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Abstract—Linear programming has played a key role in the
study of algorithms for combinatorial optimization problems.
In the field of approximation algorithms, this is well illustrated
by the uncapacitated facility location problem. A variety of
algorithmic methodologies, such as LP-rounding and primal-
dual method, have been applied to and evolved from algorithms
for this problem. Unfortunately, this collection of powerful
algorithmic techniques had not yet been applicable to the
more general capacitated facility location problem. In fact, all
of the known algorithms with good performance guarantees
were based on a single technique, local search, and no linear
programming relaxation was known to efficiently approximate
the problem.

In this paper, we present a linear programming relaxation
with constant integrality gap for capacitated facility location.
We demonstrate that the fundamental theories of multi-
commodity flows and matchings provide key insights that lead
to the strong relaxation. Our algorithmic proof of integrality
gap is obtained by finally accessing the rich toolbox of LP-based
methodologies: we present a constant factor approximation
algorithm based on LP-rounding.

Keywords-approximation algorithms; facility location; linear
programming;

I. INTRODUCTION

We consider the metric capacitated facility location (CFL)

problem which together with the metric uncapacitated facil-

ity location (UFL) problem is the most classical and widely

studied variant of facility location. In CFL, we are given a

single metric on the set of facilities and clients, and every

facility has an associated opening cost and capacity. The

problem asks us to choose a subset of facilities to open

and assign every client to one of these open facilities, while

ensuring that no facility is assigned more clients than its

capacity. Our aim is then to find a set of open facilities

and an assignment that minimize the cost, where the cost is

defined as the sum of opening costs of each open facility and

the distance between each client and the facility it is assigned

to. UFL is the special case of CFL obtained by dropping the

capacity constraints, or equivalently setting each capacity

to ∞.

In spite of the similarities in the problem definitions of

UFL and CFL, current techniques give a considerably better

understanding of the uncapacitated version. One prominent

reason for this discrepancy is that a standard linear program-

ming (LP) relaxation gives close-to-tight bounds for UFL,

whereas no good relaxation was known in the presence of

capacities. For UFL, on the one hand, the standard LP for-

mulation has been used in combination with most LP-based

techniques, such as filtering [1], randomized rounding [2],

[3], primal-dual framework [4], and dual fitting [5], [6], to

obtain a fine-grained understanding of the problem resulting

in a nearly tight approximation ratio [7].

For CFL, on the other hand, it has remained a major

open problem to find a relaxation based algorithms with any
constant performance guarantee, also highlighted as Open

Problem 5 in the list of ten open problems selected by the

recent textbook on approximation algorithms of Williamson

and Shmoys [8]. This question is especially intriguing as

there exist constant factor approximation algorithms for

CFL based on the local search paradigm (see e.g. [9]–[14]

and Section I-B for further discussion of this approach).

Compared to such methods, there are several advantages of

algorithms based on relaxations. First, as alluded to above,

there is a large toolbox of LP-based techniques that one can

tap into once a strong relaxation is known for a problem.

Second, LP-based algorithms give a stronger per instance
guarantee: that is, the rounded solution is compared to the

found LP solution and the gap is often smaller than the

worst case. This is in contrast to local search heuristics that

only guarantees that the cost is no worse than the proven

a priori performance guarantee assures. Finally, LP-based

techniques are often flexible and allow for generalizations

to related problems. This has indeed been the case for the

uncapacitated versions where algorithms for UFL are used

in the design of approximation algorithms for other related

problems, see for example [4], [15]–[17].

In this pursuit of LP-based approximation algorithms for

capacitated facility location problems, the central question

lies in devising a strong LP relaxation that is algorithmically
amenable. In fact, any combinatorial problem has a relax-

ation with constant integrality gap: the exact formulation,

which is the convex hull of integral solutions, has indeed an

integrality gap of 1. However, such formulations for NP-hard

optimization problems usually have insufficient structure to

give enough insights for designing efficient approximation

algorithms. The challenge, therefore, is to instead devise

an LP-relaxation that is sufficiently strong while featuring

enough structure so as to guide the development of efficient
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approximation algorithms using LP-based techniques, such

as LP-rounding or primal-dual. However, formulating one

for the capacitated facility location problem has turned out

to be non-trivial. Aardal et al. [18] made a comprehensive

study of valid inequalities for capacitated facility location

problem and proposed further generalizations; the strength

of the obtained formulations was left as an open problem.

Many of these formulations were, however, recently proven

to be insufficient for obtaining a constant integrality gap by

Kolliopoulos and Moysoglou [19]. In the same paper it is

also shown that applying the Sherali-Adams hierarchy to the

standard LP formulation will not close the integrality gap.

A. Our Contributions

Our main contribution is a strong linear programming

relaxation which has a constant integrality gap for the

capacitated facility location problem. We prove its constant

integrality gap by presenting a polynomial time approxima-

tion algorithm which rounds the LP solution.

Theorem I.1. There is a linear programming relaxation
(MFN-LP given in Figure 3) for the capacitated facility
location problem that has a constant integrality gap. More-
over, there exists a polynomial-time algorithm that finds a
solution to the capacitated facility location problem whose
cost is no more than a constant factor times the LP optimum.

