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Abstract—The generation of pseudorandom elements over
finite fields is fundamental to the time, space and randomness
complexity of randomized algorithms and data structures. We
consider the problem of generating k-independent random
values over a finite field F in a word RAM model equipped with
constant time addition and multiplication in F, and present the
first nontrivial construction of a generator that outputs each
value in constant time, not dependent on k. Our generator
has period length |F| poly log k and uses k poly(log k) log |F|
bits of space, which is optimal up to a poly log k factor.
We are able to bypass Siegel’s lower bound on the time-
space tradeoff for k-independent functions by a restriction to
sequential evaluation.

I. INTRODUCTION

Pseudorandom generators transform a short random seed

into a longer output sequence. The output sequence has the

property that it is indistinguishable from a truly random se-

quence by algorithms with limited computational resources.

Pseudorandom generators can be classified according to

the algorithms (distinguishers) that they are able to fool.

An algorithm from a class of algorithms that is fooled

by a generator can have its randomness replaced by the

output of the generator, while maintaining the performance

guarantees from the analysis based on the assumption of full

randomness. When truly random bits are costly to generate

or supplying them in advance requires too much space, a

pseudorandom generator can reduce the time, space and

randomness complexity of an algorithm.

This paper presents an explicit construction of a pseudo-

random generator that outputs a k-independent sequence of

values in constant time per value, not dependent on k, on a

word RAM [1]. The generator works over an arbitrary finite

field that allows constant time addition and multiplication

over F on the word RAM.

Previously, the most efficient methods for generating k-

independent sequences were either based on multipoint eval-

uation of degree k − 1 polynomials, or on direct evaluation

of constant time hash functions. Multipoint evaluation has a

time complexity of O(log2 k log log k) field operations per

value while hash functions with constant evaluation time

use excessive space for non-constant k by Siegel’s lower
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bound [2]. We are able to get the best of both worlds:

constant time generation and near-optimal seed length and

space usage.

Significance: In the analysis of randomized algorithms

and in the hashing literature in particular, k-independence

has been the dominant framework for limited random-

ness. Sums of k-independent variables have their jth mo-

ment identical to fully random variables for j ≤ k
which preserves many properties of full randomness. For

output length n, Θ(log n)-independence yields Chernoff-

Hoeffding bounds [3] and random graph properties [4],

while Θ(poly log n)-independence suffices to fool AC0

circuits [5].

Our generator is particularly well suited for randomized

algorithms with time complexity O(n) that use a sequence

of k-independent variables of length n, for non-constant

k. For such algorithms, the generation of k-independent

variables in constant time by evaluating a hash function

over its domain requires space O(nε) for some constant

ε > 0. In contrast, our generator uses space O(k poly log k)
to support constant time generation. Algorithms for ran-

domized load balancing such as the simple process of

randomly throwing n balls into n bins fit the above de-

scription and presents an application of our generator. Using

the bounds by Schmidt et al. [3, Theorem 2] it is easy

to show that Θ(log n/ log log n)-independence suffices to

obtain a maximal load of any bin of O(log n/ log log n)
with high probability. This guarantee on the maximal load

is asymptotically the same as under full randomness. Using

our generator, we can allocate each ball in constant time

using space O(log n poly log log n) compared to the lower

bound of O(nε) of hashing-based approaches to generating

k-independence. In Section VI we show how our generator

improves upon existing solutions to a dynamic load balanc-

ing problem.

The generation of pseudorandomness for Monte Carlo

experiments presents another application. Limited indepen-

dence between Monte Carlo experiments can be shown to

yield Chernoff-like bounds on the deviation of an estima-

tor from its expected value. Consider a randomized algo-

rithm A(Y ) that takes m random elements from F encoded

as a string Y and returns a value in the interval [0, 1].
Let μA > 0 denote the expectation of the value returned

by A(Y ) under the assumption that Y encodes a truly
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random input and define the estimator μ̂A = 1
t

∑t
i=1A(Yi).

Due to a result by Schmidt et al. [3, Theorem 5], for every

choice of constants ε, α > 0, it suffices that Y1, . . . , Yt

encodes a sequence of Θ(m log t)-independent variables

over F to yield the following high probability bound on the

deviation of μ̂A from μA.

