
Interactive Channel Capacity Revisited

Bernhard Haeupler

Microsoft Research

haeupler@cs.cmu.edu

Abstract—We provide the first capacity approaching coding
schemes that robustly simulate any interactive protocol over an
adversarial channel that corrupts any ε fraction of the transmitted
symbols. Our coding schemes achieve a communication rate
of 1 − O(

√
ε log log 1/ε) over any adversarial channel. This

can be improved to 1 − O(
√
ε) for random, oblivious, and

computationally bounded channels, or if parties have shared
randomness unknown to the channel.

Surprisingly, these rates exceed the 1 − Ω(
√

H(ε)) = 1 −
Ω(

√
ε log 1/ε) interactive channel capacity bound which [Kol and

Raz; STOC’13] recently proved for random errors. We conjecture
1−Θ(

√
ε log log 1/ε) and 1−Θ(

√
ε) to be the optimal rates for

their respective settings and therefore to capture the interactive
channel capacity for random and adversarial errors.

In addition to being very communication efficient, our ran-
domized coding schemes have multiple other advantages. They
are computationally efficient, extremely natural, and significantly
simpler than prior (non-capacity approaching) schemes. In par-
ticular, our protocols do not employ any coding but allow the
original protocol to be performed as-is, interspersed only by short
exchanges of hash values. When hash values do not match, the
parties backtrack. Our approach is, as we feel, by far the simplest
and most natural explanation for why and how robust interactive
communication in a noisy environment is possible.

I. INTRODUCTION

We study the interactive channel capacity of random and

adversarial error channels, that is, the fundamental limit on the

communication rate up to which any interactive communica-

tion can be performed in the presence of noise. We give novel

coding schemes which, for a wide variety of channels, achieve

and resolve the corresponding interactive channel capacity up

to a constant in the second order term for any small error rate

ε. Our coding schemes are extremely simple, computationally

efficient, and give the most natural and intuitive explanation for

why and how error correction can be performed in interactive

communications.

A. Prior Work

From Error Correcting Codes . . .: The concept of (forward)

error correcting codes has fundamentally transformed the way

information is communicated and stored and has had profound

and deep connections in many sub-fields of mathematics,

engineering, and beyond. Error correcting codes allow to add

redundancy to any message consisting of n symbols, e.g.,

bits, and transform it into a coded message with αn + o(n)
symbols from a finite alphabet Σ from which one can recover

the original message even if any ε-fraction of the symbols

are corrupted in an arbitrary way. This can be used to store

and recover information in a fault tolerant way (e.g., in CDs,

RAM, . . .) and also leads to robust transmissions over any

noisy channel. In the later case, one denotes with R = 1
α log |Σ|

the communication rate at which such a communication can

be performed with negligible probability of failure and for a

given channel one denotes with the channel capacity C the

supremum of the achievable rates for large n.

The groundbreaking works of Shannon and Hamming

showed that the capacity C of any binary channel with

an ε fraction of noise satisfies C = 1 − Θ(H(ε)), where

H(ε) = ε log 1
ε + (1 − ε) log 1

1−ε denotes the binary entropy

function which behaves like H(ε) = ε log 1
ε +O(ε) for ε→ 0.

More precisely, for random errors as modeled by the binary
symmetric channel (BSC), which flips each transmitted bit

with probability ε, Shannon’s celebrated theorem states that

the rate R = 1−H(ε) is the exact asymptotic upper and lower

bound for achieving reliable communication. Furthermore,

for arbitrarily, i.e., adversarially, distributed errors Hamming’s

work shows that the rate R = 1−Θ(H(ε)) remains achievable.

Determining the optimal rate of a binary code or even just the

constant hidden in the second order term is a fundamental

and widely open question in coding theory. The popular

guess or conjecture is that the Gilbert-Varshamov bound of

R ≤ 1−H(2ε) is essentially tight.

. . . to Coding Schemes for Interactive Communications:
These results apply to one-way communications in which one

party, say Alice, wants to communicate information to another

party, say Bob, in the presence of noise. In this paper we are

interested in the same concept but for settings in which Alice

and Bob have a two-way or interactive communication which

they want to make robust to noise by adding redundancy.

More precisely, Alice and Bob have some conversation in

mind which in a noise-free environment can be performed by

exchanging n symbols in total. They want a coding scheme
which adds redundancy and transforms any such conversation

into a slightly longer αn-symbol conversation from which both

parties can recover the original conversation outcome even

when any ε fraction of the coded conversation is corrupted.

The reason why one cannot simply use error correcting

codes for each message is that misunderstanding just one mes-

sage, which corresponds only to a 1/n fraction of corruptions

for an n message interaction, leads to the remainder of the

conversation becoming irrelevant and useless. It is therefore

a priori not clear that tolerating some (even tiny) constant

fraction of errors ε is even possible.

In 1993 Schulman [15] was the first to address this question.

In his beautiful and at the time surprising work he showed

that tolerating an ε = 1/240 fraction of the adversarial errors

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.32

226

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.32

226



is possible for some constant overhead α = Θ(1). This also

directly implies that any error rate bounded away by a constant

from 1/2 can be tolerated for the easier random errors setting,

since one can easily reduce the error rate by repeating symbols

multiple times. Later, Braverman and Rao [5] showed that an

adversarial error rate of up to ε < 1/4 could be tolerated

with a constant overhead α = Θ(1). Lastly, [4], [6], [7], [10],

[11] determined the full error rate region in which a non-zero

communication rate is possible in a variety of settings. While

the initial coding schemes were not computationally efficient,

because they relied on powerful but hard to construct tree

codes, later results [1], [2], [9], [10] provided polynomial time

schemes using randomization.

Capacity Approaching Coding Schemes: None of these

works considers the communication rate that can be main-

tained for a given noise level ε. In fact, each of these schemes

has a relatively large unspecified constant factor overhead α
even for negligible amounts of noise ε→ 0. This is unsatisfac-

tory as one would expect the necessary amount of redundancy

to vanish in this case. However, capacity approaching schemes

were considered out of scope of techniques up to this point [3,

Problem 8]. The work by Kol and Raz [13] was the first

to consider the communication rate up to which interactive

communication could be maintained over a noisy channel. In

particular, they studied random errors, as modeled by the BSC,

with an error probability ε→ 0. Under seemingly reasonable

assumptions they proved an upper bound of 1 − Ω(
√
H(ε)),

that is, that some protocols cannot be robustly simulated with

a rate exceeding 1 − Ω(
√
H(ε)). This is significantly lower

than the 1 − H(ε) bound for the standard one-way setting.

They also gave a coding scheme that achieves a matching

rate of 1−O(
√

H(ε)) for the same setting. This was seen as

a characterizing the BSC interactive channel capacity up to

constants in the second order term, a notable breakthrough.

