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Abstract—In this paper we present a quantum algorithm
solving the triangle finding problem in unweighted graphs
with query complexity Õ(n5/4), where n denotes the number
of vertices in the graph. This improves the previous upper
bound O(n9/7) = O(n1.285...) recently obtained by Lee,
Magniez and Santha. Our result shows, for the first time, that
in the quantum query complexity setting unweighted triangle
finding is easier than its edge-weighted version, since for finding
an edge-weighted triangle Belovs and Rosmanis proved that
any quantum algorithm requires Ω(n9/7/

√
log n) queries.

Our result also illustrates some limitations of the non-adaptive
learning graph approach used to obtain the previous O(n9/7)
upper bound since, even over unweighted graphs, any quantum
algorithm for triangle finding obtained using this approach
requires Ω(n9/7/

√
log n) queries as well. To bypass the

obstacles characterized by these lower bounds, our quantum al-
gorithm uses combinatorial ideas exploiting the graph-theoretic
properties of triangle finding, which cannot be used when
considering edge-weighted graphs or the non-adaptive learning
graph approach.

Keywords-quantum algorithms; triangle finding; query com-
plexity;

I. INTRODUCTION

A. The triangle finding problem and its classical complexity

Triangle finding is a graph-theoretic problem whose com-

plexity is deeply connected to the complexity of several

other computational tasks in theoretical computer science,

such as solving path or matrix problems [3], [12], [16],

[22], [29], [28], [30]. In its standard version it asks to find,

given an undirected and unweighted graph G = (V,E),
three vertices v1, v2, v3 ∈ V such that {v1, v2}, {v1, v3} and

{v2, v3} are edges of the graph. It has been known for a long

time that this problem is not harder than Boolean matrix

multiplication [16], which implies that triangle finding in

a graph of n vertices can be solved in O(nω+ε) time for

any constant ε > 0, where ω represents the exponent of

square matrix multiplication (currently, the best known upper

bound on ω is ω < 2.3729, see [18], [27]). This is still

the best known upper bound on the classical time complex-

ity of triangle finding. Recently, Vassilevska Williams and

Williams showed a converse reduction [28]: they proved that

a subcubic-time algorithm for triangle finding can be used, in

a combinatorial way, to construct a subcubic-time algorithm

for Boolean matrix multiplication.

Much progress has furthermore been achieved recently on

understanding the classical complexity of weighted versions

of the triangle finding problem [12], [22], [29], [28], [30]. In

particular, it has been shown that the exact node-weighted

triangle finding problem, where the goal is to find three

vertices in a node-weighted graph such that the sum of the

weights of these three vertices is equal to a given value,

is not harder than matrix multiplication over a field [12],

[29]. For the exact edge-weighted triangle finding problem,

where the goal is to find three vertices v1, v2, v3 in a edge-

weighted graph such that the sum of the weights of {v1, v2},
{v1, v3} and {v2, v3} is equal to a given value, it has been

shown recently that the situation is completely different:

it requires Ω(n3−δ) time for all δ > 0 unless the 3SUM

problem on N integers can be solved in O(N2−δ/6) time

[22], [29], which strongly suggests that the edge-weighted

version of triangle finding is harder than its node-weighted

and unweighted versions.

In this paper triangle finding problem will always refer to

the unweighted version – this is the version studied in this

paper, as in most previous works on quantum algorithms.

The words node-weighted or edge-weighted will be explic-

itly added when referring to the weighted versions.

B. Quantum query algorithms for triangle finding

Besides the time complexity setting discussed above,

problems like triangle finding can also be studied in the

query complexity setting. In the usual model used to describe

the query complexity of such problems, the set of edges E
of the graph is unknown but can be accessed through an

oracle: given two vertices u and v in V , one query to the

oracle outputs one if {u, v} ∈ E and zero if {u, v} /∈ E. In

the quantum query complexity setting, one further assume

that the oracle can be queried in superposition. One of

the main interests of query complexity is that, being a

restricted model of computation, in many cases one can

show lower bounds on the complexity of problems (in

both the classical and quantum settings). For instance, it is

straightforward to show that the randomized classical query

complexity of triangle finding is Ω(n2), where n denotes

the number of vertices in the graph, which matches the

trivial upper bound. In comparison, several better quantum

query algorithms have been developed. Indeed, besides its
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theoretical interest, the triangle finding problem has been one

of the main problems that stimulated the development of new

techniques in quantum query complexity, and the history

of improvement of upper bounds on the query complexity

of triangle finding parallels the development of general

techniques in the quantum complexity setting, as we explain

below.

Among the first techniques for constructing quantum

algorithms were Grover search [13], which can be used to

obtain a quadratic speedup over classical exhaustive search

for any unstructured search problem, and its variant known

as amplitude amplification [8]. Grover search immediately

gives, when applied to triangle finding as a search over

the space of triples of vertices of the graph, a quantum

algorithm with query complexity O(n3/2). Using amplitude

amplification, Buhrman et al. [11] showed how to construct

a quantum algorithm for triangle finding with query com-

plexity O(n +
√

nm) for a graph with m edges, giving an

improvement for sparse graphs. Combining amplitude ampli-

fication with clever combinatorial arguments, Szegedy [25]

(see also [21]) constructed a quantum algorithm for triangle

finding with query complexity Õ(n10/7) = Õ(n1.428...).1

The quantum technique that led to the next improvement

was the concept of quantum walk search developed by

Ambainis [1], and used originally to construct an optimal

quantum algorithm for the element distinctness problem [1].