Pr[|μ̂A − μA| ≥ εμA] ≤ O(t−α). (1)

We hope that our generator can be a useful tool to re-

place heuristic methods for generating pseudorandomness in

applications where theoretical guarantees are important. In

order to demonstrate the practicality of our techniques, we

present experimental results on a variant of our generator

in Section VII. Our experiments show that k-independent

values can be generated nearly as fast as output from

heuristic pseudorandom generators, even for large k.

Methods: Our construction is a surprisingly simple

combination of bipartite unique neigbor expanders with mul-

tipoint polynomial evaluation. The basic, probabilistic con-

struction of our generator proceeds in two steps: First we use

multipoint evaluation to fill a table with Θ(k)-independent

values from a finite field, using an average of poly log k
operations per table entry. Next we apply a bipartite unique

neighbor expander with constant outdegree and with right

side nodes corresponding to entries in the table and a left

side that is poly log k times larger than the right side. For

each node in the left side of the expander we generate a k-

independent value by returning the sum of its neighboring

table entries. Our main result stated in Theorem 1 uses

the same idea, but instead of relying on a single randomly

constructed expander graph, we employ a cascade of explicit

constant degree expanders and show that this is sufficient for

constant time generation.

Relation to the literature: Though the necessary ingre-

dients have been known for around 10 years, we believe that

a constant time generator has evaded discovery by residing in

a blind spot between the fields of hashing and pseudorandom

generators. The construction of constant time k-independent

hash functions has proven to be a difficult task, and a fun-

damental result by Siegel [2] showed a time-space tradeoff

that require hashing-based generators with sequence length

n to use O(nε) space for some constant ε > 0. On the other

hand, from the point of view of pseudorandom generators,

a generator of k-independent variables, for non-constant k,

can not be used as an efficient method of derandomization: A

lower bound by Chor et al. [6] shows that the sample space

of such generators must be superpolynomial in their output

length. Consequently, research shifted towards generators

that produce other types of outputs such as biased sequences

or almost k-independent variables [7], [8], [9].

It is relevant to ask whether there already exist con-

structions of constant time pseudorandom generators on

the word RAM that can be used instead of generators

that output k-independent variables. For example, Nisan’s

pseudorandom generator [10] uses constant time to generate

a pseudorandom word and has remarkably strong properties:

Every algorithm running in SPACE(s) that uses n random

words can have its random input replaced by the output

of a constant time generator with seed length O(s log n).
The probability that the outcome of the algorithm differs

when using pseudorandomness as opposed to statistical

randomness is decreasing exponentially in the seed length.
In spite of this strong result, there are many natural

applications where the restrictions on Nisan’s model means

that we cannot use his generator directly to replace the use of

a k-generator. An example is the analysis that uses a union

bound over all subsets of k words of a randomly generated

structure described by n words. Algorithms shown to be

derandomized by Nisan’s generator are restricted to one-

way access to the output of the generator. Therefore the

output of Nisan’s generator can not be used to derandomize

an algorithm that tests for the events of the union bound

without using excessive space. In this case, k-independence

can directly replace the use of full randomness without

changing the analysis.

A. Our contribution
We present three improved constructions of k-generators,

formally defined in Section II, that are able to generate a

sequence of k-independent values over a finite field F. Our

results are stated in a word RAM model equipped with

constant time addition and multiplication in F. Our main

result is a fully explicit generator:

Theorem 1. For every finite field F with constant time arith-
metic there exists a data structure that for every choice of
k ≤ |F|/poly log |F| is an explicit constant time k-generator.
The generator has range F, period |F| poly log k, and seed
length, space usage and initialization time k poly log k.

We further investigate how the space usage and seed

length may be reduced by employing a probabilistic con-

struction that has a certain probability of error:

Theorem 2. For every finite field F with constant time
arithmetic and every choice of positive constants ε, δ there
exists a data structure that for every choice of k = O(|F|)
is a constant time k-generator with failure probability
δ, range F, period |F|, seed length O(k), space usage
O(k log2+ε k), and initialization time O(k poly log k).