This result resolves Open Problem 5 in the list of ten

open problems selected by the textbook of Williamson and

Shmoys [8].

Our relaxation is formulated based on multi-commodity

flows. We will discuss in this section why the multi-

commodity flow is a natural tool of choice in designing

strong LP relaxations for our problem, and also how it plays

a key role, together with the matching theory, in achieving

a constant factor LP-rounding algorithm.

One natural question that arises is characterizing the exact

integrality gap of our relaxation. While we prioritized ease

of reading over a better ratio in the choice of parameters

for this presentation of our algorithm, it appears that the

current analysis is not likely to give any approximation

ratio better than 5, the best ratio given by the local search

algorithms [10]. On the other hand, the best lower bound

known on the integrality gap of our relaxation is 2, and

the question remains open whether we can obtain an

approximation algorithm with a ratio smaller than 5 based

on our relaxation.

Open Question. Determine the integrality gap of the LP

relaxation MFN-LP.

High-level description of MFN-LP: The minimum

knapsack problem is a special case of capacitated facility

location: given a target value and a set of items with

different values and costs, the problem is to find a minimum-

cost subset of items whose total value is no less than

the given target. Carr et al. [20] showed that flow-cover

inequalities [20], [21] yield an LP with a constant integrality

gap for this problem; in fact, another aspect of our relaxation

shares a similar spirit as these inequalities. The flow-cover

inequalities for the minimum knapsack problem say that,

when any subset of items is given for “free” to be part

of the solution, the LP solution should be feasible to the

residual problem. In this residual problem, the target value

is decreased by the total target value of the free items; hence,

constraints of the residual problem can be strengthened by

updating the values of all items to be at most the new target

value.

In order to have a similar notion of residual sub-problems

in the facility location problem, it is tempting to formulate

a sub-problem for each subset of facilities which are open

for free. Indeed the knapsack problem suggests exactly

this sub-problem, since in the reduction from the knapsack

problem to the facility location problem, items correspond

to facilities. However, we take a different approach. Observe

that there are two types of decisions to be made in the

facility location problem: which facilities to open, and how

to assign the clients to these open facilities; we focus on the

latter. We contemplate an assignment of a subset of clients

to some facilities, and insist that this assignment should be

a part of the solution. We formulate the residual problem

on unassigned clients, update the capacity of each facility

and reduce it by the number of clients assigned for free to

this facility. We now require that any feasible solution to

the problem must contain a feasible solution to the residual

problem. We call the assignment of clients for free a partial
assignment, as they assign only a subset of clients.

While the residual instance would be again an instance

of the capacitated facility location, with fewer clients and

facilities with reduced capacities, it is not clear whether

restricting a feasible solution of the original problem forms a

feasible solution to the residual problem. In fact, it does not.

The partial assignment reduces capacities at facilities which

the feasible solution might have used for clients remaining

in the residual instance. To be concrete, consider a feasible

integral solution depicted in Figure 1a and a partial assign-

ment in Figure 1b. Note that client j was not assigned by

the partial assignment, but in the residual instance, it cannot

be assigned to facility i2 as the original solution indicates.

The partial assignment has already assigned enough clients

to reduce the capacity of facility i2 to zero in the residual

instance. But observe that the fact that client j could not

claim its original place means that some other client has

taken its place; therefore, that client must have left behind

its space somewhere else (at facility i1 in this example).

Thus we would want to assign client j to facility i1 in the

example. But how can we enable such an assignment in

general? Our relaxation allows additional edges to be used

for assignments in the residual instance. In particular, we

make edges corresponding to the partial assignment available
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(a) A feasible integral solution. Both
facilities are open, and lines show the
assignment.

i1 i2

j

(b) A partial assignment. Client j is
unassigned.

i1 i2

j

(c) Original solution, augmented with
partial assignment edges marked as
dashed lines. Thick lines represent al-
ternating path for j.

i1 i2

j

Figure 1. Example of partial assignment. Squares represent facilities of capacity 6; circles clients.

to be used to “undo” the partial assignment; observe that

what we are now looking for is not a direct assignment

of clients to facilities but alternating paths starting at each

client in the residual instance to a facility with spare reduced

capacity. We model this problem as a multi-commodity flow
problem where every unassigned client demands a unit

flow to be routed to a facility with residual capacity. In

fact, it is crucial for obtaining a strong LP to use multi-

commodity flows to model these assignments, as we will

see in Section II.

LP-rounding algorithm: In Section III, we give an

algorithmic proof of constant integrality gap by presenting

a polynomial-time LP-rounding algorithm. An interesting

feature of this algorithm is that it does not solve the LP to

optimality. Instead, we will give a rounding procedure that

either rounds a given fractional solution within a constant

factor, or identifies a violated inequality. This approach has

been previously used, see for example, Carr et al. [20] and

Levi et al. [22].

As is the case for flow-cover inequalities, we do not know

whether our relaxation can be separated in polynomial time.

However, our rounding algorithm establishes that it suffices

to separate it over a given partial assignment in order to

obtain a constant approximation algorithm: in a sense, such

limited separation is already enough to extract the power of

our strong relaxation within a constant factor. That said, it

remains an interesting open question whether our relaxation

can be separated in polynomial time. Another interesting

open question would be whether there exists a different LP

relaxation that can be solved in polynomial time and used

to design a constant approximation algorithm.