This new approach, which combines amplitude amplification

with a quantum version of random walks over Johnson

graphs and was later generalized to quantum walks over

more general graphs [20], [26], has turned out to be one of

the most useful tools for the design of quantum algorithms

for search problems. Magniez, Santha and Szegedy [21],

using quantum walk search, constructed a quantum algo-

rithm for triangle finding with improved query complexity

Õ(n13/10).
Besides Grover search and quantum walks, a third tech-

nique to design quantum query algorithms appeared recently

when Reichardt [23] proved that the general adversary

bound, initially shown to be only a lower bound on the

quantum query complexity [14], is actually an upper bound,

which implies that the quantum query complexity of a

problem can be found by solving a semi-definite positive

program. While this optimization problem in general ex-

ponentially many constraints, Belovs [5] then developed a

technique known as the learning graph approach to restrict

the search space to candidates that automatically satisfy the

constraints, thus giving an intuitive and efficient way to

obtain a (not necessarily optimal) solution of the original

optimization problem. Belovs [5] illustrated the power of

this new technique by using it to improve the quantum query

complexity of triangle finding to O(n35/27) = O(n1.296...).
Lee, Magniez and Santha [19] then showed, again using

1In this paper the Õ(·) notation removes poly(log n) factors.

learning graphs, how to further improve this query com-

plexity to O(n9/7) = Õ(n1.285...), which was the best upper

bound on the quantum complexity of triangle finding known

before the present paper. These two results based on learning

graphs actually used a simple notion of learning graphs

(referred to as “non-adaptive” learning graphs in [7]) where

the queries done by the algorithm do not depend on the

values of prior queries, which implies that the same upper

bound O(n9/7) holds for weighted versions of the triangle

finding problem as well. Jeffery, Kothari and Magniez [17]

showed how this complexity can also be achieved, up to

polylogarithmic factors, using quantum walks by introducing

the concept of nested quantum walks.

The best known lower bound on the quantum query

complexity of triangle finding is the trivial Ω(n). Belovs

and Rosmanis [7] recently showed that any quantum al-

gorithm (i.e., not necessarily based on learning graphs)

solving the edge-weighted triangle finding problem requires

Ω(n9/7/
√

log n) queries. Since a non-adaptive learning

graph does not treat differently the unweighted triangle

finding problem and its weighted versions, as mentioned

above, this lower bound for the weighted case implies

that any quantum algorithm for unweighted triangle finding

constructed using a non-adaptive learning graph requires

Ω(n9/7/
√

log n) queries as well, which matches, up to

logarithmic factors, the best known upper bound described in

the previous paragraph. Practically, this means that, in order

to improve by more than a 1/
√

log n factor the O(n9/7)-
query upper bound on the quantum query complexity of

triangle finding, one need to take in consideration the

difference between the unweighted triangle finding problem

and its edge-weighted version. Moreover, if the learning

graph approach is used, then the learning graph constructed

must be adaptive. While a concept of adaptive learning graph

has been developed by Belovs and used to design a new

quantum algorithm for the k-distinctness problem [4], so

far no application of this approach to the triangle finding

problem has been discovered.

C. Statement of our result

In this paper we show that it is possible to overcome the

Ω(n9/7/
√

log n) barrier, and obtain the following result.

Theorem 1. There exists a quantum algorithm that, given as
input the oracle of an unweighted graph G on n vertices,
outputs a triangle of G with probability at least 2/3 if a
triangle exists, and uses Õ(n5/4) queries to the oracle.

This result shows, for the first time, that in the quantum

setting unweighted triangle finding is easier than its edge-

weighted version, and thus sheds light on the fundamen-

tal difference between these two problems. Indeed, while

in the classical time complexity setting strong evidences

exist suggesting that the unweighted version is easier (as

already mentioned, the unweighted version is not harder than
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Boolean matrix multiplication while the exact edge-weighted

version is 3SUM-hard [22], [29]), Theorem 1, combined

with the lower bound by Belovs and Rosmanis [7], enables

us to give a separation between the complexities of these

two problems.

Naturally, our result exploits the difference between the

triangle finding problem and its weighted versions. Our

approach does not rely on learning graphs or nested quantum

walks, the techniques that were used to obtain the previous

best known upper bound. Instead, it relies on combinatorial

ideas that exploit the fact that the graph is unweighted, as

needed in any attempt to break the Ω(n9/7/
√

log n) barrier,

combined with Grover search, quantum search with variable

costs [2], and usual quantum walks over Johnson graphs.

Our quantum algorithm is highly adaptive, in that all later

queries depend on the results of the queries done in at a

preliminary stage by the algorithm. This gives another ex-

ample of separation between the query complexity obtained

by adaptive quantum query algorithms and the best query

complexity that can be achieved using non-adaptive learning

graphs (which is Ω(n9/7/
√

log n) for triangle finding, as

mentioned above), and thus sheds light on limitations of the

non-adaptive learning graph approach for graph-theoretical

problems such as triangle finding.

II. PRELIMINARIES

In this section we introduce some of our notations,

briefly describe the notion of quantum query algorithms

for problems over graphs and present standard algorithmic

techniques for solving search problems in the quantum

query complexity setting. We assume that the reader is

familiar with the basics of quantum computation and refer to,

e.g., [10] for a more complete treatment of quantum query

complexity.

For any finite set X and any r ∈ {1, . . . , |X|} we denote

S(X, r) the set of all subsets of r elements of X . Note

that |S(X, r)| =
(|X|

r

)
. We will use the notation E(X) to

represent S(X, 2), i.e., the set of unordered pairs of elements

in X .

Let G = (V,E) be an undirected and unweighted graph,

where V represents the set of vertices and E ⊆ E(V )
represents the set of edges. In the query complexity setting,

we assume that V is known, and that E can be accessed

through a quantum unitary operation OG defined as follows.