Finally, we improve existing k-generators with optimal

space complexity:

Theorem 3. For every finite field F that supports computing
the discrete Fourier transform of length k in O(k log k)
operations, there exists a data structure that, for every
choice of k ≤ |F| and given a primitive element ω, is an
explicit O(log k) time k-generator with range F, period |F|,
seed length k, space usage O(k), and initialization time
O(k log k).
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Table I
OVERVIEW OF GENERATORS THAT PRODUCE A k-INDEPENDENT SEQUENCE OVER A FINITE FIELD F

Construction Time Space Seed length Comment
Polynomials [11], [12] O(k) O(k) k Assumes O(1) mult.

Multipoint [13, ch. 10.1] O(log2 k log log k) O(k log k) k

Multipoint [14] O(log k log log k) O(k) k Requires ω.

Siegel [2] O(1) O(|F|ε) O(k) Probabilistic.

Theorem 1 O(1) O(k poly log k) O(k poly log k) Explicit.

Theorem 2 O(1) O(k log2+ε k) O(k) Probabilistic.

Theorem 3 O(log k) O(k) k Requires ωk and FFT.

Table notes: We use ε to denote an arbitrary positive constant and ω and ωk to denote, respectively, a primitive element and
a kth root of unity of F. The unit for space and seed length is the number of elements of F that need to be stored, i.e., a
factor log2 |F| from the number of bits. Probabilistic constructions rely on random generation of objects for which no explicit
construction is known, and may fail with some probability.

Table I summarizes our results along with previous meth-

ods of generating sequences of k-independent values over F.

All the methods output sequences that have a length of at

least |F|.
Overview of paper: In Section II we define

k-generators and related concepts and review results that

lead up to our main results. Section III presents the details

of our explicit construction of constant time generators. In

Section IV we apply the same techniques with a probabilistic

expander construction to obtain generators with improved

space and randomness complexity. Section V presents an

algorithm for evaluating a polynomial over all elements

of F that improves existing generators with optimal space.

Section VI applies our generator to improve the time-space

tradeoff of previous solutions to a load balancing problem.

Section VII presents experimental results on the generation

time of different k-generators for a range of values of k.

II. PRELIMINARIES

We begin by defining two fundamental concepts:

Definition 1. A sequence (X1, X2, . . . , Xn) of n random

variables with finite range R is an (n, k)-sequence if the

variables at every set of k positions in the sequence are

independent and uniformly distributed over R.

Definition 2. A family of functions F ⊆ {f | f : U → R}
is k-independent if for every set of k distinct inputs

x1, x2, . . . , xk it holds that f(x1), f(x2), . . . , f(xk) are in-

dependent and uniformly distributed over R when f is

selected uniformly at random from F . We say that a function

f selected uniformly at random from F is a k-independent
function.

We now give a formal definition of the generator data

structure.

Definition 3. A k-generator with range R, period n and

failure probability δ is a data structure with the following

properties:

– It supports an initialization operation that takes a ran-

dom seed s as input.

– After initialization it supports an emit() operation

that returns a value from R.

– There exists a set B such that Pr[s ∈ B] ≤ δ and

conditioned on s �∈ B the sequence (X1, X2, . . . , Xn)
of values returned by emit() is an (n, k)-sequence.

A k-generator is explicit if the initialization and emit op-

eration has time complexity poly k and the probability of

failure is zero. We refer to a k-generator as a constant time

k-generator if the emit() operation has time complexity

O(1), not dependent on k.

A k-generator differs from a data structure for repre-

senting a k-independent hash function by only allowing

sequential access to the underlying (n, k)-sequence. It is

this restriction on generators that allows us to obtain a

better time-space tradeoff for the problem of generating

k-independent variables than is possible by using a k-

independent hash function directly as a generator. We are

interested in the following parameters of k-generators: seed

length, period, probability of failure, space needed by the

data structure, the time complexity of the initialization

operation and the time complexity of a single emit()
operation.

Model of computation: Our results are stated in

the word RAM model of computation with word length

w = Θ(log |F|) bits. In addition to the standard bit manip-

ulation and integer arithmetic instructions, we also assume

the ability to perform arithmetic operations (+,−,×) over

F in constant time. In the context of our results that use

abelian groups (A,+) we assume that an element of A can

be stored in a constant number of words and that addition

can be performed in constant time.

Let Fq denote a field of cardinality q = pz for p
prime and z a positive integer. Constant time arithmetic

in Fp is supported on a standard word RAM with integer

multiplication [15]. The full version of this paper presents
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additional details on algorithms for arithmetic over Fp and

F2w and how they relate to a standard word RAM with

integer multiplication.

