1, 1}n such that x ≺ y.

We say that f is ε-close to monotone if dist(f, g) ≤ ε
for some monotone g : {−1, 1}n → {−1, 1}, and ε-far
from monotone otherwise. A linear threshold function

(LTF) over {−1, 1}n is a function f : {−1, 1}n →
{−1, 1} that can be expressed as f(x) = sign(w ·x−θ)
for some w1, . . . , wn, θ ∈ �. Here sign : �→ {−1, 1}
is the sign function sign(t) = 1 if t ≥ 0 and sign(t) =
−1 if t < 0. For f(x) = sign(w · x − θ), an LTF over

{−1, 1}n, it is straightforward to verify that if wi ≥ 0
for all i ∈ [n] then f is monotone.

We need a few standard facts from probability theory:

Fact I.1 (Gaussian anti-concentration). Let G be a
Gaussian with variance σ2. Then for all ε > 0 it holds
that supθ∈�

{
Pr

[
|G − θ| ≤ εσ

]}
≤ ε.

Theorem 4 (Berry–Esséen). Let S = X1 + · · · + Xn

where X1, . . . ,Xn are independent real-valued random
variables with E[Xj ] = μj and Var[Xj ] = σ2j , and
suppose that |Xj − E[Xj ]| ≤ τ with probability 1 for
all j ∈ [n]. Let G be a Gaussian with mean

∑n
j=1 μj

and variance
∑n

j=1 σ
2
j , matching those of S. Then for

all θ ∈ �, we have

∣∣Pr[S ≤ θ]−Pr[G ≤ θ]
∣∣ ≤ O(τ)(∑n

j=1 σ
2
j

)1/2 .
II. THE LOWER BOUND: PROOF OF THEOREM 2

Let Dyes be the following distribution over monotone

LTFs on {−1, 1}n: a draw fyes ∼ Dyes is fyes(x)
= sign(σ1x1+ · · ·+σnxn), where each σi is indepen-

dently and uniformly chosen from {1, 3}. Let Dno be a

similar distribution over LTFs: fno(x) = sign(ν1x1 +
· · · + νnxn), but each νi is independently chosen to

be −1 with probability 1/10, and 7/3 with probability

9/10. The following two propositions along with a

standard application of Yao’s minimax principle [20]

yield Theorem 2:

Proposition II.1. There exists a universal positive con-
stant ε0 > 0 such that with probability 1−on(1), a ran-
dom LTF fno ∼ Dno satisfies dist(fno, g) > ε0 for all
monotone Boolean functions g : {−1, 1}n → {−1, 1}.

Proposition II.2. Let T be any deterministic non-adap-
tive two-sided q-query algorithm for testing whether a
black-box Boolean function f : {−1, 1}n → {−1, 1} is

289289



monotone. Then∣∣∣∣ Pr
fyes∼Dyes

[
T accepts fyes

]
− Pr

fno∼Dno

[
T accepts fno

]∣∣∣∣ = O

(
q5/4(log n)1/2

n1/4

)
.

We defer the proof of Proposition II.1 to the full

version of the paper; the remainder of this section will

be devoted to proving Proposition II.2.

A. Proof of Proposition II.2

Let T be a deterministic non-adaptive q-query tester.

We view its q queries as a q×n matrix Q ∈ {−1, 1}q×n.

Following the terminology of [21], we define a “Re-

sponse Vector” random variable Ryes ∈ {−1, 1}q ,

obtained by drawing fyes = sign(σ1x1 + · · ·+σnxn)
from Dyes and setting the i-th coordinate of Ryes to be

fyes(Qi∗) = sign(σ1Qi,1 + · · ·+ σnQi,n),

and similarly Rno ∈ {−1, 1}q which is obtained by

drawing fno ∼ Dno and setting the i-th coordinate of

Rno to be fno(Qi∗). By the definition of total variation

distance, we can prove Proposition II.2 by showing that

dTV(Ryes,Rno) = O

(
q5/4(log n)1/2

n1/4

)
.

Let S ∈ �q be the random column vector Qσ where

σ is uniform over {1, 3}n, and T ∈ �q be the random

column vector Qν where ν is drawn from the product

distribution over {−1, 7/3}n where Pr[νi = −1] =
1/10 for all i ∈ [n]. The Response Vector Ryes is

determined by the orthant of�q in which S lies (as each

coordinate of Ryes is simply the sign of the respective

coordinate of S), and likewise Rno by the orthant of �q

in which T lies. Therefore it suffices for us to prove the

following lemma:

Lemma II.3. Let S,T ∈ �q be defined as above. Then
for any union O of orthants in �q , we have

∣∣Pr[S ∈ O]−Pr[T ∈ O]
∣∣ = O

(
q5/4(log n)1/2

n1/4

)
.