B. Our Results

Coding Schemes for Adversarial Errors: This work started

out as an attempt to address the question of communication

rate and interactive channel capacity in the much harsher

adversarial noise setting. In particular, the hope was to design

a capacity approaching coding scheme for adversarial errors

that could achieve a communication rate approaching one as

the noise level ε goes to zero.

To our shock the communication rates of our final coding

schemes exceed the 1−Ω(
√

H(ε)) = 1−Ω(
√

ε log 1
ε ) bound

of [13] even though they work in the much harder adversarial

noise setting. In particular, the new communication schemes

operate at a communication rate of 1 − O(
√
ε) against any

worst-case oblivious channel and even channels controlled by

a fully adaptive adversary as long as this adversary is compu-

tationally efficient or as long as the parties share some ran-

domness unknown to the adversary. These trivially include the

case of i.i.d. random errors. For the unrestricted fully adaptive

adversarial channel we achieve a rate of 1−O(
√
ε log log 1

ε )

which is still lower than the bound of the impossibility result

of [13].

Interactive Channel Capacity Revisited: We uncover that

these differences stem from important but subtle variations in

the assumptions on the communication order, that is, the order

in which which Alice and Bob speak, both for the original

(noiseless) input protocol Π and for its simulation Π′:
The standard setting, used by all works prior to [13],

assumes that Π is alternating, that is, that the parties take

turns sending one symbol each. Both our 1−O(
√
ε)-rate and

our 1 − O(
√
ε log log 1

ε )-rate coding scheme as well as the

1−O(
√

H(ε))-rate coding scheme of [13] work in this setting.

For all three protocols the simulation Π′ can furthermore

be chosen to have the same fixed alternating communication

order. We remark that if one does not care about constant

factors in the communication rate assuming an alternating

input protocol is essentially without loss of generality because

any protocol can be transformed to be alternating while only

increasing its length by at most a factor of two. However,

this transformation and wlog-assumption cannot be applied to

design capacity approaching protocols. Regardless, the setting

of alternating protocols and simulations is a very simple and

clean setting which still encapsulates the characteristics and

challenges of the problem.

The impossibility result of [13] however does not apply to

alternating protocols. Instead, an input protocol with a more

complex communication order is assumed. More importantly,

the simulations Π′ are restricted to be non-adaptive, that is,

have an a priori fixed communication order which defines

for each time step which party sends and which listens. The

1−Ω(
√

ε log 1/ε) lower bound of [13] subtly but nonetheless

crucially builds on this non-adaptivity assumption.

After understanding these issues better, we point out that

insisting on non-adaptive simulations Π′ is too restrictive

for general input protocols Π in a very strong sense: Many

non-alternating input protocols Π simply cannot be simulated

robustly without losing at least a constant factor in the com-

munication rate. This impossibility is furthermore essentially

unrelated to the type of noise in the channel and therefore

unrelated to the question of interactive channel capacity. More

precisely, we conjecture the following 1−Ω(1) impossibility

result to hold:

Conjecture I.1. Any protocol Π with a sufficiently non-
regular, e.g., pseudo-random, communication order cannot be
robustly simulated by any non-adaptive protocol Π′ with a
rate of R = 1 − o(1). This is true for essentially any chan-
nel introducing some error, in particular, even for channels
introducing merely a single random error or erasure.

In this work we show that there is a natural way to

circumvent this impossibility barrier without having to restrict

the input protocols Π that can be simulated. In particular, our

protocols very naturally simulate any general input protocol

Π if the simulation Π′ is allowed to be have an adaptive

communication order, as introduced in [11].

227227



We furthermore conjecture that the 1 − O(
√
ε) bound we

present in this work is the natural and tight bound on the

maximum rate that can be achieved in a wide variety of

interactive communication settings:

Conjecture I.2. The maximal rate achievable by an interac-
tive coding scheme for any binary error channel with random
or oblivious errors is 1−Θ(

√
ε) for a noise rate ε→ 0. This

also holds for for fully adversarial binary error channels if
the adversary is computationally bounded or if parties have
access to shared randomness that is unknown to the channel.
It also remains true for all these settings regardless whether
one restricts the input protocols to be alternating or not.

We suspect this claim also extends to larger alphabets. We

feel that the broadness and robustness of this bound might

justify regarding 1−Θ(
√
ε) as the interactive channel capacity

of a random error channel, even though this paper clearly

demonstrates how careful and precise one needs to specify

how protocols can use a channel before being able to talk

about rates and capacities.

For the fully adversarial with no shared randomness and

a binary channel alphabet we conjecture our rate of 1 −
O(

√
ε log log 1

ε ) to be tight as well. This bound does not hold

for larger alphabets (see [12]):

Conjecture I.3. The interactive channel capacity for the fully
adversarial binary error channels in the absence of shared
randomness is 1−Θ

(√
ε log log 1

ε

)
for a noise rate ε→ 0.

Lastly, we remark that subsequent to this work it was shown

in [8] that a higher rate of 1−Θ(H(ε)) is possible for coding

schemes that robustly simulate any (alternating) protocol over

random or adversarial channels with feedback or over random

or adversarial erasure channels.

Simple, Natural, Communication and Computationally Ef-
ficient Coding Schemes: In addition to being capacity ap-

proaching for worst case errors with an optimal asymptotic

dependence on the noise level ε the new coding schemes

also have the advantage of being much simpler and more

natural than prior coding schemes. They are essentially the

first schemes for adversarial errors that do not rely on tree-

codes. In fact, they do not perform any coding at all. Instead,

they operate along the following extremely natural template:

Template I.1 (Making a Conversation robust to Noise).
Both parties have their original conversation as if there were
no noise except that

1) sporadically a concise summary (an Θ(1) or
Θ(log log n) bit random hash value) of the conversation
up to this point is exchanged.

2) If the summaries match the conversation continues.
3) If the summaries do not match, because the noise caused

a misunderstanding, then the parties backtrack.

Some details go into how to compute the summaries and

how to coordinate the backtracking steps. Still, the protocol

stays extremely simple and this outline is so intuitive that it

can be easily explained to non-experts. In that respect it can be

seen as demystifying Schulman’s result that interactive com-

munication can be performed at a constant rate in the presence

of a constant fraction of adversarial noise. Our proofs for why

these constant or Θ(log log n) size hash values are sufficient

(and necessary) are simple and completely elementary with the

standard hash functions from [14] being the only non-trivial

black-box used. Furthermore, since our alternative proof is

based solely on hashing it directly leads to a computationally

efficient “coding” scheme. This scheme works without any

assumptions on the structure of the original protocol and

is so simple that real-world use-cases and implementations

become a possibility. In fact, Microsoft has a utility patent

pending. All in all, we feel that this paper gives the simplest,

most natural, and most intuitive explanation for why robust

interactive communication in a noisy environment is possible

and how it can be achieved.