A. k-independent functions from the literature

We now review the literature on k-independent functions

and how they can be used to construct k-generators. We dis-

tinguish between a k-independent function f : U → R and

a k-independent hash function by letting the latter refer to a

data structure that after initialization supports random access

to the (n, k)-sequence defined by evaluating f over U . There

exists an extensive literature that focuses on how to construct

k-independent hash functions that offer a favorable tradeoff

between representation space and evaluation time [16]. We

note that a family of k-independent hash functions can be

used to construct a k-generator by setting the seed to a

random function in the family.

Constant time k-independent hash functions: A funda-

mental cell probe lower bound by Siegel [2] shows that a

data structure to support constant time evaluation of f on

every input in U cannot use less than Ω(|U |ε) space for

some constant ε > 0. This bound holds even for amortized

constant evaluation time over functions in the family and

elements in the domain. From Siegel’s lower bound, it

is clear that we cannot use k-independent hash functions

directly to obtain a constant time k-generator that uses only

O(k poly log k) words of space.

Known constructions of k-independent hash functions

with constant evaluation time are based on expander graphs.

Siegel [2] gave a probabilistic construction of a family

of k-independent hash functions in the word RAM model

based on an iterated product of bipartite expander graphs.

Thorup [17] showed that a simple tabulation hash function

with high probability yields the type of expander graphs

required by Siegel’s construction. Unfortunately only ran-

domized constructions of the expanders required by these

hash functions is known, introducing a positive probability

of error in k-generators based on them.

Polynomials: Here we briefly review the classic con-

struction of k-independent functions based on polynomials

over finite fields.

Lemma 1 (Joffe [11], Carter and Wegman [12]). For every
choice of finite field F and every k ≤ |F|, let Hk ⊂ F[X]
be the family of polynomials of degree at most k − 1
over F. Hk ⊂ {f | f : F→ F} is a family of k-independent
functions.

An advantage of using families of polynomials as hash

functions is that they use near optimal randomness, allow

any choice of k ≤ |F|, and have no probability of failure. It

can also be noted that in the case where k = O(log |F|)
and we are restricted to linear space O(k), polynomial

hash functions evaluated using Horner’s scheme are optimal

k-independent hash functions [18], [2].

Using slightly more space and for sufficiently large k,

a data structure by Kedlaya and Umans [19] supports

evaluation of a polynomial of degree k over F. The space

usage and preprocessing time of their data structure is

k1+ε log1+o(1) |F| for constant ε > 0. After preprocessing

a polynomial f , the data structure can evaluate f in an

arbitrary point of F using time poly(log k) log1+o(1) |F|.
Multipoint evaluation: Using algorithms for multi-

point evaluation of polynomials we are able to obtain a

k-generator with poly log k generation time and space usage

that is linear in k. Multipoint evaluation of a polyno-

mial f ∈ F[X] of degree at most k − 1 in k arbitrary

points of F has a time complexity of O(k log2 k log log k)
in the word RAM model that supports field opera-

tions [13, Corollary 10.8]. Bostan and Schost [14] men-

tion an algorithm for multipoint evaluation of f over a

geometric progression of k elements with running time

O(k log k log log k). In order to use this method to construct

a k-generator with period |F| it is necessary to know a prim-

itive element ω of Fq so we can perform multipoint evalua-

tion over F∗ = {ω0, ω1, . . . , ωq−2}. Given the prime factor-

ization of q−1 there exists a Las Vegas algorithm for finding

ω with expected running time O(log4 q) [20, Chapter 11].

In the following lemma we summarize the properties of k-

generators based on multipoint evaluation of polynomials

over finite fields.

Lemma 2 (Gathen and Gerhard [13, Corollary 10.8], Bostan

and Schost [14]). For every finite field F there exists for
every k ≤ |F| and bijection π : [|F|] → F an explicit k-
generator with period |F| and seed length k. The space re-
quired by the generator and the initialization and generation
time depends on the choice of π and multipoint evaluation
algorithm.

– For arbitrary choice of π there exists a k-generator
with generation time O(log2 k log log k), intialization
time O(k log2 k log log k) and space usage O(k log k).