For any pair {u, v} ∈ E(V ), any bit b ∈ {0, 1}, and any

binary string z ∈ {0, 1}∗, the operation OG maps the basis

state |{u, v}〉|b〉|z〉 to the state

OG|{u, v}〉|b〉|z〉 =
{ |{u, v}〉|b⊕ 1〉|z〉 if {u, v} ∈ E,
|{u, v}〉|b〉|z〉 if {u, v} /∈ E,

where ⊕ denotes the bit parity (i.e., the logical XOR). We

say that a quantum algorithm computing some property of

G uses k queries if the operation OG, given as an oracle, is

called k times by the algorithm.

We describe below three algorithmic techniques, which

we will use in this paper, to solve search problems over

graphs in the quantum query complexity setting: Grover

search, Ambainis’ generalization of Grover search for vari-

able costs, and quantum search algorithms based on quantum

walks.

A. Grover search

Let Σ be a finite set of size m. Consider a Boolean

function fG : Σ → {0, 1} depending on G and assume

that, for any s ∈ Σ, the value fG(s) can be computed

using t queries to OG. The goal is to find some element

s ∈ Σ such that fG(s) = 1, if such an element exists.

This problem can be solved by repeating Grover’s standard

search [13] a logarithmic number of times, and checking

if a solution has been found. For any constant c > 0, this

quantum procedure (called Safe Grover Search in [21]) uses

O(t
√

m log m) queries to OG, outputs an element s ∈ Σ
such that fG(s) = 1 with probability at least 1 − 1/mc

if such an element exists, and always rejects if no such

element exists. The same bound can actually be obtained

even if, for each s ∈ Σ, the value fG(s) obtained using t
queries to OG is correct only with high (e.g., greater than

2/3) probability [15].

B. Variable costs quantum search

Let Σ be again a finite set of size m. Consider a Boolean

function fG : Σ → {0, 1} and assume that, for each s ∈ Σ,

there exists a quantum algorithm Bs making queries to OG

that satisfies the following properties:

• Bs uses at most ts queries to OG;

• Bs outputs fG(s) with probability at least 2/3.

The goal is again to find some element s ∈ Σ such that

fG(s) = 1, if such an element exists. Note that Grover

search would lead to a quantum algorithm with query

complexity O(tmax
√

m log m), where tmax represents the

maximal value of ts over s ∈ Σ. Ambainis [2] has shown

how to do better when the square root of the average of the

squares of the costs is significantly less than tmax. We state

this result in the following theorem where, for simplicity,

we assume that both m and tmax are upper bounded by a

polynomial of n (the number of vertices in the graph).

Theorem 2. ([2]) Assume that there exists a constant c
such that m ≤ nc and tmax ≤ nc. There exists a quantum
algorithm that makes

Õ

⎛
⎝√∑

s∈Σ

t2s

⎞
⎠

queries to OG and finds, with probability at least 3/4, an
element s ∈ Σ such that fG(s) = 1 if such an element exists.

As shown in [2], it is not necessary to know the costs ts
to obtain the complexity stated in this theorem. Note that,
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while the formal statement of this theorem in [2] assumes

that the algorithms Bs always output the correct answers, the

case we consider (where each Bs outputs the correct answer

only with high probability) is explicitly treated in Section 5

of [2].

C. Quantum walk search

We now describe quantum walk search. For concreteness,

we will restrict ourself to quantum walks over Johnson

graphs, since they will be sufficient to obtain our results.

We refer to [20] for a more detailed and general treatment

of the concept of quantum walks.

We start by defining Johnson graphs.

Definition 1. Let T be a finite set and r be a positive
integer such that r ≤ |T |. The Johnson graph J(T, r) is
the undirected graph with vertex set S(T, r) where two
vertices R1, R2 ∈ S(T, r) are connected if and only if
|R1 ∩R2| = r − 1.

We now describe the kind of search problems related to

a graph G of n vertices given as an oracle OG that can be

solved using a quantum walk over a Johnson graph. Let T
be a finite set and r be a positive integer such that r ≤ |T |.
For simplicity, we will assume that there exists a constant c
such that |T | ≤ nc. Let fG : S(T, r) → {0, 1} be a Boolean

function depending on G, and write MG = f−1
G (1). The goal

is to decide whether MG is empty or not, i.e., whether there

exists some R ∈ S(T, r) such that fG(R) = 1. Note that the

search problem considered here is defined by the function

fG (or, equivalently, by MG), and the input of this search

problem is the graph G. Its query complexity corresponds

to the number of queries to OG needed to decide whether

MG is empty or not.

The above search problem can be solved using a quantum

walk over the Johnson graph J(T, r). A state of the walk

will correspond to a vertex (i.e., to a set A ∈ S(T, r)), and

a data structure DG(A), which in general depends on G,

will be associated to each state A. We say that the state A
is marked if A ∈ MG. Three types of cost are associated

with DG, all measured in the number of queries to OG.

The setup cost S is the cost to set up the data structure,

i.e., the number of queries needed to construct DG(A) for a

given vertex A ∈ S(T, r). The update cost U is the cost to

update the data structure, i.e., the number of queries needed

to convert DG(A) into DG(A′) for two given connected

vertices A and A′ of J(T, r). The checking cost C is the

cost of checking with probability greater than 2/3, given

A ∈ S(T, r) and DG(A), if A is marked.

Let ε > 0 be such that, for all graphs G, the inequality

|MG|
|S(T, r)| ≥ ε

holds whenever MG �= ∅. Ambainis [1] has shown that the

quantum walk over J(T, r) described above will find with

high probability an element in MG, if such an element exists,

using a number of queries of order S + 1√
ε

(
√

r × U + C),
see also [20] for discussions and generalizations. For later

reference, we state this result as the following theorem.