C. Organization

The remainder of this paper is organized as follows. In

Section II we provide preliminaries and the channel and

interactive communication models. In Section III we explain

the fundamental difference between error correction for inter-

active communications and the classical one-way setting. In

particular, we explain why a communication rate of 1−Ω(
√
ε)

is the best one can hope for in an interactive setting. In

Section IV we provide a simple coding scheme achieving

this rate against adversarial errors if the channel operates on

a logarithmic bit-size alphabet. In Section V we explain the

barriers in extending this algorithm to a constant size alphabet

and give an overview of the techniques we use to overcome

them. In Section VI we then provide our new coding schemes

and we use Section VII to prove their correctness.

II. DEFINITIONS AND PRELIMINARIES

A. Interactive Protocols and Communication Order

An interactive protocol Π defines some communication

performed by two parties, Alice and Bob, over a channel with

alphabet Σ. After both parties are given an input the protocol

operates in n rounds. For each round of communication each

party decides independently whether to listen or transmit a

symbol from Σ based on its state, its input, its randomness,

and the history of communication, i.e., the symbols received

by it so far. All our protocols will utilize private randomness
which is given to each party in form of its own infinite string

of independent uniformly random bits. It is also interesting

to consider settings with shared randomness in which both

parties in every round i have access to the same infinite random

bit-string Ri.

We call the order in which Alice and Bob speak or listen

the communication order of a protocol. Prior works have often

studied non-adaptive protocols for which this communication

order is predetermined. In this case, which player transmits or

listens depends only on the round number and it is determinis-

tically ensured that exactly one party transmits in each round.

If the such a non-adaptive communication order repeats itself

228228



in regular intervals we call the protocol periodic and call the

smallest length of such an interval the period. The simplest

communication order has Alice and Bob take taking turns. We

call such a protocol, with period two, alternating.

B. Adversarial and Random Communication Channels

The communication between the two parties goes over a

channel which delivers a possibly corrupted version of the

chosen symbol of a transmitting party to a listening party.

In particular, if exactly one party listens and one transmits

then the listening party receives the symbol chosen by the

transmitting party unless the channel interferes and corrupts

the symbol.

In the fully adversarial channel model with error rate ε
the number of such interferences is at most εN for an N
round protocol and the adversary chooses the received symbol

arbitrarily. In particular, the adversary gets to know the length

N of the protocol and therefore also how many corruptions it is

allowed to introduce. In each round it can then decide whether

to interfere or not and what to corrupt a transmission to

based on its state, its own randomness, and the communication

history observed by it, that is, all symbols sent or received by

the parties so far. The adversary does not get to know or base

its decision on the private randomness of Alice or Bob (except

for what it can learn about it through the communicated

symbols). In the shared randomness setting we differentiate

between the default setting, in which the adversary gets to

know the shared randomness as well, that is, base its decisions

in round i also on any Rj with j ≤ i, and the hidden shared
randomness setting in which the the shared randomness is a

secret between Alice and Bob which the adversary does not

know.

We also consider various relaxations of this all powerful

fully adversarial channel model: We call an adversary compu-
tationally bounded if the decisions of the adversary in each

round are required to be computable in time polynomial in

N . We call an adversary oblivious if it makes all its decisions

in advance, in particular, independently of the communication

history. A particular simple such oblivious adversary is the

random error channel which introduces a corruption in each

round independently with probability ε. We will consider

random channels mostly for binary channels for which a

corruption is simply a bit-flip.

C. Adaptive Interactive Protocols

It is natural and in many cases important to also allow

for adaptive protocols which base their communication order

decisions on the communication history. We follow [11] in

formalizing the working of the channel in these situations. In

particular, in the case of both parties transmitting no symbol is

delivered to either party because neither party listens anyway.

In the case of both parties listening the symbols received are

undetermined with the requirement that the protocol works for

any received symbols. In many cases it is easiest to think of

the adversary being allowed to choose the received symbols,

without it being counted as a corruption.

D. Robust Simulations

A protocol Π′ is said to robustly simulate a deterministic

protocol Π over a channel C if the following holds: Given any

inputs to Π, both parties can (uniquely) decode the transcript

of the execution of Π over the noise free channel on these

inputs from the transcript of an execution of Π′ over the

channel C. For randomized protocols we say protocol Π′

robustly simulates a protocol Π with failure probability p over

a channel C if, for any input and any adversary behind C, the

probability that both parties correctly decode is at least 1− p.

We note that the simulation Π′ typically uses a larger number

of rounds, e.g., αn rounds for some α > 1.

III. CHANNEL CAPACITIES FOR INTERACTIVE VS.

ONE-WAY COMMUNICATION

In this section we explain the important difference in

correcting errors for interactive communications in contrast to

the standard one-way setting of error correcting codes. We then

quantify this difference and give the high-level argument for

why 1−Ω(√ε) is the best possible communication rate one can

expect for coding schemes that make interactive communica-

tions robust to even just random noise. The impossibility result

of [13] can be seen as formalizing a very similar argument.

A. The Difficulties of Coding for Interactive Communications

We first explain, on a very intuitive level, why making

interactive communications resilient to noise is much harder

than doing the same for one-way communications. In partic-

ular, we want to contrast the task of Alice transmitting some

information to Bob with the task of Alice and Bob having

a conversation, e.g., an interview of Bob by Alice, both in a

noisy environment. The main difference between the two tasks

is that in the one-way communication Alice knows everything

she wants to transmit a priori. This allows her to mix this

information together in an arbitrary way by using redundant

transmissions that protects everything equally well. This con-

trasts with an interactive communication where Alice’s trans-

missions depend highly on the answers given by Bob. In our

interview example, Alice cannot really ask the second question

before knowing the answer to her first question as what she

wants to know from Bob might highly depend on Bob’s first

answer. Even worse, Alice misunderstanding the first answer

might completely derail the interview into a direction not

related to the original (noise free) conversation. In this case,

everything talked about in the continuing conversation will be

useless, even without any further noise or misunderstandings,

until this first misunderstanding is detected. Lastly, in order to

resolve a detected misunderstanding the conversation has to

backtrack all the way to where the misunderstanding happened

and continue from there.

B. The 1− Ω(
√
ε) Fundamental Rate Limit

Next, we aim to quantify this difference and argue for

1 − Θ(
√
ε) being a fundamental rate limit of interactive

communication, even for random errors. We pick the simplest

noise model and assume, for now, that Alice and Bob try

229229



to communicate over a binary symmetric channel, that is, a

binary random error channel which flips each bit transmitted

independently with the small error probability ε. For the one-

way communication task Alice can simply transmit everything

she wants to send followed by a few check-sums over the

complete message. It is a classical result that for a full error

recovery it suffices to add to the transmission approximately

H(ε) as many randomly picked linear check-sums as transmit-

ted symbols, which in the binary case are simply parities over

a randomly chosen subset. This leads to a rate of 1 − H(ε)
which is also optimal.