Given a fractional solution consisting of opening variables
and assignment variables, the first step our rounding algo-

rithm takes is very natural: we decide to open all the facilities

whose opening variables are large, say, at least 1
2 . The cost

of opening these facilities is no more than twice the cost

paid by the fractional solution. Now, we find an assignment

of maximum number of clients to these facilities while

maintaining that the assignment cost does not exceed twice

the cost of fractional solution. If we manage to assign all

clients to the integrally opened facilities, we are done since

both the connection cost and facility opening cost can be

bounded within a constant factor of the linear programming

solution. Else, we obtain a partial assignment of clients to the

opened facilities. We use this partial assignment to formulate

the multi-commodity flow problem described earlier. Recall,

in the multi-commodity flow problem, each unassigned

client has a flow commodity which it needs to sink at the

facilities using alternating paths. Assume for simplicity, that

in the partial assignment all facilities that we opened in the

first step are saturated. Now, in the multi-commodity flow

problem, a client can only sink flow at facilities with small

fractional value because the facilities with large fractional

value have zero capacity since they are saturated by the

partial assignment. Thus, the flow solution naturally gives

us a fractional assignment of remaining unassigned clients

to facilities which are open to a small fractional value.

In the last step of the algorithm, we round this fractional

solution obtained via the flow problem. But why is this

problem any easier than the one we started with? Since

each facility opening variable is at most 1
2 , the fractional

solution can use at most half the capacity of any facility

in the residual instance. Thus the capacity constraints are

not stringent and we can appeal to known soft-capacitated

approximation algorithms which approximate cost while

violating capacity to a small factor (two suffices for us).

Indeed, such algorithms can be obtained by rounding the

standard linear program and we use the result of Abrams et

al. [23]. This also implies that an immediate improvement to

the approximation ratio of our algorithm would be possible

by providing an improved algorithm for the soft-capacitated

problem.

In summary, we have used techniques from the theory of

multi-commodity flows and matchings to formulate the first

linear programming relaxation for the capacitated facility

location problem that efficiently approximates the optimum
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value within a constant. Our proposed LP-rounding algo-

rithm exploits the properties of the multi-commodity flows

obtained by solving the linear program and we give a

constant factor approximation algorithm for the problem.

Our results further open up the possibility to approach

the capacitated facility location problem and other related

problems using the large family of known powerful LP-

based techniques.

B. Further Related Work

Uncapacitated facility location: Since the first con-

stant factor approximation algorithm for UFL was given by

Shmoys, Tardos and Aardal [3], several techniques have

been developed around this problem. Currently, the best

approximation guarantee of 1.488 is due to Li [7]; see also

[6], [24]. On the hardness side, Guha and Khuller [25] shows

that it is hard to approximate UFL within a factor of 1.463.

Local search heuristics for capacitated facility location:
All previously known constant factor approximation algo-

rithms for CFL are based on the local search paradigm. The

first constant factor approximation algorithm was obtained

in the special case of uniform capacities (all capacities

being equal) by Korupolu et al. [12] who analyzed a

simple local search heuristic proposed by Kuehn and Ham-

burger [13]. Their analysis was then improved by Chudak

and Williamson [11] and the current best 3-approximation

algorithm for this special case is a local search by Aggarwal

et al. [9]. For the general problem (CFL), Pál et al [14] gave

the first constant factor approximation algorithm. Since then

more and more sophisticated local search heuristics have

been proposed, the current best being a recent local search by

Bansal et al. [10] which yields a 5-approximation algorithm.

Relaxed notions of capacity constraints: Several special

cases or relaxations of the capacitated facility location

problem have been studied. One popular relaxation is the

soft-capacitated problems where the capacity constraints are

relaxed in various ways. The standard linear program still

gives a good bound for many of these relaxed problems.

Shmoys et al. [3] gives the first constant factor approxima-

tion algorithm where a facility is allowed to be open multiple

times, later improved by Jain and Vazirani [4]. Mahdian et

al. [26] gives the current best approximation ratio of 2, which

is tight with respect to the standard LP. Abrams et al. [23]

studies a variant where a facility can be open at most once,

but the capacity can be violated by a constant factor. We

also mention that in our approximation algorithm, we use

this variant of relaxed capacities as a subproblem. Finally,

another special case for which the standard LP has been

amenable to is the case of uniform opening costs, i.e., when

all facilities have the same opening cost. For that case, Levi

et al. [27] gives a 5-approximation algorithm.

We also mention that LP-based approximation algorithms

which do not solve the linear program to optimality have

been used in the works of Carr et. al [20] and Levi et.

al. [22]. In a similar spirit, many primal-dual algorithms

do not solve linear programs to optimality (see e.g. [28],

[29]), while finding approximate solutions whose guarantee

is given by comparison to a feasible dual solution.

Finally, we note that Chakrabarti, Chuzhoy and

Khanna [30] used a collection of flow problems to obtain

improved approximation algorithms for the max-min alloca-

tion problem.