We will need the following multidimensional Berry–

Esséen theorem. We defer its proof to Section III.

Theorem 5. Let S = X(1) + · · · +X(n), where X(1),
. . . ,X(n) are independent �q-valued random variables
such that |X(j)

i −E[X
(j)
i ]| ≤ τ with probability 1 for all

i ∈ [q], j ∈ [n]. Let G be the q-dimensional Gaussian
with the same mean and covariance matrix as S. Let O

be a union of orthants in �q . Then for all r > 0, the
difference |Pr[S ∈ O]−Pr[G ∈ O]| is at most

O

(
τq3/2 log n

r
+

q∑
i=1

r + τ(∑n
j=1Var[X

(j)
i ]

)1/2
)
.

Proof of Lemma II.3 assuming Theorem 5: We

begin by writing S = X(1)+ · · ·+X(n), where X(j) =
σj ·Q∗j and σj is uniform over {1, 3}; i.e. each X(j)

is independently Q∗j with probability 1/2 and 3 · Q∗j
with probability 1/2. Likewise we may express T =
Y(1)+ · · ·+Y(n), where Y(j) = νj ·Q∗j and νj is −1
with probability 1/10 and 7/3 with probability 9/10.

We claim that the X(j)’s and Y(j)’s have matching

means and covariance matrices. It suffices to check this

for X(1) and Y(1), and we omit the routine calculation

due to space considerations. As the X(j)’s and Y(j)’s

have matching means and covariance matrices, so do

their sums S and T, and so Theorem 5 gives us a bound

on the two differences |Pr[S ∈ O] − Pr[G ∈ O]| and

|Pr[T ∈ O]−Pr[G ∈ O]| for the same q-dimensional

Gaussian G.

Recalling that X
(j)
i = σj ·Qi,j and Qi,j ∈ {−1, 1},

we have that Var[X
(j)
i ] = 1 and likewise Var[Y

(j)
i ] =

1. Therefore, two applications of Theorem 5 with τ :=
O(1) along with the triangle inequality yields the bound

∣∣Pr[S ∈ O]−Pr[T ∈ O]
∣∣ = O

(
q3/2 log n

r
+
q(r + τ)√

n

)

for all r > 0. Choosing r to be (qn)1/4(log n)1/2 then

completes the proof.

III. MULTIDIMENSIONAL BERRY–ESSÉEN VIA THE

VALIANT–VALIANT CLT

In this section, we prove Theorem 5 by adapting a

recent multidimensional CLT of Valiant and Valiant [25]

which bounds the Wasserstein distance between a sum

of independent vector-valued random variables and a

multidimensional Gaussian.

Definition 6 (Wasserstein distance). The Wasserstein

distance between two �q-valued random variables S
and T, denoted dW (S,T), is defined to be:

dW (S,T) = inf
D

{
E
D
[
‖U−V‖2

]}
,

where the infimum is taken over all couplings D of S
and T, i.e. all joint distributions D of pairs of�q-valued

random variables (U,V) with marginals distributed ac-

cording to S and T respectively.

Valiant and Valiant [25] recently used Stein’s method

to prove the following CLT for Wasserstein distance:
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Theorem 7 (Valiant-Valiant CLT). Let S = X(1)+· · ·+
X(n), where X(1), . . . ,X(n) are independent�q-valued
random variables, and suppose ‖X(j)−E[X(j)]‖2 ≤ β
with probability 1 for any j ∈ [n]. Then

dW (S,G) ≤ O(βq log n),

where G is the q-dimensional Gaussian with the same
mean and covariance matrix as S.

Proof of Theorem 5: We define

Wr :=
{
x ∈ �q : |xi| ≤ r for some i ∈ [q]

}
to be the radius-r region around the orthant boundaries,

and partition O into Obd := O ∩Wr (the points in O
that lie close to the orthant boundaries) and Oin :=
O \Wr (the points that lie far away from the orthant

boundaries). We have∣∣Pr[S ∈ O]−Pr[G ∈ O]
∣∣

=
∣∣(Pr[S ∈ Oin] +Pr[S ∈ Obd])

− (Pr[G ∈ Oin] +Pr[G ∈ Obd])
∣∣

≤
∣∣Pr[S ∈ Oin]−Pr[G ∈ Oin]

∣∣︸ ︷︷ ︸
Δ

+Pr[S ∈ Obd] +Pr[G ∈ Obd]︸ ︷︷ ︸
Γ

.