Theorem 3 ([1], [20]). The quantum walk over the Johnson
graph J(T, r) has query complexity

Õ

(
S +

1√
ε

(√
r × U + C

))

and finds, with probability at least 3/4, an element in MG

if such an element exists.

III. OVERVIEW OF OUR ALGORITHM

In this section we give an outline of the main ideas leading

to our new quantum algorithm for triangle finding. The

algorithm is described in details, and its query complexity

rigorously analyzed, in Section IV.

Let G = (V,E) denote the undirected and unweighted

graph that is the input of the triangle finding problem, and

write n = |V |. For any vertex u ∈ V , we denote

NG(u) = {v ∈ V | {u, v} ∈ E}
the set of neighbors of u.

The algorithm first takes a set X ⊆ V consisting of

Θ(
√

n log n) vertices chosen uniformly at random from V ,

and checks if there exists a triangle of G with a vertex in X .

This can be checked, with high probability, using Grover’s

quantum search [13] in

O
(√

|X| × |E(V )|
)

= Õ
(
n5/4

)
queries. Define

S =
⋃

u∈X

E(NG(u)).

If no triangle has been reported, we know that any triangle

of G must have an edge in the set E(V ) \ S. Note that

the above preliminary step has already been used in prior

works, in particular related to the design of combinatorial

algorithms for Boolean matrix multiplication (e.g., [3], [24])

and even in the design of the Õ(n10/7)-query quantum

algorithm for triangle finding in [21], [25]. We now explain

how to check whether E(V )\S contains an edge of a triangle

or not, which is the novel contribution of this paper.

For any set Y ⊆ V and any w ∈ V , let us define the set

ΔG(X, Y, w) ⊆ E(Y ) as follows:

ΔG(X, Y, w) = E(Y ∩NG(w)) \ S.

It is easy to see that, with high probability on the choice

of X , for any {v, v′} ∈ E(V ) \ S the inequality

|{w ∈ V | {v, w} ∈ E and {v′, w} ∈ E}| ≤ √n

holds – the preliminary step of the previous paragraph was

done precisely to obtain this sparsity condition. This implies
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that, for a vertex w taken uniformly at random in V , the

expected size of ΔG(X, V, w) is at most n3/2 and, more

generally, for a random set Y ⊆ V the expected size

of ΔG(X,Y, w) is at most |Y |2/√n (see Lemma 1 in

Section IV). In this section we will describe our algorithm

in the following situation: there exists a positive constant c
such that

|ΔG(X, Y, w)| ≤ c|Y |2√
n

for all Y ⊆ V and w ∈ V . (1)

This assumption considerably simplifies the problem, elim-

inating several difficulties that the final algorithm will need

to deal with, but still represents a situation sufficiently non-

trivial to enable us to describe well the main ideas of our

algorithm.

Remember that we now want to check if E(V )\S contains

an edge of a triangle. Our key observation is the following.

Given a vertex w ∈ V and a set B ⊆ V of size 
√n� such

that ΔG(X, B,w) is known, we can check if there exists a

pair {v1, v2} ∈ E(B) \ S such that {v1, v2, w} is a triangle

of G with

O
(√

|ΔG(X, B,w)|
)

= O

(√
c|B|2√

n

)
= O(n1/4)

queries using Grover search and Condition (1), since such

{v1, v2} exists if and only if ΔG(X, B,w) ∩ E �= ∅. The

remarkable point here is that, if there were no sparsity

condition on ΔG(X, B,w) then this search would require

Θ(
√|B|2) = Θ(

√
n) queries. This improvement from

√
n

to n1/4 is one of the main reasons why we obtain an al-

gorithm for triangle finding with query complexity Õ(n5/4)
instead of O(n3/2) using straightforward quantum search.

Note that this observation, even combined with the other

ideas we describe below, does not seem to lead to efficient

classical algorithms for triangle finding or Boolean matrix

multiplication due to the large cost required to construct

ΔG(X, B,w) – this is why it has not been exploited prior

to the present work. One of our main contributions is indeed

to show that, in the query complexity setting, a quantum

algorithm can perform this construction efficiently.

As just mentioned, the main difficulty when trying to

exploit the above observation is that we not only want

now to find a vertex w and a set B for which there exists

{v1, v2} ∈ E(B) \ S such that {v1, v2, w} is a triangle, we

also need to construct the set ΔG(X, B,w), which requires

additional queries. To deal with this problem, we use a

quantum walk over a Johnson graph, which enables us to

implement the construction of ΔG(X, B,w) concurrently to

the search of B and w. By carefully analyzing the resulting

quantum walk algorithm, we can show that the improvement

by a factor n1/4 described in the previous paragraph is still

preserved as long as we have enough prior information about

the set S when executing the quantum walk.

The difficulty now is that loading enough information

about S during the execution of the quantum walk is

too costly. Moreover, constructing S before executing the

quantum walk requires Θ(n3/2) queries, which is too costly

as well. To solve this difficulty, we first search, using another

quantum walk on another Johnson graph, a set A ⊆ V of

size
⌈
n3/4

⌉
such that( ⋃

w∈V

ΔG(X,A, w)

)
∩ E �= ∅,

and concurrently construct the set E(A) \ S. We then do

exactly as in the previous paragraph, but taking B as a subset

of A instead of as a subset of V . Since ΔG(X, B,w) can

be created efficiently from the knowledge of E(A) \ S, and

E(A) \ S is available in the memory of the new quantum

walk, the problem mentioned in the previous paragraph is

solved. By carefully designing the new quantum walk, we

can show that its query complexity is sufficiently small. As

an illustration of this claim, observe that constructing the set

E(A) \ S for a given set A ⊆ V of size
⌈
n3/4

⌉
, which will

be done by the quantum walk during its setup stage, can be

implemented using

O (|A| × |X|) = Õ(n5/4)

queries by checking if {u, v} ∈ E for all u ∈ A and all

v ∈ X .