II. MULTI-COMMODITY FLOW RELAXATION

We present our new relaxation for the capacitated facility

location problem in this section. Let us first define some

notation to be used in the rest of this paper. Let F be the

set of facilities and D be the set of clients. Each facility

i ∈ F has opening cost oi, and cannot be assigned more

number of clients than its capacity Ui. We are also given a

metric cost c on F ∪ D as a part of the input: cij denotes

the distance between i ∈ F and j ∈ D.

The variables of our relaxation is the pair (x,y) where

we refer to x ∈ [0, 1]F×D as the assignment variables and

to y ∈ [0, 1]F as the opening variables. These variables

naturally encode the decisions to which facility a client

is connected and which facilities that are opened. Indeed,

the intended integral solution is that xij = 1 if client j
is connected to facility i and xij = 0 otherwise; yi = 1
if facility i is opened and yi = 0 otherwise. The idea of

our relaxation is that every partial assignment of clients to

facilities should be extendable to a complete assignment

while only using the assignments of x and openings of

y. To this end let us first describe the partial assignments

that we shall consider. We then define the constraints of

our linear program which will be feasibility constraints of

multi-commodity flows.

A partial fractional assignment g = {gij}i∈F,j∈D of

clients to facilities is valid if

∀j ∈ D :
∑
i∈F

gij ≤ 1,

∀i ∈ F :
∑
j∈D

gij ≤ Ui and

∀i ∈ F , j ∈ D : gij ≥ 0.

The first condition says that each client should be fraction-

ally assigned at most once and the second condition says that

no facility should receive more clients than its capacity. We

emphasize that we allow clients to be fractionally assigned,

i.e., g is not assumed to be integral. As we shall see later

(see Lemma II.3), this does not change the strength of our

relaxation but it will be convenient in the analysis of our

rounding algorithm in Section III. We also remark that the

above inequalities are exactly the b-matching polytope of the

complete bipartite graph consisting of the clients on the one

side and the facilities on the other side; each client can be

matched to at most one facility and each facility i can be

matched to at most Ui clients.
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js1

js2

...

jsn

demand dj1 = 1−∑
i∈F gij1

i1

i2

...

im

i′1

i′2

...

i′m

jt1

jt2

...

jtn

capacity xi1j1

capacity gimjn

capacity
yi1 · (Ui1 −

∑
j∈D gi1j)

capacity yi1dj1

Figure 2. A depiction of the multi-commodity flow network MFN(g,x,y).

The constraints of our relaxation will be that, no matter

how we partially assign the clients according to a valid

g, the solution (x,y) should support a multi-commodity

flow where each client j becomes the source of its own

commodity j, and the demand of this commodity is equal to

the amount by which j is “not assigned” by g, 1−∑
i∈F gij .

The flow network, whose arc capacities are given as a

function of g and the solution (x,y), is defined as follows

(see also Figure 2):

Definition II.1 (Multi-commodity flow network). For a
valid partial assignment g, assignment variables x =
{xij}i∈F,j∈D, and opening variables y = {yi}i∈F , let
MFN(g,x,y) be a multi-commodity flow network with |D|
commodities, defined as follows. Note that some arcs may
have zero capacities.
(a) Each client j ∈ D is associated with commodity j of

demand dj := 1−∑
i∈F gij , and its source-sink pair is

(js, jt).
(b) Each facility i ∈ F has two nodes i and i′ with an arc

(i, i′) of capacity yi · (Ui −
∑

j∈D gij).
(c) For each client j and facility i, there is an arc (js, i) of

capacity xij , an arc (i, js) of capacity gij , and an arc
(i′, jt) of capacity yidj .

Remark II.2. Intuitively, the bipartite subgraph induced by
{js}j∈D ∪ {i}i∈F , marked with a shaded box in Figure 2,
is the interesting part of the flow network. {i′}i∈F and
{jt}j∈D are added to this bipartite graph purely in order to
state that i is a sink with “double” capacities: a commodity-
oblivious capacity yi · (Ui −

∑
j∈D gij) and a commodity-

specific capacity yidj for each client j ∈ D.

Let us give some intuition on the definition of

MFN(g,x,y). As already noted, the demand dj = 1 −∑
i∈F gij of a client j equals the amount by which j is not

assigned by the partial assignment g. This demand should

only be assigned to opened facilities. Therefore, facility i
can accept at most yidj of j’s demand which is either dj
or 0 in an integral solution. Observe that such a constraint,

for each client and facility, cannot be imposed by a single-

commodity flow problem. Multi-commodity flow problems,

on the other hand, allows us to express this constraint as

a commodity-specific capacity of yidj , as denoted by arc

(i′, jt) in Figure 2.

Now consider the commodity-oblivious capacities of the

facilities. The total demand an opened facility i can accept

is its capacity minus the amount of clients assigned to it in

the partial assignment g; and a closed facility can accept no

demand. Therefore, the total demand a facility i can accept

is at most yi(Ui −
∑

j∈D gij). The arc capacity xij of an

arc (j, i) says that client j should be connected to facility

i only if xij = 1. The reason for having arcs of the form

(i, j) of capacity gij is discussed in Section I-A: these allow

the alternating paths for routing the remaining demand and

are necessary for the formulation to be a relaxation.

We are now ready to formally state our relaxation MFN-

LP of the capacitated facility location problem in Figure 3.