We next bound the quantities Δ and Γ separately.

For Γ, we have that

Γ ≤
∑
i∈[q]

Pr
[
Si ∈ [−r, r]

]
+Pr

[
Gi ∈ [−r, r]

]
≤

∑
i∈[q]

2Pr
[
Gi ∈ [−r, r]

]
+

∣∣Pr
[
Si ∈ [−r, r]

]
−Pr

[
Gi ∈ [−r, r]

]∣∣
≤

∑
i∈[q]

O(r)(∑n
j=1Var[X

(j)
i ]

)1/2 + O(τ)(∑n
j=1Var[X

(j)
i ]

)1/2
=

∑
i∈[q]

O(r + τ)(∑n
j=1Var[X

(j)
i ]

)1/2 ,
where the first inequality is a union bound over all q
dimensions, and the third uses Fact I.1 (Gaussian anti-

concentration), the fact that Gi is a Gaussian of variance∑n
j=1Var[X

(j)
i ], and Theorem 4 (Berry–Esséen).

For Δ, assume without loss of generality (a symmet-

rical argument works in the other case) that Pr[S ∈
Oin] ≥ Pr[G ∈ Oin], so Δ = Pr[S ∈ Oin] − Pr[G ∈
Oin]. Let D be the coupling of S and G that achieves the

infimum in Definition 6, so D is the joint distribution

of a pair (U,V) of �q-valued random variables with

marginals distributed according to S and G respectively.

Since ∫
Oin

∫
�q

D(u, v) dv du = Pr[S ∈ Oin]

and ∫
Oin

∫
Oin

D(u, v) dv du

≤
∫
�q

∫
Oin

D(u, v) dv du = Pr[G ∈ Oin],

it follows that∫
Oin

∫
�q\Oin

D(u, v) dv du (1)

=

∫
Oin

∫
�q

D(u, v) dv du−
∫
Oin

∫
Oin

D(u, v) dv du ≥ Δ

Next we define the quantities

Δnear(D) :=
∫
Oin

∫
Obd

D(u, v) dv du and

Δfar(D) :=
∫
Oin

∫
�q\O

D(u, v) dv du.

Note that Δnear(D) and Δfar(D) sum to the quantity in

(1), and so Δnear(D) + Δfar(D) ≥ Δ. (In words, since

S places Δ more mass on Oin than G does, any scheme

D of moving the mass of S to obtain G must move at

least Δ amount from within Oin to outside it. Δnear(D)
is the amount moved from within Oin to O’s boundary

Obd, and Δfar(D) is the rest, moved from within Oin

to locations entirely out of O.) Since ‖u− v‖2 ≥ r for

any pair of points u ∈ Oin and v /∈ O, it follows that

dW (S,G) ≥ r ·Δfar(D).
We consider two cases, depending on the relative magni-

tudes of Δnear(D) and Δfar(D). If Δfar(D) ≥ Δnear(D),
we first observe that for all j ∈ [n] we have ‖X(j) −
E[X(j)]‖2 ≤ τ

√
q with probability 1, as each of its q

coordinates i ∈ [q] satisfies |X(j)
i − E[X

(j)
i ]| ≤ τ with

probability 1 by the assumption of the theorem. There-

fore, we may apply Theorem 7 (Valiant–Valiant CLT),

with β := τ
√
q, to get

r · Δ
2
≤ r ·Δfar(D) ≤ dW (S,G) = O(τq3/2 log n)

and hence Δ = O((τq3/2 log n)/r), which along with

our upper bound on Γ completes the proof. If on the

other hand Δnear(D) > Δfar(D), then

Δ

2
≤Δnear(D)≤

∫
�q

∫
Obd

D(u, v) dv du=Pr[G ∈ Obd]≤ Γ

and again our bound on Γ completes the proof.
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IV. THE ALGORITHM

Throughout the proof of our upper bound, we will

assume that 1/n ≤ ε ≤ 1/2. Note that this is without

loss of generality, since if ε < 1/n then the edge tester

alone succeeds with probability Ω(ε/n) = Ω(ε2), and

if ε > 1/2 then every f is ε-close to one of the two

constant functions, both of which are monotone.