To summarize, at a high-level our strategy to check if

E(V ) \ S contains an edge of a triangle, and thus check

if G contains a triangle, can be described as the following

four-level recursive procedure:

1. Search for a set A ⊆ V of size
⌈
n3/4

⌉
such that(⋃

w∈V ΔG(X, A,w)
) ∩ E �= ∅, while concurrently

constructing E(A) \ S, using a quantum walk;

2. Search for a vertex w ∈ V such that ΔG(X,A, w) ∩
E �= ∅;

3. Search for a set B ⊆ A of size 
√n� such that

ΔG(X,B,w)∩E �= ∅, while concurrently constructing

ΔG(X,B,w), using a quantum walk and the fact that

E(A) \ S has already been constructed;

4. Check if ΔG(X, B,w) ∩ E �= ∅ in O(n1/4) queries,

using the fact that ΔG(X, B,w) has already been

constructed.

Several technical difficulties arise when analyzing the

performance of this recursive quantum algorithm and show-

ing that its query complexity is Õ(n5/4), especially when

Condition (1) does not hold. They are dealt with by using

additional quantum techniques, such as quantum search with

variable costs, estimating the size of the involved sets by

random sampling, and proving several concentration bounds.

Note that the order of the four levels of recursion in our algo-

rithm is crucial to guarantee the Õ(n5/4) query complexity,

and it does not seem that allowing further nesting in the

quantum walks (e.g., using the recent concept of quantum
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nested walk [6], [17]) can be used to further reduce the query

complexity of our approach.

IV. QUANTUM ALGORITHM FOR TRIANGLE FINDING

In this section we prove Theorem 1 by describing our

quantum algorithm for triangle finding.

As in Section III, G = (V,E) will denote the undirected

and unweighted graph that is the input of the triangle finding

problem, and we write n = |V |. For any sets X, Y ⊆ V ,

we define the set ΔG(X, Y ) ⊆ E(Y ) as follows:

ΔG(X,Y ) = E(Y ) \
⋃

u∈X

E(NG(u)),

where NG(u) again denotes the set of neighbors of u. As in

Section III, for any sets X, Y ⊆ V and any vertex w ∈ V ,

we define the set ΔG(X,Y, w) ⊆ ΔG(X, Y ) as follows:

ΔG(X, Y, w) = E(Y ∩NG(w)) \
⋃

u∈X

E(NG(u)).

A. Main algorithm and proof of Theorem 1

A key combinatorial property related to the triangle find-

ing problem that we use in this paper is highlighted in the

following definition of k-good sets.

Definition 2. Let k be any constant such that 0 ≤ k ≤ 1. A
set X ⊆ V is k-good for G if the inequality∑

w∈V

|ΔG(X, Y, w)| ≤ |Y |2n1−k

holds for all Y ⊆ V .

Our algorithm will rely on the following observation,

which shows that k-good sets for G can be constructed very

easily.

Lemma 1. Let k be any constant such that 0 ≤ k ≤ 1.
Suppose that X is a set obtained by taking uniformly at
random, with replacement,

⌈
3nk log n

⌉
elements from V .

Then X is k-good for G with probability at least 1− 1/n.

Proof. Consider a pair {u, v} ∈ E(V ) such that

|{w ∈ V | {u, w} ∈ E and {v, w} ∈ E}| > n1−k.

Let us write T = {w ∈ V | {u, w} ∈ E and {v, w} ∈ E}.
This pair is contained in ΔG(X,V ) if and only if T∩X = ∅,
which happens with probability(

1− |T |
n

)
3nk log n�
<

(
1− 1

nk

)3nk log n

≤ 1
n3

.

By the union bound this implies that with probability at least

1− 1
n the inequality

|{w ∈ V | {u, w} ∈ E and {v, w} ∈ E}| ≤ n1−k

holds for all {u, v} ∈ ΔG(X, V ). The statement of the

lemma then follows from a straightforward counting argu-

ment. �

In Section IV-B we will prove the following proposition.

Proposition 1. Let a and k be two constants such that 0 <
a, k < 1. Let X be a known subset of V of size at most⌈
3nk log n

⌉
that is k-good for G. There exists a quantum

algorithm with query complexity

Õ
(
n1/2+k + n1/2+2a/3 + n1/2+a−k/2

)
that, given as input a set A ∈ S(V, 
na�) and the set
ΔG(X, A), checks with probability at least 2/3 if ΔG(X, A)
contains an edge of a triangle of G.

Proposition 1 shows the existence of a quantum algorithm

that checks efficiently if a known set ΔG(X, A) contains an

edge of a triangle of G, under the assumption that X is k-

good for G. With this result available, we are now ready to

construct our Õ(n5/4)-query quantum algorithm for triangle

finding.

Proof of Theorem 1. Let a and k be two constants such that

0 < a, k < 1. The values of these constants will be set later.

We first take a set X ⊆ V obtained by choosing uniformly

at random, with replacement,
⌈
3nk log n

⌉
elements from V ,

and check if there exists a triangle of G with a vertex in X .