Note that the only variables of our relaxation are the

assignment variables x and the opening variables y. While

it is natural to formulate each of the multi-commodity flow

problem using auxiliary variables denoting the flow, our

algorithm will utilize the equivalent formulation obtained via

projecting out the flow variables. This projected formulation

is a relaxation where the only variables are assignment

variables x and the opening variables y.

In Lemma II.3 we show that the constraints of MFN-

LP can equivalently be formulated over the subset of valid

partial assignments that are integral. MFN-LP can therefore

be seen as the intersection of the feasible regions of finitely

260260



minimize c(x,y) :=
∑
i∈F

oi · yi +
∑

i∈F,j∈D
cij · xij ,

subject to MFN(g,x,y) is feasible ∀g valid;

x ∈ [0, 1]F×D,y ∈ [0, 1]F .

Figure 3. Our relaxation of CFL.

many multi-commodity flow linear programs and is therefore

itself a linear program. At first sight, however, it may not be

clear that MFN-LP is a relaxation, or how we can separate

it. We will answer these questions in the rest of this section.

A. Integral Partial Assignments and Separation

We first present a useful lemma that allows us to consider

only the valid assignments g that are integral, i.e., {0, 1}-
matrices. This lemma follows from the integrality of the

b-matching polytope.

Lemma II.3. For any (x,y), MFN(g,x,y) is feasible for
all valid g if and only if MFN(ĝ,x,y) is feasible for all
valid ĝ that are integral.

Proof: It is clear that if the flow network is feasible

for all valid g then it is also feasible for the subset that are

integral. We show the harder side. Suppose MFN(ĝ,x,y)
is feasible for all valid ĝ that are integral and consider an

arbitrary valid assignment g that may be fractional. We will

show that MFN(g,x,y) is feasible.

Construct a complete bipartite graph with vertices F ∪D
and interpret g as the weights on the edges of this complete

bipartite graph. As g is valid, we have
∑

j∈D gij ≤ Ui for

each i ∈ F and
∑

i∈F gij ≤ 1 for each j ∈ D. In other

words, g is a fractional solution to the b-matching polytope.

By the integrality of the b-matching polytope (see e.g. [31]),

we can write g as a convex combination of valid integral

assignments ĝ1, ĝ2, . . . , ĝr, i.e., there exist λ1, λ2, . . . , λr ≥
0 such that

∑r
k=1 λk = 1 and g =

∑r
k=1 λkĝ

k.

Now, let fk denote the feasible flow for MFN(ĝk,x,y),
and choose f =

∑
k λkf

k. Observe that f is a feasible

solution to MFN(g,x,y), since all the capacities and de-

mands of MFN(·,x,y) are given as linear functions of g.

A natural question is whether MFN-LP can be separated

in polynomial time. While we currently do not know if this

is the case, we will establish in this paper that the feasibility

constraint of MFN(g,x,y) can be separated for any fixed g,

and that this is sufficient to find a fractional solution whose

cost is within a constant factor from the optimum: in a sense,

this oracle enables us to extract the power of our strong

relaxation within a constant factor. The following lemma

states the oracle. It follows from known characterizations

using LP-duality of multi-commodity flows and its proof can

be found in the full version [32] of this extended abstract.

Lemma II.4. Given g� in addition to (x�,y�) such that
MFN(g�,x�,y�) is infeasible, we can find in polynomial
time a violated inequality, i.e., an inequality that is valid for
MFN-LP but violated by (x�,y�). Moreover, the number of
bits needed to represent each coefficient of this inequality is
polynomial in |F|, |D|, and logU , where U := maxi∈F Ui.

B. MFN-LP is a Relaxation of the Capacitated Facility
Location Problem

We show in this subsection that MFN-LP is indeed a

relaxation.

Lemma II.5. MFN-LP is a relaxation of the capacitated
facility location problem.

Proof: Consider an arbitrary integral solution (x�,y�)
to the facility location problem. By Lemma II.3 we only

need to verify that MFN(g,x�,y�) is feasible for each valid

integral assignment g. Let ĝ be an arbitrary valid integral

assignment.

Now we consider a directed bipartite graph G = (V,A),
of which one side of the vertex set is D, and on the other

side, each facility i ∈ F appears in y�i ·Ui duplicate copies.

Consider the following two matchings M1 and M2 on these

vertices.

• For each client j, M1 has an edge between j and (a

copy of) i for which x�
ij = 1. There will always be

a copy of i since y�i ≥ x�
ij = 1. We will also ensure

that a single copy of a facility does not have more than

one incident edge: this is possible due to the capacity

constraints on (x�, y�).
• For each (i, j) such that ĝij = 1 and y�i = 1, M2 has

an edge between a copy of facility i and client j. Note

that no client will have more than one incident edge

since
∑

i∈F ĝij ≤ 1. We will also ensure that a single

copy of a facility does not have more than one incident

edge. This is possible since
∑

j∈D ĝij ≤ Ui.

Now we orient every edge in M1 from clients to facilities;

edges in M2 are oriented in the opposite direction. A is

defined as the union of these two directed matchings. Since

both M1 and M2 are matchings, every vertex in G has

indegree of at most one and outdegree of at most one. Hence,

we can decompose A into a set of maximal paths and cycles.