For our upper bound it will be more convenient to

view Boolean functions as mapping {0, 1}n to {0, 1}.
Given x, y ∈ {0, 1}n we write ‖x‖1 to denote

∑n
i=1 xi,

the number of 1s in x, and ‖x − y‖1 to denote |{i ∈
[n] : xi �= yi}|, the �1-distance between x and y. Given

1/n ≤ ε ≤ 1/2, we fix

d(n, ε) := 2
⌈√

2n ln(100/ε)
⌉
= O

(√
n ln(1/ε)

)
,

and will denote d(n, ε) simply by d when the distance

parameter ε is clear from the context. For each i ∈
{0, 1, . . . , n} we use Li := {x ∈ {0, 1}n : ‖x‖1 = i} to

denote the i-th layer, and refer to

Lmid :=
{
x ∈ Li : i ∈ [(n− d)/2, (n+ d)/2]

}
as the middle layers of the hypercube {0, 1}n. A stan-

dard Chernoff bound gives

|{0, 1}n \ Lmid | ≤ (ε/50) · 2n.

Finally, by a “path” we always mean a directed path of

n+ 1 adjacent vertices from 0n up to 1n.

A. Two useful distributions over comparable pairs

Let D = Dn,ε denote the following distribution over

comparable pairs (x,y) ∈ Lmid × Lmid:

1) First pick a path p uniformly from the collection

of all paths going from 0n to 1n.

2) Pick x and y independently and uniformly from

pmid := {z ∈ p : z ∈ Lmid}. (2)

This distribution is a slight variant of the one induced by

the [2] path tester, which takes a parameter σ as input

and disallows pairs (x, y) for which ‖x−y‖1 is too small

relative to σ. Our new tester will not sample from D
(see Section IV-C), but we will use D in our analysis.

(Note that x = y with positive probability under D.)

If x and y were chosen independently and uniformly

from {0, 1}n, then the probability that they both land in

a fixed set A of σ2n points, for some σ ∈ (0, 1), would

be σ2. The following lemma states that the probability

is not much lower for a pair drawn from D (its proof

is essentially identical to that of Claim 2.2.1 of [2], and

we omit it in this version):

Lemma IV.1. Let A ⊆ Lmid with |A| = σ2n. Then

Pr
(x,y)←D

[x,y ∈ A] = Ω
(
σ2 ln−1(1/ε)

)
.

For our analysis the following distribution D′ = D′n,ε
over comparable pairs (x,y) ∈ Lmid × Lmid in the

middle layers comes in handy:

1) Pick a point x uniformly at random from Lmid.

2) Then pick a path p uniformly from the collection

of all paths going through 0n, x, and 1n.

3) Pick y uniformly from pmid as defined in (2).

Note that D′ is not exactly the same as D, as picking

a uniformly random x from the middle layers pmid of

a uniformly random path p does not induce a uniform

distribution over Lmid. However, the following corollary

allows us to switch between these essentially-equivalent

distributions at the cost of a O(1/ε4) factor; we defer

its proof to the full version of the paper.

Corollary IV.2. Let A ⊆ Lmid with |A| = σ2n. Then

Pr
(x,y)←D′

[x,y ∈ A] = Ω
(
σ2ε4 ln−1(1/ε)

)
.

B. Density and score

We will need the following definition to give a more

detailed analysis on the consequence of Corollary IV.2,

which is key to the analysis of our monotonicity tester

described in Section IV-C.

Definition 8 (density and score). Let A ⊆ {0, 1}n be a

set of points. For all x ∈ {0, 1}n and k ∈ {0, 1, . . . , n},
we define the following quantities:

dens↓k(x,A) :=

⎧⎨
⎩

Pr
y�x

‖y−x‖1=k

[y ∈ A] if k ≤ ‖x‖1

0 otherwise

and similarly

dens↑k(x,A) :=

⎧⎨
⎩

Pr
y�x

‖y−x‖1=k

[y ∈ A] if k ≤ n− ‖x‖1

0 otherwise.

We also define

score↓(x,A) :=
n∑

k=0

dens↓k(x,A)

score↑(x,A) :=
n∑

k=1

dens↑k(x,A)

and refer to score↓(x,A) as the downward A-score of
x and score↑(x,A) as its upward A-score.

We point out the asymmetry between the definitions

of score↓(x,A) and score↑(x,A): the first is summed
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over k starting at 0, whereas the second is summed over

k starting at 1. (Note that dens↓0(x,A) = dens↑0(x,A) =
1[x ∈ A].) We will need the fact that both the upward

and downward A-scores of any x ∈ {0, 1}n are at most

d = d(n, ε) when A ⊆ Lmid.