Now we consider Alice and Bob having an interactive

conversation over the same channel. Because of the noise

Alice and Bob will need to add some redundancy to their

conversation at some point in order to at least detect whether

a misunderstanding has happened. For this one (check-)bit is

necessary. Say they do this after r steps. The likelihood for

an error to have happened is rε at this point and the length

of the conversation that needs to be redone because of such

a preceding misunderstanding is of expected length r
2 . This

leads to an expected rate loss of Θ(rε) because every r steps

an expected r2ε
2 steps are wasted. With this reasoning one

would like to make r as small as possible. However, adding

one unit of redundancy every r steps leads to a rate loss of
1
r itself regardless of whether errors have occurred. Balancing

r to minimize these two different causes of rate loss leads

to an optimal rate loss of Θ(minr{rε + 1/r}) = Θ(
√
ε)

assuming r is set optimally to r = 1√
ε
. This argument applies

in essentially any interactive coding setting and explains why

the fundamental channel capacity drops from 1 − H(ε) to

1−Θ(
√
ε) for interactive communications.

IV. A SIMPLE CODING SCHEME FOR LARGE ALPHABETS

In this section, as a warmup, we give a simple coding

scheme that achieves a rate of 1 − Θ(
√
ε) against any fully

adversarial error channel, albeit while assuming that the orig-

inal protocol and the channel operate on words, that is, on the

same Θ(log n) bit-sized alphabet.

A. Overview

To design our coding scheme we follow the idea is outlined

in Section I-B and turn the 1−Ω(
√
ε) bound from Section III

it into a converse, that is, prove it to be tight by designing a

protocol achieving this rate. Our protocol can also be seen as

a drastically simplified version of [1].

In particular, the parties start with performing the original

interactive protocol without any coding for r = Θ( 1√
ε
) steps

as if no noise is present at all. Both parties then try to verify

whether an error has occurred. They do this by randomly

sampling a hash function and sending both the description of

the hash function as well as the hash value of their complete

communication transcript up to this point. They use rc = O(1)
symbols for this check and initiate a backtracking step if a

mismatch is detected.

The (standard) hash functions used for this and throughout

this paper are derived from the ε-biased probability spaces

constructed in [14]. These hash functions give the following

guarantees:

Lemma IV.1 ( [14]). For any n, any alphabet Σ, and any
probability 0 < p < 1, there exist s = Θ(log(n log |Σ|) +
log 1

p ), o = Θ(log 1
p ), and a simple function h, which given

an s-bit uniformly random seed S maps any string over Σ of
length at most n into an o-bit output, such that the collision
probability of any two n-symbol strings over Σ is at most p. In
short: ∀n,Σ, 0 < p < 1 : ∃s = Θ(log(n log |Σ|)+log 1

p ), o =

Θ(log 1
p ), h : {0, 1}s × Σn �→ {0, 1}o s.t. ∀X,Y ∈ Σ≤n,X 	=

Y,S ∈ {0, 1}s iid Bernoulli(1/2) : P [hS(X) = hS(Y)] ≤ p

The setting of interest to our first algorithm is that any two

Θ(n) bit strings can, with high probability, be distinguished

by a random hash function which creates o = Θ(log n) size

fingerprints and requires a seed of only Θ(log n) bits. This

allows us to communicate both the selected hash function

(seed) and the corresponding hash value of the O(n) long

transcript using only rc = Θ(1) symbols of Θ(log n) bits

each.

A last minor technical detail is a simple preprocessing

step in which the original protocol Π is modified by adding

Θ(
√
εn) steps at the end, in which both parties send each other

a fixed symbol. These steps should be interpreted as confir-

mation steps which reaffirm the correctness of the previous

conversation. This ensures that the simulation Π′ never runs

out of steps of Π to simulate.

B. Algorithm

Putting these ideas together leads to our first, simple coding

scheme which achieves the optimal 1 − Θ(
√
ε) error rate for

any logarithmic bit-sized alphabet:

Algorithm 1 Simple Coding Scheme for Θ(log n)-bit alphabet

Σ
1: Π← n-round protocol to be simulated + final confirmation steps
2: hash← hash family with p = 1/n5 and o = s = Θ(logn)

3: rc ← Θ(1); r ←
⌈√

rc
ε

⌉
; Rtotal ← �n/r + 32nε�; T← ∅

4: for R = 1 to Rtotal do
5: S← s uniformly random bits � Verification Phase
6: Send (S, hashS(T), |T|); Receive (S′, H′T, l′)
7: HT ← hashS′ (T); l← |T|
8: if HT = H′T then � Computation Phase
9: continue computation of Π for r communications and record

those in T
10: else
11: do r dummy communications keeping T unchanged

12: if HT �= H′T and l ≥ l′ then � Transition Phase
13: rollback computation of Π and transcript T by r steps

14: Output the outcome of Π corresponding to transcript T

C. Proof of Correctness

Theorem IV.2. Suppose any n-round protocol Π using an
alphabet Σ of bit-size Θ(log n). Algorithm 1 is a computa-
tionally efficient randomized coding scheme which given Π,
with probability 1 − 2−Θ(nε), robustly simulates it over any
fully adversarial error channel with alphabet Σ and error rate

230230



ε. The simulation uses n(1 + Θ(
√
ε)) rounds and therefore

achieves a communication rate of 1−Θ(
√
ε).

Proof Outline: We show that the algorithm terminates

correctly by defining an appropriate potential Φ. We prove

that any iteration without an error or hash collision increases

the potential by at least one while any error or hash collision

reduces the potential by at most some fixed constant. Lastly,

we show that with very high probability the number of hash

collisions is at most O(εn) and therefore negligible. This

guarantees an overall potential increase that suffices to show

that the algorithm terminates correctly after the fixed Rtotal

number of iterations.

Potential: The potential Φ is based on the transcript T
of both parties. We use TA and TB to denote the tran-

script of Alice and Bob respectively. We first define the

following intermediate quantities: The agreement l+ between

the two transcripts at Alice and Bob is the number of

blocks of length r in which they agree, that is, l+ =⌊
1
r max {l′ s.th. TA[1, l

′] = TB [1, l
′]}⌋ . Similarly, we define

the amount of disagreement l− as the number of blocks they

do not agree on: l− = |TA|+|TB |
r − 2l+. The potential Φ is

now simply defined as Φ = l+ − l−.

Corollary IV.3. Each iteration of Algorithm 1 without a hash
collision or error increases the potential Φ by at least one.

Proof. If TA = TB then both parties continue computing

Π from the same place and, since no error happens, both

parties correctly add the next r communications of Π to their

transcripts. This increases l+ and therefore also the overall

potential Φ by one.

If TA 	= TB and no hash collision happens then both

parties realize this discrepancy and also learn the correct length

of the other party’s transcript. If |TA| = |TB | then both

parties backtrack one block which reduces l− by two and thus

increases the potential by two. Otherwise, the party with the

longer transcript backtracks one block while the other party

does not change its transcript. This reduces l− by one and

increases the overall potential Φ by one.