– Given a primitive element ω of F and a bijec-
tion π(i) = ωi there exists a generator with
generation time O(log k log log k), initialization time
O(k log k log log k) and space usage O(k).

Space lower bounds: Since randomness can be viewed

as a resource like time and space, we are naturally in-

terested in generators that can output long k-independent

sequences using as few random bits as possible. Families

of k-independent functions f : U → R with U = R and

k ≤ |U | will trivially have to use at least k log |U | random

bits — a bound matched by polynomial hash functions.

We are often interested in generators with |U | 	 |R|, for

example if we wish to use a generator for randomized load

balancing in the heavily loaded case. A lower bound by

Chor et al. [6] shows that even in this case the minimal

seed length required for k-independence is Ω(k log |U |) for

every |R| ≤ |U |.

199199



B. Expander graphs

All graphs in this paper are bipartite with cm vertices on

the left side, m vertices on the right side and left outdegree

d. Graphs are specified by their edge function Γ : [cm] ×
[d] → [m] where the notation [n] is used to denote the set

{0, 1, . . . , n−1}. Let S be a subset of left side vertices. For

convenience we use Γ(S) to denote the neighbors of S.

Definition 4. The bipartite graph Γ : [cm] × [d] → [m]
is (c,m, d, k)-unique (k-unique) if for every S ⊆ [cm]
with |S| ≤ k there exists y ∈ Γ(S) such that y has a

unique neighbor in S. An expander graph is explicit if it

has a deterministic description and Γ is computable in time

polynomial in log cm+ log d.

The performance of our generator constructions are di-

rectly tied to the parameters of such expanders. In particular,

we would like explicit expanders that simultanously have a

low outdegree d, are highly unbalanced and are k-unique

for k as close to m as possible. A direct application of a

result by Capalbo et al. [21, Theorem 7.1] together with

an equivalence relation between different types of expander

graphs from Ta-Shma et al. [22, Theorem 8.1] yields explicit

constructions of unbalanced unique neighbor expanders.1

Lemma 3 (Capalbo et al. [21, Theorem 7.1]). For every
choice of c and m there exists a (c,m, d, k)-unique expander
with d = poly log c and k = Ω(m/d). For constant c the
expander is explicit.

We note the following simple technique for constructing a

larger k-unique expander from a smaller k-unique expander.

Lemma 4. Let Γ be a (c,m, d, k)-unique expander with
cm × m adjacency matrix M. For any positive integer
b define Γ(b) as the bipartite graph with block diagonal
adjacency matrix M(b) = diag(M, . . . ,M) with b blocks in
the diagonal. Then Γ(b) is a (c, bm, d, k)-unique expander.

From expanders to independence: By associating each

right vertex in a (c,m, d, k)-unique expander with a position

in a (m, dk)-sequence over an abelian group (A,+), we can

generate a (cm, k)-sequence over A. This approach was pio-

neered by Siegel and has been used in different constructions

of families of k-independent hash functions [2], [17].

Lemma 5 (Siegel [2, Lemma 2.6, Corollary 2.11]). Let
Γ : [cm] × [d] → [m] be a k-unique expander and let
h : [m] → A be a dk-independent function with range an
abelian group. Let g : [cm]→ A be defined as

g(x) =
∑

y∈Γ({x})
h(y). (2)

Then g is a k-independent function.

1We state the results here without the restriction from [21] that c and
m are powers of two. We do this to simplify notation and it only affects
constant factors in our results.

III. EXPLICIT CONSTANT TIME GENERATORS

In this section we show how to obtain a constant time

k-generator by combining an explicit poly k-generator with

a cascading composition of unbalanced unique neighbor

expanders. Our technique works by generating a small

number of highly independent elements in an abelian group

and then successively applying constant degree expanders

to produce a greater number of less independent elements.

We continue this process up until the point where the final

number of elements is large enough to match the cost of

generating the smaller batch of highly independent elements.

The generator has two components. The first component

is an explicit m-generator g0 : [n] → A with period n
and range an abelian group A. The second component is

an explicit sequence (Γi)
t
i=1 of unbalanced unique neighbor

expanders. The expanders are constructed such that the left

side of the ith expander matches the right side of the (i+1)th
expander. By Lemma 3, for every choice of imbalance c,
target independence k and length of the expander sequence

t there exists a sequence of expanders with the property that

Γi is (c, ci−1m, d, dt−ik)-unique, (3)

for m = O(dtk) and d = poly log c. For constant c each

expander in the sequence is explicit.