We defer the proofs of the next two lemmas to the

full version. The first relates the distribution D′ (more

precisely, the distribution over y that is induced by

conditioning on a particular outcome of x) to the notion

of score:

Lemma IV.3. Let A ⊆ Lmid be a set of σ2n points and
fix a point x∗ ∈ Lmid. Then

Pr
(x,y)←D′

[
y ∈ A | x = x∗

]
=

1

Θ(
√
n ln(1/ε))

(
score↓(x∗, A) + score↑(x∗, A)

)
.

The second lower bounds the expected downward A-

score of an x drawn uniformly at random from A:

Lemma IV.4. Let ε ≥ 1/n and A ⊆ Lmid be a set of
σ2n points. Then

E
x∈A

[
score↓(x, A)

]
= Ω

(
ε8σ
√
n√

ln(1/ε)

)
.

The conclusion of Lemma IV.4 can be equivalently

rewritten as the following sum:

∑
x∈A

score↓(x,A) = Ω

(
ε8σ2

√
n2n√

ln(1/ε)

)
. (3)

We may express the downward A-score score↓(x,A)
as a sum over m+1 “buckets” of exponentially increas-

ing size as follows:

score↓(x,A) =
m∑
i=0

∑
k∈Bi

dens↓k(x,A) (4)

where B0 = {0} and Bi = {2i−1, . . . , 2i − 1} for each

i ∈ [m] and m = 
log(n+ 1)�. It will be useful for us

to focus on a particular bucket � ∈ {0, 1, . . . ,m} such

that the overall sum of score↓(x,A) in (3) has a “large”

contribution from the �-th bucket. A straightforward

argument, exploiting the fact that there are only log-

arithmically many buckets, lets us achieve this without

losing too much in the sum:

Corollary IV.5. Let ε ≥ 1/n and A ⊆ Lmid be a set
of σ2n points. There exists � ≤ m such that

∑
x∈A

∑
k∈B�

dens↓k(x,A) = Ω

(
ε8σ2

√
n2n

(log n)
√
ln(1/ε)

)
. (5)

Proof: This follows from (3), (4), and the fact that

there are only m+ 1 many buckets.

Corollary IV.5 gives a lower bound on the sum of

downward A-scores of points x ∈ A coming from a

certain bucket B�. Our next corollary uses this to give

a lower bound on the sum of downward A-scores of

points y ∈ Au from (essentially) the same bucket B�,

where Au is an “upper vertex boundary” of A in the

following sense: there exists an |A|-sized matching M
of edges (x, y) where x ≺ y, x ∈ A and y ∈ Au.

Corollary IV.6. Let ε ≥ 1/n and M be a matching of
σ2n edges in the middle layers. Let

A :=
{
x ∈ {0, 1}n : x ≺ y and (x, y) ∈M

}
and

Au :=
{
y ∈ {0, 1}n : y � x and (x, y) ∈M

}
denote the lower and upper endpoints of edges in M ,
respectively. For each bucket Bi, i ∈ {0, 1, . . . ,m}, we
let B′i := {j+1 : j ∈ Bi}. Then there exists an integer
� ≤ m such that

∑
y∈Au

∑
k∈B′

�

dens↓k(y,A) = Ω

(
2�+nε8σ2

(log n)
√

n ln(1/ε)

)
. (6)

Proof: By Corollary IV.5, there exists an � ≤ m
such that A satisfies (5). Next for each edge (x, y) ∈M
we have that

dens↓k+1(y,A) = Pr
z≺y

‖z−y‖1=k+1

[z ∈ A]

≥
(‖x‖1

k

)(‖y‖1
k+1

) · Pr
z≺x

‖z−x‖1=k

[z ∈ A]

=
(k + 1) · dens↓k(x,A)

‖x‖1 + 1
.

Therefore, by (5) we have∑
y∈Au

∑
k∈B′

�

dens↓k(y,A) =
∑
y∈Au

∑
k∈B�

dens↓k+1(y,A)

≥
∑
x∈Au

∑
k∈B�

(k + 1) dens↓k(x,A)
‖x‖1 + 1

= Ω

(
ε8σ2

√
n2n

(log n)
√
ln(1/ε)

· 2
�

n

)
.

This completes the proof.