Corollary IV.4. Each iterations of Algorithm 1, regardless
of the number of hash collisions and errors, decreases the
potential Φ by at most three.

Proof. No matter what is received during an iteration a party

never removes more than one block from its transcript. Sim-

ilarly, at most one block is added to TA and TB . Overall in

one iteration this changes l+ by at most by one and l− at most

by two. The overall potential Φ changes therefore at most by

three in any iteration.

Next, we argue that the number of iterations of Algorithm 1

with a hash collision is negligible. To be precise, we say

an iteration suffers a hash collision if TA 	= TB but either

hashSB
(TA) = hashSB

(TB) or hashSA
(TA) = hashSA

(TB).
In particular, we do not count iterations as suffering a hash

collision if the random hash functions sampled would reveal

a discrepancy but this detection, e.g., in Line 12, is prevented

by corruptions in the transmission of a hash value or seed. To

prove the number of hash collisions to be small we crucially

exploit the fact that the randomness used for hashing is sam-

pled afresh in every iteration. In particular, it is sampled after

everything that is hashed in this iteration is already irrevocably

fixed. This independence allows to use the collision resistance

property of Lemma IV.1 which shows that any iteration suffers

from a hash collision with probability at most p = 1/n5.

A union bound over all iterations then shows that with high

probability no hash collision happens at all. Furthermore, using

the independence between iterations in combination with a

standard tail bound proves that the probability of having a

number of hash collisions of the same order of magnitude as

the number of errors is at least 1− 2−Θ(εn):

Corollary IV.5. The number of iterations of Algorithm 1
suffering from a hash collision is at most 6nε with probability
at least 1− 2−Θ(εn).

We are now ready to prove Theorem IV.2:

Proof of Theorem IV.2. There are at most 2nε errors and

according to Corollary IV.5 at most 6nε iterations with a

hash collision. This results in at most 8nε iterations in which,

according to Corollary IV.4 the potential Φ decreases (by at

most three). For the remaining Rtotal − 8nε = 
n/r + 24nε�
iterations Corollary IV.3 shows that the potential Φ increases

by one. This leads to a total potential of at least 
n/r� which

implies that after the last iteration both parties agree upon the

first n symbols of the execution of Π. This leads to both parties

outputing the correct outcome and therefore to Corollary IV.5

being a correct robust simulation of Π.

To analyze the round complexity and communication rate

we note that each of the Rtotal iteration consists of r com-

putation steps and rc = Θ(1) symbols exchanged during any

verification phase. The total round complexity of Algorithm 1

is therefore Rtotal · (r + rc) = 
n/r + 6nε� · (r + Θ(1)) =
n+Θ(nεr+ n/r+ nε) = n(1 +Θ(εr+ 1/r)). Choosing the

optimal value of r = Θ( 1√
ε
), as done in Algorithm 1, leads

to n(1 + Θ(
√
ε) rounds in total, as claimed.

V. PROBLEMS AND SOLUTIONS FOR SMALL ALPHABETS

In this section we explain the barriers preventing Algo-

rithm 1 to be applied to channels with small alphabets and

then explain the solutions and ideas put forward in this work

to circumvent them.

A. Problems with Small Alphabets

It is easy to see that the only thing that prevents Algorithm 1

from working over a smaller alphabet is that the verification

phase uses Θ(log n) bits of communication which are ex-

changed using rc = Θ(1) symbols from the large alphabet.

For an alphabet of constant size this is not possible and

rc = Θ(log n) rounds of verification would be needed which

is not possible. In Algorithm 1 the logarithmic amount of

communication is used thrice: for the hash function seed, the

231231



hash function value, and to coordinate the backtracking by

communicating the transcript length.

1) Logarithmic Length Information to Coordinate Back-
tracking: The simplest idea for backtracking would be to

have both parties go back some number of steps whenever

a non-matching transcript is detected. This works well if both

parties have equally long transcripts. Unfortunately, transcripts

of different length are unavoidable because the adversary can

easily make only one party backtrack while the other party

continues. Then, if both parties always backtrack the same

number of steps, both parties might reverse correct parts of

the transcript without getting closer to each other. This means

that with transcripts of different length the parties need to

first and foremost come to realize which party is ahead and

thus has to backtrack to the transcript length of the other

party. Unfortunately, an adversarial channel can easily create

transcript length differences of Θ(nε) steps between the two

parties. For this it completely interrupts the communication of

a simulation, as an “attacker in the middle”, at a given point

of time and simulates a faulty party with Alice, making her

backtrack, while simulating a fully compliant party with Bob,

making him go forward in an arbitrary wrong direction. With

such large length differences it seems hard to achieve synchro-

nization without sending logarithmic size length information.

Another problem is that, especially when dealing with ad-

versarial channels, performing large re-synchronization steps

is dangerous. In particular, if there is a way to make a

party backtrack for a super-constant number of iterations

triggered by only a constant amount of communication then

the adversary can exploit this mechanism by faking this trigger.

This would lead to ω(1) backtracking steps for every constant

number of errors invested by the adversary and therefore make

an optimal communication rate impossible.

2) Logarithmic Length Seeds and Hash Values: In the

implementation of Algorithm 1 the seeds used to initialize the

hash functions as well as the generated hash value itself are

Θ(log n) bits long. Looking at Lemma IV.1 reveals that this

requirement comes both from the desire to make the collision

probability small but also from the fact that we are hashing

whole transcripts which are O(n) bits long. One way to try to

get around the later problem is to try hashing only the last few

rounds. However, in the adversarial setting, it is unavoidable

to have errors that go undetected for nε rounds since the

adversary can completely take over the conversation for this

long. Another option would be to look for hash functions with

a sub-logarithmic dependence on the length of the strings to

be hashed. Unfortunately, this is not possible (see [12]).

B. Our Solutions

In this section we explain our solutions to the above

problems and introduce the working parts and rationale behind

Algorithm 3 and Algorithm 4.

1) Meeting Point Based Backtracking: We first explain how

our algorithms coordinate their backtracking actions while

exchanging only O(1) bits per verification phase. In particular,

we explain how the parties in our coding scheme determine

where to and when to backtrack once they are aware that their

transcripts are not in agreement or not synchronized.

Recall the second observation from Section V-A1 that

parties cannot backtrack for more than a constant number of

steps for every verification step, which consists of O(1) bits of

communication. In order to achieve this it is clear that parties

might not be able to backtrack at all, even if non-matching

transcripts were detected. Our algorithms implement this by

maintaining at each party a threshold k for how far the party

is willing to backtrack. For every iteration with an unresolved

transcript inconsistency, that is, for every iteration since the

last computation or backtracking step, this threshold increases

by one without the party actually performing a backtracking

step. The k values are kept synchronized between the two

parties by including hashes of them in the verification phase

and resetting them if too many discrepancies, measured by the

error variable E, are observed.