Moreover, since M1 matches every client, none of these

maximal paths will end at a client. Reinterpret these paths

as paths on D and F , instead of on the duplicate copies of

facilities. Let P denote the set of these (nonempty) paths.

We will now construct a feasible multi-commodity flow

on MFN(ĝ,x�,y�). We consider each P ∈ P . If P starts

from a facility, ignore it; otherwise let j be the starting point

of P and i the ending point: P = (j, i1, j2, i2, . . . , jk, i). If

dj = 0, we ignore P ; otherwise, we push one unit of flow of
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commodity j along P , staying within the shaded area of Fig-

ure 2: i.e., the flow is pushed along (js, i1, j
s
2 , i2, . . . , j

s
k, i).

When we arrive at i, further push this flow along (i, i′, jt),
draining the flow at jt: this is legal since the flow is of

commodity j. We repeat this until we have considered all

paths in P . We claim that this procedure yields a feasible

multi-commodity flow.

First, note that each arc in A maps to an edge of capacity

1 in MFN(ĝ,x�,y�). Since P is a decomposition of (a

subset of) A, capacity constraints on (js, i) and (i, js) are

satisfied from the construction. Now consider the capacity

of (i, i′). Each time we encounter a path P ∈ P that starts

at some client and ends at i, one unit of additional flow is

sent over this arc. If y�i = 0, there will be no such path in

P . If y�i = 1, there are at most Ui −
∑

j∈D ĝij paths in P
ending at i, since M2 matches exactly

∑
j∈D ĝij copies of

i out of Ui in total. This verifies that the capacity constraint

on (i, i′) is also satisfied. Finally, arc (i′, jt) is used only

when we process P ∈ P that starts from j and ends at i.
This is true for at most one path in P since there is at most

one path starting from each client (note that there are no

duplicate copies of clients in G); moreover, P can end at i
only if y�i = 1 (otherwise, there are no copies of i in G).

The capacity constraint on (i′, jt) is therefore also satisfied.

Demand constraints are also satisfied: suppose dj = 1 for

some j ∈ D. This means ĝ does not assign j to any facility,

and therefore M2 does not match j. Hence j has indegree of

zero and outdegree of one in G, and thus P contains exactly

one path that starts from j.

Intuitively, the above proof can also be interpreted as

follows: given an arbitrary partial assignment and integral

solution, consider the shaded area of Figure 2. By saturating

every arc in this area, we obtain a feasible single-commodity

flow where every client generates a unit flow either at

its original position or at the facility it is assigned to

by g. While this flow satisifies every commodity-oblivious

capacity, it may not be immediately clear why it also satisfies

the commodity-specific capacities; here we can appeal to the

integrality of y�, because in this case every facility with

nonzero commodity-oblivious capacity will automatically

have the full commodity-specific capacity of 1. Such an

argument, however, would not extend to a fractional solution

(to the standard LP for example), which illustrates the

strength of our relaxation.

III. APPROXIMATION ALGORITHM

In this section, we describe our approximation algorithm

and prove Theorem I.1: 1

1The cost function includes two components, facility opening costs and
connection costs. Optimizing the parameters to obtain the same worst case
performance for both components will lead to significant improvements in
the constant obtained above. But such methods will not lead to improvement
over 5-approximation due to local search [10].

Theorem I.1 (restated). There exists a 288-approximation
algorithm for the capacitated facility location problem. The
cost of its output is no more than 288 times the optimal cost
of MFN-LP.

The algorithm is based on rounding a given fractional

“solution” to MFN-LP. However, as we do not know how to

solve MFN-LP exactly, we give a relaxed separation oracle

that either outputs a violated inequality or returns an integral

solution obtained from the fractional solution by increasing

the cost only by a constant factor. A similar approach has

previously been used by Carr et al. [20] and later by Levi

et al. [22].

Algorithm overview: Our algorithm first guesses the

cost of the optimal solution to MFN-LP using a binary

search2. For each guess, say γ, we run an ellipsoid algo-

rithm. At each step of the ellipsoid algorithm, we obtain

a fractional solution (x�,y�), possibly infeasible. We then

first verify the boundary constraints 0 ≤ x�,y� ≤ 1 and

the objective constraint c(x�,y�) ≤ γ. If (x�,y�) violates

one of these inequalities, we output it and continue to the

next iteration of the ellipsoid algorithm. Otherwise, we either

construct a so-called semi-integral solution (defined below)

or output a violated inequality showing infeasibility of the

flow network MFN(g�,x�,y�) for some g�. In the final

step, our algorithm rounds this semi-integral solution into

an integral solution by increasing the cost by a constant

factor.

We remark that the main step of our algorithm exploiting

the strength of MFN-LP is the step for finding a semi-

integral solution or outputting a violated inequality (sum-

marized in Theorem III.3). An interesting detail is that our

rounding algorithm only needs that the multi-commodity

flow network is feasible for a single g� in order to output

a semi-integral solution. Once we have a semi-integral so-

lution, the rounding is fairly straightforward using previous

algorithms for soft-capacitated versions. We now first define

semi-integral solutions and describe the rounding to integral

solutions in Section III-A. We then continue with the proof

of Theorem III.3 which is the main technical contribution

of this section.