C. The weighted path tester and its analysis

Given a Boolean function f : {0, 1}n → {0, 1}, we

recall that a pair (x, y) of points is a violated pair with
respect to f if x ≺ y and f(x) > f(y). Our algorithm
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weighted-path-tester for monotonicity testing

proceeds as follows:

weighted-path-tester:

1) Pick a point y uniformly from Lmid.

2) Pick � ∈ {0, 1, . . . ,m = 
log(n+ 1)�}
uniformly, and pick k ∈ B′� uniformly.

3) Pick a path p uniformly from the collection

of all paths going through 0n,y and 1n, and

set x to be the (unique) point on p that has

x ≺ y and ‖x− y‖1 = k.
4) Reject iff (x,y) is a violated pair.

Note that an equivalent formulation of step 3) above

is that x is drawn uniformly from{
z ∈ {0, 1}n : z ≺ y and ‖y − z‖1 = k

}
.

Below we show that if there is a (σ2n)-sized matching

M of violated edges of f in the middle layers of the

hypercube, then the tester above succeeds in finding a

violated pair with probability roughly Ω(σ2/
√
n).

Proposition IV.7. Let f : {0, 1}n → {0, 1} and ε ≥
1/n. Suppose there exists a (σ2n)-sized matching M of
violated edges of f all lying in the middle layers of the
hypercube. Then weighted-path-tester above
succeeds (i.e., samples x and y that form a violated
pair with respect to f ) with probability

Ω

(
ε8σ2

(log2 n)
√

n ln(1/ε)

)
. (7)

Proof: Let A be the set of 1-endpoints of edges in

the matching M , and Au be the 0-endpoints in M , re-

spectively. Let Dw denote the distribution over com-

parable pairs (x,y) ∈ Lmid × Lmid as induced by our

algorithm weighted-path-tester above.

We note that every pair (x, y) ∈ A×Au that satisfies

x ≺ y is a violated pair with respect to f . Therefore,

weighted-path-tester succeeds with probability

at least

Pr
(x,y)←Dw

[
y ∈ Au,x ∈ A

]
.

Applying Corollary IV.6, we know there exists an �∗ ∈
{0, 1, . . . ,m} such that

∑
y∈Au

∑
k∈B′

�∗

dens↓k(y,A) = Ω

(
2�

∗+nε8σ2

(log n)
√

n ln(1/ε)

)
. (8)

Conditioning on the event of y = y and k = k, the

probability of x ∈ A is dens↓k(y,A). As y, �,k are all

sampled uniformly, weighted-path-tester suc-

ceeds with probability at least

Pr
(x,y)←Dw

[
y ∈ Au,x ∈ A

]
= Pr

(x,y)←Dw
[y ∈ Au] · Pr

(x,y)←Dw

[
x ∈ A | y ∈ Au

]
=
|Au|
|Lmid|

· 1

|Au|
∑
y∈Au

1

m+ 1

m∑
�=0

1

|B′�|
∑
k∈B′

�

dens↓k(y,A)

≥ 1

(m+ 1) |Lmid| |B′�∗ |
·
∑
y∈Au

∑
k∈B′

�∗

dens↓k(y,A)

= Ω

(
2�

∗+nε8σ2

(log n)
√

n ln(1/ε)
· 1

(log n)2�∗+n

)

= Ω

(
ε8σ2

(log2 n)
√

n ln(1/ε)

)
.

This finishes the proof.

Finally we combine Proposition IV.7 with the dicho-

tomy theorem of [2] to prove Theorem 3. To state the

latter, we use v2n to denote the total number of violated

edges in f , and use σ2n to denote the size of the largest

matching of violated edges in the middle layers. Then

Theorem 9 (Theorem 2.4 of [2]). For any Boolean f
that is ε-far from monotone, v · σ = Ω(ε2).

Proof of Theorem 3: As mentioned at the begin-

ning of Section IV, we may assume without loss of

generality that ε ≥ 1/n since otherwise the edge tester

alone succeeds with probability Ω(ε/n) = Ω(ε2). When

ε ≥ 1/n, our tester flips a coin, runs the edge tester with

probability 1/2, and runs weighted-path-tester
with probability 1/2. Given v and σ as defined above,

the success probability of the edge tester is Ω(v/n); the

success probability of weighted-path-tester is

given in (7). It follows from Theorem 9 that the average

of these two is at least

Ω

(
ε4

n5/6(log2/3 n)(ln(1/ε))1/6

)
.

This finishes the proof of Theorem 3.
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