Now, with both parties having the same threshold k for

how far they are able and willing to backtrack we define

meeting points at which the parties can meet without having to

communicate their position, i.e., their Θ(log n) bit transcript

length description. For this we create a scale k̃ by rounding k
to the next power of two, that is, k̃ = 2�log2 k�, and define the

meeting points on this scale to be all multiples of k̃r. A party

is willing to backtrack to either of the two closest such meeting

points, namely, MP1 = k̃r
⌊
|T|
k̃r

⌋
and MP2 = MP1 − k̃r. It is

easy to see that these meeting points are consistent and have

the property that any two parties with the same scale k̃ and a

difference of l− < 2k̃ have at least one common meeting point

up to which their transcripts agree. In each verification phase

both parties send hash values of their transcripts up to these

two meeting points, in the hope to find a match. We note that

for a scale k̃ there are 0.5k̃ hash comparisons generated during

the time both parties look for a common meeting point at this

scale k̃. If most of these hashes, e.g., 0.4k̃ many, indicate a

match a party backtracks to this point.

A potential function argument very similar to the one

given for Algorithm 1 in Section IV-C, except for obviously

involving many more cases, shows that this backtracking

synchronization works as well as before while communicating

only small hashes instead of logarithmic bit-sized length

information.

2) Hash Values and Seeds: Next, we explain the strategies

we use to reduce the communication overhead in the verifica-

tion phase stemming from large hash values and seeds. The

discussion regarding the seed length can be found in [12]. The

reader is however highly encouraged to read it before trying

to understand the hashing analysis.

Constant Size Hash Values: We concentrate on reducing

the size of the hash values to a constant. What comes to

the rescue here is the observation that hashing only makes

one-sided errors, that is, it only confuses different strings for

equal but never the other way around since hash values of the

same string will always match. Since the primary cause for a

non-matching transcript is an iteration with an error one would

232232



furthermore expect that there are few, say O(nε), opportunities

for such a hash collision to happen. This would make it

possible to have a constant hash collision probability without

increasing the number of hash collisions beyond Θ(nε). This

intuition is indeed correct and can be formalized relatively

easily, as shown in [12].

VI. OUR CODING SCHEMES

A. The Robust Randomness Exchange Subroutine

The Robust Randomness Exchange Subroutine is used to

exchange some randomness at the beginning of the algorithm

using an error correcting code which is then stretched to a

longer δ=biased pseudo random string of length l using [14].

This string is then used by both parties to provide the random

seeds for selecting the hash functions in each iteration (see

also [12]).

Algorithm 2 Robust Randomness Exchange(l,δ)

1: Input: desired number of bits l and bias δ of the shared randomness
2: Output: shared random string R of length l and bias δ
3: l′ = Θ(log δ + log l)

4: C ← ECC {0, 1}l′ → {0, 1}Θ(l′+nH(ε)) with distance 4nε
5: if Alice then
6: R′ ← uniform random bit string of length l′
7: Transmit C(R′) to Bob
8: else if Bob then
9: Receive C′ from Alice

10: R′ ← Decoding of C′

11: R← δ-biased pseudo random string of length l derived from R′

B. The Inner Product Hash Function

In our algorithms we use the following, extremely simple,

inner product hash function, which allows for an easy analysis

given the δ-biased property of the shared random seed:

Definition VI.1 (Inner Product Hash Function). For any
input length L and any output length o we define the inner
product hash function hS(.) as doing the following: For a
given binary seed S of length at least 2oL it takes any
binary input string X of length l ≤ L, concatenates this
input with its length X̃ = (S, |S|) to form a string of length
l̃ = |X̃| = |X|+ 
log2 |X|� ≤ 2L and then outputs the o inner
products

〈
X̃,S[i · 2L+ 1, i · 2L+ l̃]

〉
for every i ∈ [0, o− 1].

The next corollary states the trivial fact that the inner

product hash function is a reasonable hash function with

collision probability exponential in its output length if a (huge)

uniformly random seed is used. It also states that replacing this

uniform seed by a δ-biased one does not change the outcome

much. This follows directly from the definition of δ-bias:

Corollary VI.2. Consider a pairs of binary strings X 	= Y
each of length at most L, and suppose h is the inner product
hash function for input length L and any output length o.
Suppose furthermore that S is seed string of length at least
n · 2oL which is sampled independently of X,Y. The collision
probability P [hS(X) = hS(Y)] is exactly 2−o if S is sampled
from the uniform distribution. Furthermore, if the seed S is

sampled from a δ-biased distribution the collision probability
remains at most 2−o + δ.

Lastly, the next lemma summarizes the advantage of the

inner product hash function in combination with a δ-biased

seed, namely that this bias translates directly to the exact same

bias on the output distribution. This uses the above mentioned

fact from [14] that δ-bias also extends beyond variables to any

set of linearly independent tests:

Lemma VI.3. Consider n pairs of binary strings
(X1,Y1), . . . , (Xn,Yn) where each string is of length at
most L, and suppose h is the inner product hash function for
input length L and any output length o. Suppose furthermore
that S is a random seed string of length at least n · 2oL
which is sampled independently of the X and Y inputs and is
cut into n strings S1,S2, . . . ,Sn. Then the output distribution
(x1, . . . , xn) = (hS1

(X2)− hS2
(Y1), . . . , hSn

(X2)− hSn
(Y1))

for a S sampled from a δ-biased distribution is δ-statistically
close to the output distribution for a uniformly sampled
S for which each xi is equal to zero if Xi = Yi and
independently uniformly random otherwise (which also
implies P [xi = 0] = 2−o).

C. Our Coding Schemes

Algorithm 3 Coding Scheme for Oblivious Adv. Channels

1: Π← n-round protocol to be simulated + final confirmation steps
2: hash← inner product hash fam. with o = Θ(1) and s = Θ(n)

3: rc ← Θ(1); r ←
⌈√

rc
ε

⌉
; Rtotal ← �n/r + 65nε�; T← ∅

4: Reset Status: k,E,v1,v2← 0
5: R = Robust Randomness Exchange(l = Rtotal · s, δ = 2−Θ(n

r
o))

6: for Rtotal iterations do
7: k← k+ 1; k̃← 2�log2 k�

8: MP1← k̃r
⌊ |T|
k̃r

⌋
; MP2← MP1− k̃r � Verification Phase

9: S← s new preshared random bits from R
10: Send (hashS(k), hashS(T), hashS(T[1,MP1]), hashS(T[1,MP2]))
11: Receive (H′k, H

′
T, H

′
MP1, H

′
MP2);

12: h(.) = hashS(.)
13: (Hk, HT, HMP1, HMP2) ← (h(k), h(T), h(T[1, MP1]), h(T[1, MP2]))