A. Semi-Integral Solutions: Definition and Rounding

The idea of semi-integral solutions is that they partition

the facilities into two sets: the set I of integrally opened

facilities and the set S of facilities of small opening. Clients

may be fractionally assigned to both facilities in I and

S. However, there is an important constraint regarding the

assignment to facilities in S (condition (iii) in the definition

below). For each client j, it says that at most a yi fraction

of j’s total assignment to facilities in S can be assigned to

2We remark that the relaxed separation oracle can also simply be used
with the standard optimization version of the ellipsoid method, which would
not involve a binary search.
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i ∈ S. This will allow us to round semi-integral solutions by

using techniques developed for the standard LP relaxation.

Definition III.1. A solution (x̂, ŷ) is semi-integral if it
satisfies the following conditions.

(i) (x̂, ŷ) satisfies the assignment constraints, i.e., for
each j ∈ D,

∑
i∈F x̂ij = 1 and for each i ∈ F ,∑

j∈D x̂ij ≤ ŷiUi.

(ii) For each i ∈ F , ŷi = 1 or ŷi ≤ 1
2 . Let I = {i : ŷi = 1}

and S = F \ I .
(iii) For each j ∈ D, let d̂j =

∑
i∈S x̂ij . Then we have

x̂ij ≤ ŷid̂j for each i ∈ S and j ∈ D.

We now describe the procedure for rounding the semi-

integral solution to an integral solution. All facilities in

I , whose opening variables are set to one in the semi-

integral instance, are opened. Consider the residual instance

where each client has a residual demand d̂j , amount to

which it is not assigned to facilities in I . This residual

demand is satisfied by facilities in S, each of which is open

to a fraction of at most 1
2 by the semi-integral solution.

Conditions (i) and (iii) of the semi-integral solution imply

that the residual solution is a feasible solution to the standard

LP for the residual instance. Since the opening variables

are set to a small fraction in the residual instance, we

can use an approximation algorithm for the soft-capacitated

facility location problem which rounds the standard LP.

An (α, β)-approximation algorithm for the soft-capacitated

facility location problem returns a solution whose cost is no

more than α times the cost of the optimal fractional solution

and violates the capacity of any open facility by a factor of at

most β. We give the algorithm our residual instance as input

where we scale down the capacities by a factor of β but scale

up the opening variables by the same factor. Observe that

as long as each ŷi ≤ 1
β for each facility i ∈ S, we obtain a

feasible solution to the standard LP. Here we use the (18, 2)-
bicriteria approximation algorithm due to Abrams et al. [23]

to complete our rounding to an integral solution.

Lemma III.2. Given a semi-integral solution (x̂, ŷ), we can
in polynomial time find an integral solution (x̄, ȳ) whose
cost is at most 36c(x̂, ŷ).

We give the formal proof of Lemma III.2 in the full

version of this paper [32].

B. Finding a Semi-Integral Solution or a Violated Inequality

We are now ready to describe and prove the main ingre-

dient of our rounding algorithm.

Theorem III.3. There is a polynomial time algorithm that,
given (x�,y�), either

• shows that (x�,y�) is infeasible for MFN-LP and
returns a violating inequality, or

• returns a solution (x̂, ŷ) such that (x̂, ŷ) is semi-
integral and c(x̂, ŷ) ≤ 8c(x�,y�).

Note that the above theorem together with Lemma III.2

implies Theorem I.1 with the claimed approximation guar-

antee 8 · 36 = 288.
We prove the theorem by describing the algorithm to-

gether with its properties. The algorithm consists of several

steps. First, we round up the large opening variables of y�

to obtain modified opening variables y′. We define

y′i :=

{
1, if y�i ≥ 1

4 ;

y�i , otherwise.

Let I be the set of facilities that are fully open by y′: I :=
{i ∈ F : y′i = 1}. S denotes the set of facilities that are

open by a small fraction: S := F \ I .
Given that our algorithm is going to open all the facilities

in I , we will try to find a partial assignment g� that assigns

as many clients to these facilities as possible, while at the

same time ensuring g� does not become too costly compared

to x∗. To this end, we will derive g� from a maximum b-
matching in a bipartite graph on F and D whose edges are

capacitated by 2x∗. Let G = (D, I, E) be the complete

bipartite graph whose bipartition is given by the clients D
and the opened facilities I . An arc (j, i) where j ∈ D and

i ∈ I is given a capacity of 2x�
ij . This is to ensure that the

cost of the matching is within a factor of 2 compared to the

original assignment cost. Every client j has a capacity of

one and each facility i ∈ I is given a capacity of Ui. Let

z denote a maximum fractional b-matching of G. Note that

the matching may not be integral because of the capacities

on the edges. As z is a maximum fractional matching, its

residual network H with arc set {(j, i) : zij < 2x�
ij} ∪

{(i, j) : zij > 0} has useful properties that we describe

below. In particular, if we consider an unsaturated client j,

i.e.,
∑

i∈I zij < 1, then j has no path in H to a facility i
with remaining capacity, as that would contradict that z is

a maximum matching.
We shall now formalize these properties. Let us call a

client j ∈ D saturated if
∑

i∈F zij = 1, and unsaturated
otherwise; define IH := {i ∈ I : i is reachable in H from

some client k that was unsaturated} and DH := {j ∈ D : j
is reachable in H from some client k that was unsaturated}.
Similar to clients, a facility i ∈ I is called saturated if∑

j∈D zij = Ui and unsaturated otherwise. The following

lemma summarizes three useful observations on z and H .