This can be done using Grover search with

O
(√

|X| × |E(V )|
)

= Õ
(
n1+k/2

)
queries. If no triangle has been reported, we know that any

triangle of G must have an edge in ΔG(X, V ).
We now describe a quantum algorithm that finds a triangle

with an edge in ΔG(X, V ), if such a triangle exists. The idea

is to search for a set A ∈ S(V, 
na�) such that ΔG(X, A)
contains an edge of a triangle. Once such a set A has been

found, a triangle can be found in

O
(√

|V | × |E(A)|
)

= O
(
n1/2+a

)
queries using Grover search. To find such a set A, we

perform a quantum walk over the Johnson graph J(V, 
na�).
The states of this walk correspond to the elements in

S(V, 
na�). The state corresponding to a set A ∈ S(V, 
na�)
is marked if ΔG(X, A) contains an edge of a triangle of G.

In case the set of marked states is not empty, which means

that there exists {v1, v2} ∈ ΔG(X, V ) that is an edge of a

triangle of G, the fraction of marked states is

ε ≥
(

n−2
�na�−2

)
(

n
�na�

) = Ω
(
n2(a−1)

)
.

In our walk, the data structure stores the set ΔG(X, A).
Concretely, this is done by storing the couple (v, NG(v)∩X)
for each v ∈ A, since this information is enough to construct

ΔG(X, A) without using any additional query. The setup

cost is S = |A| × |X| = Õ(na+k) queries. The update cost
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is U = 2|X| = Õ(nk) queries. From Theorem 3, the query

complexity of our quantum walk is thus

Õ
(
na+k +

√
n2(1−a)

(√
na × nk + C

))
,

where C is the cost of checking if a state is marked. Under

the assumption that the set X is k-good for G, Proposition 1

shows that

C = Õ
(
n1/2+k + n1/2+2a/3 + n1/2+a−k/2

)
.

Note that Proposition 1 can be applied here since the set

ΔG(X, A) is stored in the data structure, and thus known.

The query complexity of the quantum walk then becomes

Õ
(
na+k + n1−a/2+k + n3/2

(
nk−a + n−a/3 + n−k/2

))
.

Under the assumption that the set X is k-good for G, the

query complexity of the whole algorithm is thus

Õ
(
n1+k/2 + n1/2+a+na+k + n1−a/2+k+

n3/2
(
nk−a + n−a/3 + n−k/2

))
.

When the set X is not k-good for G, the algorithm may need

more queries to finish, but we simply stop immediately when

the number of queries exceeds the above upper bound, and

in this case output, for instance, that G does not contain any

triangle. This decision may be wrong, but Lemma 1 ensures

that this happens only with probability at most 1/n.

Finally, taking a = 3
4 and k = 1

2 gives query complexity

Õ(n5/4), as claimed. �

B. Proof of Proposition 1

This subsection is devoted to proving Proposition 1.

The quantum algorithm of Proposition 1 will use quan-

tum walks in which the query complexity of the checking

procedures depends on the size of ΔG(X, A,w). To control

the query complexity of these quantum walks, we will first

need, given A, X and w, to estimate |ΔG(X, A,w)|. This

will be done using the classical algorithm described in the

following lemma.

Lemma 2. Let A and X be two subsets of V , and assume
that ΔG(X, A) is known. Let m be a positive integer.
There exists a classical deterministic algorithm A with query
complexity O(m log n), which receives as input a binary
string s of length poly(m, log n) and a vertex w ∈ V ,
and outputs a real number A(s, w) satisfying the following
condition: for a fraction at least 1− 3

n of the strings s, the
two inequalities{ A(s, w) ≥ 1

3 × |ΔG(X, A,w)|
A(s, w) ≤ 3

2 ×max
(
|A|×(|A|−1)

2m , |ΔG(X, A,w)|
)

hold for all vertices ω ∈ V .

While Lemma 2 is proved by using relatively simple

sampling arguments, we mention some subtle points about

its statement before proving it.

• When |ΔG(X,A, w)| is too small, since giving a mul-

tiplicative estimation would require too many queries,

we only ask that the output is upper bounded by

3(|A|(|A| − 1))/(4m) for some parameter m that can

be chosen freely.

• While Lemma 2 is proved by constructing a randomized

algorithm based on random sampling, Algorithm A in

the statement of the lemma is a deterministic algorithm

that receives a string s of polynomial length, intended

to be the string of random bits used for sampling.

Later analyses will be considerably simplified by this

formulation, since the output of Algorithm A will be

used, as already mentioned, to control the running times

of the quantum walks we construct in Proposition 1

(more complicated arguments would be necessary if

these running times were random variables).

• A quantum algorithm based on quantum counting [9]

could actually be used instead of the classical algo-

rithm A. While this would reduce the query complexity

in Lemma 2, this does not reduce the final query

complexity of our triangle finding algorithm.

We now proceed to the proof.

Proof of Lemma 2. Consider the randomized algorithm A′
described in Figure 1. This algorithm receives as input a

vertex w ∈ V and outputs a real number A′(w). We define

A as the deterministic version of A′ where the bit flips used

by A′ are given to A as the additional input s.

Note that only Steps 1.2 and 3.2.2 of Algorithm A′
have non-zero query complexity. Membership in ΔG(X, A)
can be checked without query (since the set ΔG(X, A) is

known), which implies that the overall query complexity

of A′ is O(m log n). We show below that, for each vertex

w ∈ V , the real number A′(w) output by the algorithm

satisfies{ A′(w) ≥ 1
3 × |ΔG(X, A,w)|

A′(w) ≤ 3
2 ×max

(
|E(A)|

m , |ΔG(X, A,w)|
)

(2)

with probability at least 1 − 3/n2. The union bound then

implies that, with probability at least 1−3/n, Condition (2)

holds for all w ∈ V , which concludes the proof.