14: if Hk �= H′k then
15: E← E+ 1
16: else
17: if HMP1 ∈ {H′MP1, H′MP2} then
18: v1← v1+ 1
19: else if HMP2 ∈ {H′MP1, H′MP2} then
20: v2← v2+ 1
21: if k = 1 and HT = H′T and E = 0 then � Computation Phase
22: continue computation and transcript T for r steps
23: Reset Status: k,E,v1,v2← 0
24: else
25: do r dummy communications

26: if 2E ≥ k then � Transition Phase
27: Reset Status: k,E,v1,v2← 0
28: else if k = k̃ and v1 ≥ 0.4 · k̃ then
29: rollback computation and transcript T to position MP1
30: Reset Status: k,E,v1,v2← 0
31: else if k = k̃ and v2 ≥ 0.4 · k̃ then
32: rollback computation and transcript T to position MP2
33: Reset Status: k,E,v1,v2← 0
34: else if k = k̃ then
35: v1,v2← 0

36: Output the outcome of Π corresponding to transcript T

233233



Algorithm 4 Coding Scheme for Fully Adversarial Channels

1: Π← n-round protocol to be simulated + final confirmation steps
2: hash1 ← inner product hash fam. with o1 = Θ(log 1

ε
) and s1 = Θ(n)

3: hash2 ← hash fam. with p2 = 0.1, o2 = Θ(1), and s2 =
Θ(log log 1

ε
)

4: Rtotal ← �n/r�+Θ(nε); rc ← Θ(log log 1
ε
); r ←

⌈√
rc
ε

⌉
; T← ∅

5: Reset Status: k,E,v1,v2← 0
6: R = Robust Randomness Exchange(l = Rtotal · s1, δ = 2−Θ(n

r
))

7: for Rtotal iterations do
8: k← k+ 1; k̃← 2�log2 k�

9: MP1← k̃r
⌊ |T|
k̃r

⌋
; MP2← MP1− k̃r � Verification Phase

10: S1 ← s1 new preshared random bits from R
11: S2 ← s2 “fresh” random bits
12: hash(.) = hash2,S2 (hash1,S1 (.))
13: Send (S2, hash(k), hash(T), hash(T[1,MP1]), hash(T[1,MP2]))
14: Receive (S′2, H

′
k, H

′
T, H

′
MP1, H

′
MP2);

15: h′(.) = hash2,S′2
(hash1,S1 (.))

16: (Hk, HT, HMP1, HMP2)← (h′(k), h′(T), h′(T[1, MP1]), h′(T[1, MP2]))
17: Remaining Code as in Lines 14 to 36 in Algorithm 3

VII. ANALYSES AND PROOFS OF CORRECTNESS

Theorem VII.1. Suppose any n-round protocol Π using
any alphabet Σ. Algorithm 3 is a computationally efficient
randomized coding scheme which given Π, with probability
1 − 2−Θ(nε), robustly simulates it over any oblivious adver-
sarial error channel with alphabet Σ and error rate ε. The
simulation uses n(1 + Θ(

√
ε)) rounds and therefore achieves

a communication rate of 1−Θ(
√
ε).

Theorem VII.2. Suppose any n-round protocol Π using
any alphabet Σ. Algorithm 4 is a computationally efficient
randomized coding scheme which given Π, with probability
1 − 2−Θ(nε), robustly simulates it over any fully adversarial
error channel with alphabet Σ and error rate ε. The simulation
uses n(1 + Θ(

√
ε log log 1

ε ) rounds and therefore achieves a

communication rate of 1−Θ(
√
ε log log 1

ε ).

Proof Outline: We use the same proof structure as already

introduced in Section IV-C. In particular, we show that the

algorithm terminates correctly by defining a potential Φ. We

prove that any iteration without an error or hash collision

increases the potential by at least a constant while any iteration

with an error or hash collision reduces the potential at most

by some constant. We do this in two steps: First we show

that this statement is true for the computation and verification

phase of each iteration only. We then show that any transition

in the transition phase does not decrease the potential. As a

last step, we bound the number of hash collisions to be of the

same order as the number of errors. This is the sole part in

which the analyses of Algorithm 3 and Algorithm 4 differ.

Potential: The potential Φ is based on the variables k, E,

and T of both parties. For these variables we use a subscript

A or B to denote the value of the variable for Alice and Bob

respectively. We also denote with the subscript AB the sum

of both these variables, e.g., kAB = kA+kB . To define Φ we

need the following intermediate quantities:

As before, we define the amount of agreement l+ and

disagreement l− between the two paths computed at Alice

and Bob as l+ =
⌊
1
r max {l′ s.th. TA[1, l

′] = TB [1, l
′]}⌋ and

l− = |TA|+|TB |
r − 2l+.

For sake of the analysis we also define two variables BV CA

and BV CB which count the contribution of hash collisions

and corruptions to v1 and v2 at Alice and Bob. In any iteration

in which v1 of either party increases in Line 18 without

T[1,MP1] matching either T[1,MP1] or T[1,MP2] of the other

party we count this as a bad vote and increase both BV CA

and BV CB . Similarly, we increase both BV C values if v2
of a party increases in Line 20 without T[1,MP2] matching

either T[1,MP1] or T[1,MP2] of the other party. On the other

hand, if one such match occurs but the corresponding vote

does not increase, e.g., due to a corruption, then we call this

an uncounted vote and also increase BV CA and BV CB by

one. With every status reset (Lines 27, 30 and 33) we also set

the BV C count of this party to be zero. We remark that the

BV C values are not known to either party; they are merely

used to facilitate our analysis.
To weight the various contributions to the potential we use

the constants 1 < C2 < C3 < C4 < C5 < C6, which are

chosen such that Ci is sufficiently large depending only on Cj

with j < i. The potential Φ is now defined to be

l+ − C3 · l− + C2 · kAB − C5 · EAB − 2C6 ·BV CAB

if kA = kB and

l+ − C3 · l− − 0.9C4 · kAB + C4 · EAB − C6 · BV CAB

otherwise.

Lemma VII.3. In every computation and verification phase
the potential decreases at most by a fixed constant, regardless
of the number of errors and hash collisions. Furthermore, in
the absence of an error or hash collision the potential strictly
increases by a at least one.

Proof. All quantities on which the potential depends change

at most by a constant during any computation and verification

phase. The maximum potential change is therefore at most

a constant. Now we consider the case that no error or hash

collision happened. In this case, the BV CAB value does not

change. Furthermore, computation only happens if TA = TB

which implies that the l+ −C3 · l− part of the potential does

not decrease. Lastly, both kA and kB increase by one and if

they are not equal EA and EB increase by one, too. In the first

case the increase of kAB leads to a total potential increase of

2C2 > 1 in the later case the increase of kAB and EAB leads

to a total potential change of 2(−0.9C4+C4) which is at least

one for sufficiently large C4. The potential therefore strictly

increases by at least one in the computation and update phase

when no error or hash collision happens.