Lemma III.4. The following must hold.
(a) Any facility i ∈ IH is saturated, i.e.,

∑
j∈D zij = Ui.

(b) If i ∈ I \ IH and j ∈ DH , zij = 2x�
ij .

(c) If i ∈ IH and j ∈ D \DH , zij = 0.

Proof: We first prove (a). Suppose toward contradiction

that there exists a facility i ∈ IH that is not saturated. By

the definition of IH there exists a client k that is unsaturated

and i is reachable from k in H . Therefore there exists an

alternating path from k to i which contradicts that the chosen

fractional matching z was maximum.
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We now prove (b). By the definition of DH , there exists

an unsaturated client k such that j is reachable from k in

H . Therefore, any facility i such that zij < 2x�
ij is also

reachable from k and therefore part of IH . The proof of (c)

follows from the fact that (i, j) /∈ H since i is reachable

from an unsaturated client and j is not. Therefore, zij = 0.

Now the valid partial assignment g� is constructed as

follows:

g�ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
zij if i ∈ IH

zij if i ∈ I \ IH , j ∈ D \DH

0 if i ∈ I \ IH , j ∈ DH

0 if i ∈ S.

(1)

Note that g� is defined in terms of z. This will allow us to

analyze the flow network using the properties of z described

in Lemma III.4.

Once we have this partial assignment, the algorithm

verifies if MFN(g�,x�,y�) is feasible. If not, we invoke

Lemma II.4 to find a violated inequality and Theorem III.3

holds. Otherwise, the algorithm proceeds to construct a

semi-integral solution using this partial assignment. For the

rest of this section, we will assume that MFN(g�,x�,y�) is

feasible. Note that the feasibility of MFN(g�,x�,y�) guar-

antees the feasibility of MFN(g�,x�,y′) since y′ ≥ y�.

Claim III.5. If MFN(g�,x�,y�) is feasible and y′ ≥ y�,
MFN(g�,x�,y′) is feasible.

Proof: Consider a feasible flow for MFN(g�,x�,y�).
Observe that it is feasible for MFN(g�,x�,y′) as well, since

the arc capacities of MFN(g�,x�,y) is nondecreasing in y
while the demands remain the same since they depend on

g�.

We have now made our choice of g� that satisfies the

following three key properties which help us round (x�,y�):

1) g� ≤ z ≤ 2x� and therefore c(g�) ≤ 2c(x�);
2) g� assigns clients only to the fully open facilities, i.e.,

facilities in I;

3) g� satisfies the property formalized by Lemma III.6.

(Note that Lemma III.6 is proven for our carefully

constructed partial assignment. It does not hold in

general for arbitrary partial assignments.)

Let f denote the flow certifying the feasibility of

MFN(g�,x�,y′). We decompose f into flow paths where

we let Pij denote the set of flow paths carrying non-zero

flow from js to jt that use the arc (i, i′). That is, these are

the paths which take flow from j and sink it at i. Let f(P )
denote the flow on a path P ∈ Pij . For each i ∈ F and

j ∈ D, we let h(i, j) =
∑

P∈Pij
f(P ) denote the amount

of flow that client j sinks at facility i. For any subset X ⊆ F
and j ∈ D, let also h(X, j) :=

∑
i∈X h(i, j), i.e., the total

amount of flow that client j sinks at facilities in X .

Lemma III.6. There exists a feasible flow to the multi-
commodity flow problem MFN(g�,x�,y′) such that each
client j ∈ D sends at least half its demand to facilities in
S, i.e., h(S, j) ≥ dj

2 = 1
2 (1−

∑
i∈F g�ij).

The proof of the above lemma can be found in the full

version of this paper [32].

Observe that the flow satisfying the conditions in

Lemma III.6 can be obtained in polynomial time by adding

additional linear constraints to the multi-commodity flow

linear program for MFN(g�,x�,y′). Let f denote such a

flow. The algorithm now proceeds by using this flow to de-

fine a semi-integral solution (x̂, ŷ). Lemma III.6 guarantees

h(S, j) ≥ dj/2; hence we define the semi-integral solution

by scaling up this assignment by a factor of at most 2. This

ensures that each client assigns all its demand dj to S and

that it is a semi-integral solution. Formally, we construct the

semi-integral solution (x̂, ŷ) as follows:

ŷi =

{
1, if i ∈ I;

2y�i , if i ∈ S;

x̂ij =

{
g�ij , if i ∈ I, j ∈ D;
dj

h(i,j)
h(S,j) , if i ∈ S, j ∈ D;

where we define
h(i,j)
h(S,j) to be 0 if h(S, j) = 0. For i ∈

S and j ∈ D, we have x̂ij = h(i, j) · dj

h(S,j) ≤ 2h(i, j)
from Lemma III.6. This allows us to bound the total cost of

solution (x̂, ŷ).

Lemma III.7. The solution (x̂, ŷ) is semi-integral and
c(x̂, ŷ) ≤ 8c(x�,y�).

The above lemma finishes the proof of Theorem III.3. Its

proof can be found in the full version of this paper [32].
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