Assume first that |ΔG(X,A, w)| < |E(A)|
3m . Then the prob-

ability that c1 is incremented by one during one execution

of the loop of Steps 1.1-1.2 is

1−
(

1− |ΔG(X,A, w)|
|E(A)|

)m

< 1−
(

1− 1
3m

)m

< 1− e−1/2 < 0.4.

From Chernoff bound, the inequality c1 < 
240 log n� /2
holds at the end of the loop of Step 1 with probability at
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Algorithm A′
Input: a vertex w ∈ V

1. Initialize a counter c1 to zero and then repeat the

following 
240 log n� times:

1.1. Take m elements {u1, v1}, . . . , {um, vm}
uniformly at random, with replacement, from

E(A);
1.2. Increment c1 by one if there exists at least one

index i ∈ {1, . . . , m} satisfying the following

three conditions: {ui, vi} ∈ ΔG(X, A) and

{ui, w} ∈ E and {vi, w} ∈ E;

2. If c1 ≤ 
240 log n� /2 then output A′(w) =
|E(A)|

m ;

3. If c1 > 
240 log n� /2 then do:

3.2. Initialize a counter c2 to zero and then repeat

the following 
72m log n� times:

3.2.1 Take a pair {u, v} uniformly at random

from E(A);
3.2.2 Increment c2 by one if the following

three conditions are satisfied: {u, v} ∈
ΔG(X, A) and {u, w} ∈ E and {v, w} ∈
E;

3.3 Output A′(w) = c2|E(A)|
�72m log n� ;

Figure 1. Algorithm A′ computing an estimation of |ΔG(X, A, w)|.

least

1− exp
(
−1

3
× 1

16
× 0.4 
240 log n�

)
≥ 1− 1

n2
.

When this happens, the algorithm outputs A′(w) =
|E(A)|/m, which satisfies Condition (2).

Next, assume that
|E(A)|

3m ≤ |ΔG(X, A,w)| ≤ 3|E(A)|
m .

In case the algorithm passes the test of Step 2, the out-

put is |E(A)|/m, which satisfies Condition (2). Otherwise,

since the probability that a pair {u, v} taken uniformly

at random in E(A) satisfies the conditions of Step 3.2.2

is |ΔG(X, A,w)|/|E(A)|, Chernoff bound implies that the

output A′(w) = c2|E(A)|
�72m log n� at Step 3.3 is between 1

2 ×
|ΔG(X, A,w)| and 3

2 × |ΔG(X, A,w)| with probability at

least

1− 2 exp
(
− 
72m log n�

3× 4× |E(A)| × |ΔG(X,A, w)|
)
≥ 1− 2

n2
,

in which case Condition (2) is satisfied.

Finally, assume that |ΔG(X, A,w)| > 3|E(A)|
m . Then the

probability that c1 is not incremented during one execution

of the loop of Steps 1.1-1.2 is(
1− |ΔG(X,A, w)|

|E(A)|
)m

<

(
1− 3

m

)m

≤ e−3 < 0.1.

From Chernoff bound, the inequality c1 > 
240 log n� /2
holds at the end of the loop of Step 1 with probability at

least

1− exp
(
−1

2
× 16

81
× 0.9 
240 log n�

)
> 1− 1

n2
,

and then the algorithm proceeds to Step 3. If this happens

then, from the same argument as in the previous paragraph,

the output of the algorithm is between 1
2 × |ΔG(X, A,w)|

and 3
2 × |ΔG(X, A,w)| with probability at least 1 − 2/n2,

in which case Condition (2) is satisfied. �

The following lemma will be used to give a lower bound

on the fraction of marked states in the quantum walks used

by the quantum algorithm of Proposition 1.

Lemma 3. Let A and X be two subsets of V , and assume
that |A| > 3. Let w be any vertex in V , {v1, v2} be any
element of E(A), and r be an integer such that 3 < r ≤ |A|.
Suppose that B is taken uniformly at random in S(A, r), and
consider the following two conditions:

(i) {v1, v2} ∈ E(B);
(ii) |ΔG(X, B,w)| ≤ 8(r−2)(r−3)

(|A|−2)(|A|−3) × |ΔG(X,A,w)|
3 + 16r.

Then

Pr
B∈S(A,r)

[ Conditions (i) and (ii) hold ] ≥ (r − 1)2

2|A|2 .

Proof. First observe that

Pr
B∈S(A,r)

[
Cond. (i) holds

]
=

(|A|−2
r−2

)
(|A|

r

) ≥ (r − 1)2

|A|2 .

We show below that the inequality

Pr
B∈S(A,r)

[
Cond. (ii) does not hold

∣∣∣ Cond. (i) holds
]
≤ 1

2
,

which will conclude the proof of the lemma.

Choosing B under the assumption that {v1, v2} ∈ E(B)
is equivalent to choosing r − 2 vertices from A \ {v1, v2}.
Let us call these vertices v3, . . . , vr. For each {i, j} ∈
E({1, . . . , r}), let Yij denote the random variable with value

one if {vi, vj} ∈ ΔG(X, A,w) and value zero otherwise. We

have

|ΔG(X, B,w)| =
∑

{i,j}∈E({1,...,r})
Yij .