Lemma VII.4. In every iteration the potential decreases at
most by a fixed constant, regardless of the number of errors
and hash collisions. Furthermore, in the absence of an error
or hash collision the potential strictly increases by at least
one.

Next, we show that our hash function families and the

randomness used in our algorithms is strong enough to ensure

that the total number of hash collisions is small, namely

234234



comparable to the number of errors. This allows us to treat

any iteration with a hash collisions as adversarially corrupted

and thus equivalent to an iteration with errors.

We start by showing that the potential Φ cannot grow too

fast. In particular, it grows naturally by one per iteration when

a correct computation step is performed. On the other hand,

any corruption cannot increase this by more than a constant

per error:

Lemma VII.5. The total potential Φ after R iterations is at
most R+ 20C2nε.

Now we can show the number of hash collisions in Algo-

rithm 3 to be small:

Lemma VII.6. For any protocol Π and any oblivious ad-
versary the number of iterations suffering a hash collision in
Algorithm 3 is at most Θ(εn), with probability 1− 2−Θ(nε).

Next, we show that the hash1 hash function in Algorithm 4

also causes at most Θ(εn) hash collisions, even for a fully

adversarial channel:

Lemma VII.7. For any protocol Π and any fully adversarial
channel the number of iterations with hash collisions due to
first hashing with the hash function hash1 in Algorithm 4 is
at most Θ(εn), with probability 1− εΘ(nε).

Lemma VII.7 implies that even if we treat hash1 hash

collisions in Algorithm 4 as errors then this only increases

the number of possible errors by a constant factor. We can

therefore restrict ourselves in the next lemma to analyzing hash

collisions due to the hash2 hash function. This hash function

however only needs to map the short o1 = Θ(log 1
ε ) long hash

values to a constant output of length o2 = Θ(1). Using the

hash functions from Lemma IV.1 for this only Θ(log log 1
ε )

bit sized seeds are necessary. Similar to Corollary IV.5 these

small seeds are sampled afresh in every iteration which makes

the hash collisions due to hash2 being dominated by indepen-

dent Bernoulli(Θ(1)) trials. Again, following the arguments in

Lemma VII.6 having more than Θ(nε) such hash collisions has

a probability of at most 2−Θ(nε):

Corollary VII.8. For any protocol Π and any fully adversarial
channel the number of iterations with hash collisions due to
hashing with the hash function hash2 in Algorithm 4 is at
most Θ(εn), with probability 1− 2−Θ(nε).

With these Θ(nε) bounds on the total number of hash

collisions in both Algorithm 3 and Algorithm 4 we can prove

our main results:

Proof of Theorem VII.1 and Theorem VII.2. Lemmas VII.6

and VII.7 and Corollary VII.8 show that both in Algorithm 3

and Algorithm 4 at most Θ(nε) hash collisions or errors

happen. Lemma VII.4 shows that the potential drop in these

rounds is bounded by a fixed Θ(nε) while the potential

increases by at least one in the remaining Rtotal − Θ(nε)
rounds. For a sufficiently large Rtotal = 
n/r� + Θ(nε) this

implies a potential of at least Φ > 
n/r� + Θ(nε) in the

end. Following the arguments in Lemma VII.5 we get that

l+ ≥ 
n/r� which implies that the parties agree upon the first

n symbols of the execution of Π and therefore both output

the correct outcome.

The total round complexity of the main loop in both

algorithms is Rtotal(r + rc) = (
n/r� + Θ(nε))r(1 + rc
r ) =

n(1 + Θ(rε))(1 + rc
r ) = n(1 + Θ(rε + rc

r )) and in both

algorithms r is set to the (asymptotically) optimal value

r =
⌈√

rc
ε

⌉
which makes this round complexity equal to

n(1 + Θ(
√
rcε)). In Algorithm 3 rc = Θ(1) which leads

to a round complexity of n(1 + Θ(
√
ε)) in the main loop.

In Algorithm 4 rc = Θ(log log 1
ε ) which leads to a round

complexity of n(1+Θ(
√
ε log log 1

ε )) in the main loop. In both

algorithms the communication performed by the randomness

exchange is Θ(n
√
ε) many rounds and therefore negligible.

This shows the communication rate of Algorithm 3 to be

1 − Θ(
√
ε) and the communication rate of Algorithm 4 to

be 1−Θ(
√

ε log log 1
ε ) as desired.

REFERENCES

[1] Z. Brakerski and Y. Kalai. Efficient interactive coding against adversarial
noise. In Proceedings of the IEEE Symposium on Foundations of
Computer Science (FOCS), pages 160–166, 2012.

[2] Z. Brakerski and M. Naor. Fast algorithms for interactive coding.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 443–456, 2013.

[3] M. Braverman. Coding for interactive computation: progress and
challenges. In Allerton Conference on Communication, Control, and
Computing (Allerton), pages 1914–1921, 2012.

[4] M. Braverman and K. Efremenko. List and unique coding for interactive
communication in the presence of adversarial noise. In Proceedings
of the IEEE Symposium on Foundations of Computer Science (FOCS),
2014.

[5] M. Braverman and A. Rao. Towards coding for maximum errors in
interactive communication. In Proceedings of the ACM Symposium on
Theory of Computing (STOC), pages 159–166, 2011.

[6] K. Efremenko, R. Gelles, and B. Haeupler. Maximal noise in interactive
communication over erasure channels and channels with feedback. In
arXiv, 2014.

[7] M. Franklin, R. Gelles, R. Ostrovsky, and L. J. Schulman. Optimal
coding for streaming authentication and interactive communication. In
Proceedings of International Cryptology Conference (CRYPTO), pages
258–276, 2013.

[8] R. Gelles and B. Haeupler. Capacity of interactive communication over
erasure channels and channels with feedback. In arXiv, 2014.

[9] R. Gelles, A. Moitra, and A. Sahai. Efficient and explicit coding for
interactive communication. In Proceedings of the IEEE Symposium on
Foundations of Computer Science (FOCS), pages 768–777, 2011.

[10] M. Ghaffari and B. Haeupler. Optimal Error Rates for Interactive Coding
II: Efficiency and List decoding. In Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS), 2014.

[11] M. Ghaffari, B. Haeupler, and M. Sudan. Optimal Error Rates for
Interactive Coding I: Adaptivity and other settings. In Proceedings of
the ACM Symposium on Theory of Computing (STOC), pages 794–803,
2014.

[12] B. Haeupler. Interactive channel capacity revisited. In arXiv, 2014.
[13] G. Kol and R. Raz. Interactive channel capacity. In Proceedings of

the ACM Symposium on Theory of Computing (STOC), pages 715–724,
2013.

[14] J. Naor and M. Naor. Small-bias probability spaces: Efficient con-
structions and applications. SIAM Journal on Computing (SICOMP),
22(4):838–856, 1993.

[15] L. J. Schulman. Coding for interactive communication. IEEE Transac-
tions on Information Theory (TransInf), 42(6):1745–1756, 1996.

235235