Note that, for each {i, j} ∈ E({3, . . . , r}), we have

E[Yij ] ≤ |ΔG(X, A,w)|
|E(A \ {v1, v2})| ,

since for any {u, u′} ∈ ΔG(X, A \ {v1, v2}, w) the proba-

bility that {vi, vj} = {u, u′} is 1
|E(A\{v1,v2})| . Also observe

that

|E({1, . . . , r}) \ E({3, . . . , r})| ≤ 2r − 3.
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From these two inequalities we can derive the following

upper bound on the expectation of |ΔG(X, B,w)|:
E
[
|ΔG(X, B,w)|

]
=

∑
{i,j}∈E({1,...,r})

E [Yij ]

≤ |E({3, . . . , r})| × |ΔG(X, A,w)|
|E(A \ {v1, v2})| + (2r − 3)×1

=
(r − 2)(r − 3)

(|A| − 2)(|A| − 3)
× |ΔG(X, A,w)|+ (2r − 3)

≤ (r − 2)(r − 3)
(|A| − 2)(|A| − 3)

× |ΔG(X, A,w)|+ 2r.

Finally, let us write δ = 2r(|A|−2)(|A|−3)
(r−2)(r−3) . From Markov’s

inequality, we have

Pr

[
Cond. (ii) does not hold

∣∣∣ Cond. (i) holds

]

≤ 1
8
× |ΔG(X, A,w)|+ δ

|ΔG(X,A,w)|
3 + δ

≤ 1
2
,

as claimed. �

We are now ready to give the proof of Proposition 1.

Proof of Proposition 1. The algorithm first takes a suffi-

ciently long binary string s uniformly at random. We will

later apply Algorithm A of Lemma 2 with m =
⌈
nk
⌉
, using

this binary string s as input. From Lemma 2 we know that,

with probability at least 1 − 3/n on the choice of s, the

following property holds: for all w ∈ V ,{A(s, w) ≥ 1
3 × |ΔG(X, A,w)|,

A(s, w) ≤ 3
2 ×max

(
|A|(|A|−1)

2�nk� , |ΔG(X,A, w)|
)
.

(3)

We will show below that, when Property (3) holds, for any

fixed vertex w ∈ V the cost of checking if there exists a pair

{v1, v2} ∈ ΔG(X, A) such that {v1, v2, w} is a triangle of G
is

Q(w) = Õ
(
nk + n2a/3 + na−k/2 +

√
|ΔG(X, A,w)|

)
queries. When Property (3) holds, the algorithm of The-

orem 2 then enables us to to check, with probability at

least 3/4, the existence of a pair {v1, v2} ∈ ΔG(X, A) that

is an edge of a triangle of G with query complexity

Õ

⎛
⎝√∑

w∈V

(Q(w))2

⎞
⎠

= Õ

(
n1/2+k + n1/2+2a/3 + n1/2+a−k/2+√∑

w∈V

|ΔG(X, A,w)|
)

= Õ
(
n1/2+k + n1/2+2a/3 + n1/2+a−k/2

)
,

where the last equality is obtained using the fact that X is

k-good.

When Property (3) does not hold, which happens with

probability at most 3/n, the algorithm may need more

queries to finish, but we simply stop immediately when the

number of queries exceeds the above upper bound, and in

this case output that ΔG(X, A) does not contain an edge of

a triangle of G. This decision may be wrong but, again, this

happens only with probability at most 3/n.

We now show how to obtain the claimed upper bound

on Q(w), the query complexity of checking if there exists a

pair {v1, v2} ∈ ΔG(X, A) such that {v1, v2, w} is a triangle

of G when Property (3) holds. We first use Algorithm A
with input (s, w) to obtain A(s, w). The cost of this step is

Õ(nk) queries, from Lemma 2. We then perform a quantum

walk over the Johnson graph J(A,
⌈
n2a/3

⌉
). The states of

this walk correspond to the elements in S(A,
⌈
n2a/3

⌉
). We

now define the set of marked states of the walk. The state

corresponding to a set B ∈ S(A,
⌈
n2a/3

⌉
) is marked if B

satisfies the following two conditions:

(i) there exists a pair {v1, v2} ∈ ΔG(X,B,w) such that

{v1, v2} ∈ E (i.e., such that {v1, v2, w} is a triangle

of G);

(ii) |ΔG(X, B,w)| ≤ 8(
n2a/3�−2)(
n2a/3�−3)

(�na�−2)(�na�−3) ×A(s, w)+
16
⌈
n2a/3

⌉
.

Lemma 3 shows that, when Property (3) holds and in

case there exists a pair {v1, v2} ∈ ΔG(X, A) such that

{v1, v2, w} is a triangle of G, the fraction of marked states

is

ε = Ω
(
n2( 2a

3 −a)
)

= Ω
(
n−2a/3

)
.

The data structure of the walk will store ΔG(X, B,w).
Concretely, this is done by storing the couple (v, ev) for

each v ∈ B, where ev = 1 if {v, w} ∈ E and ev = 0 if

{v, w} /∈ E (observe that this information is indeed enough

to construct ΔG(X, B,w) without using any additional

query, since the set ΔG(X, A) is known). The setup cost

is
⌈
n2a/3

⌉
queries since it is sufficient to check if {v, w}

is an edge for all v ∈ B. The update cost is 2 queries. The

checking cost is

C = O
(√

|ΔG(X, B,w)|
)

= O

(√
n−2a/3 ×A(s, w) + n2a/3

)

queries, since Condition (ii) can be checked without query

(since ΔG(X, B,w) is stored in the data structure) and

then Condition (i) can be checked by performing a Grover

search over ΔG(X, B,w). Theorem 3, applied under the

assumption that Property (3) holds, thus gives the upper
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bound

Q(w) = Õ
(
nk + n2a/3 +

√
n2a/3

(√
n2a/3 × 2 + C

))
= Õ

(
nk + n2a/3 +

√
A(s, w)

)
= Õ

(
nk + n2a/3 + na−k/2 +

√
|ΔG(X, A,w)|

)
,

as claimed. �
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