We now combine the explicit m-generator g0 and the

sequence of expanders (Γi)
t
i=1 to define the k-independent

function gt. Let b = m/n and assume for simplicity that m
divides n. For each Γi we use the technique from Lemma 4

to construct a (c, ci−1n, d, dt−ik)-unique expander Γ
(b)
i . Let

xi denote a number in [cin] corresponding to a vertex in

the right side of Γ
(b)
i . We are now ready to give a recursive

definition of gi : [c
in]→ A.

gi(xi) =
∑

xi−1∈Γ(b)
i ({xi})

gi−1(xi−1), 1 ≤ i ≤ t. (4)

Lemma 6. gi is dt−ik-independent.

Proof: We proceed by induction on i. By definition,

g0 : [n]→ A is dtk-independent. Assume by induction that

gi : [c
in] → A is dt−ik-independent. By definition Γ

(b)
i+1 is

a (c, cin, d, dt−(i+1)k)-unique expander. Applying Lemma 5

we have that gi+1 : [c
i+1n]→ A is dt−(i+1)k-independent.

We will now show that gt supports fast sequential evalu-

ation and prove that we can use gt to construct an explicit

constant time k-generator from any explicit m-generator, for

an appropriate choice of m. Divide the domain of each gi
evenly into b = n/m batches of size cim corresponding to

each block of the adjacency matrix of Γi used to construct

Γ
(b)
i and index the batches by j ∈ [b]. In order to evaluate

gi+1 over batch number j it suffices to know Γi+1 and the

values of gi over batch number j. Fast sequential evaluation

of gt is achieved in the following steps. First we tabulate
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the sequence of expanders (Γi)
t
i=1 such that Γi({xi}) can

be read in d operations. Secondly, to evaluate gt over batch

j, we begin by tabulating the output of g0 over batch j and

then successively apply our tabulated expanders to produce

tables for the output of g1, g2, . . . , gt over batch j.

Given tables for the sequence of expanders and assuming

that the generator underlying g0 has been initialized, we

now consider the average number of operations used per

output when performing batch-evaluation of gt. The number

of values output is ctm. The cost of emitting m values from

g0 is by definition at most poly(m). The cost of producing

tables for the output of g1, g2, . . . , gt for the current batch

is given by
∑t

i=1 dc
im = O(dctm) for c > 1. The average

number of operations used per output when performing

batch-evaluation of gt is therefore bounded from above by

O(dctm) + polym

ctm
= O(d) +

polym

ct
. (5)

The following lemma states that we can obtain a constant

time k-generator from every explicit m-generator by setting

t = O(log k) and choosing c to be an appropriately large

constant.

Lemma 7. Let A be an abelian group with constant time
addition. Suppose there exists an explicit m-generator with
range A, period n and space usage polym. Then there
exists a positive constant ε such that for every k ≤ mε there
exists an explicit constant time k-generator with range A,
period n, and seed length, space usage and initialization
time poly k.

Proof: The sequence of expanders (Γi)
t
i=1 with the

properties given in (3) exists for m = O(dtk) and

d = poly log c and is explicit for c constant. By inserting

m = O(dtk) into equation (5) it can be seen that the

average number of operations is constant for c = O(1) and

t = O(log k) with constants that depend on the parameters

of the m-generator. The k-generator is initialized by initial-

izing the m-generator, finding and tabulating the sequence

of expanders and producing the first batch of values, all

of which can be done in poly k time and space. After

initialization, each call to emit() will return a value from

the current batch and use a constant number of operations

for the task of preparing the next batch of outputs.

We now show our main theorem about explicit constant

time k-generators over finite fields. The construction uses

an explicit m-generator based on multipoint evaluation.

Combined with the approach of Lemma 7 this yields a near-

optimal time-space tradeoff for k-generation.

Theorem 1 (Repeated). For every finite field F with con-
stant time arithmetic there exists a data structure that
for every choice of k ≤ |F|/poly log |F| is an explicit
constant time k-generator. The generator has range F,
period |F| poly log k, and seed length, space usage and
initialization time k poly log k.

Proof: Fix the choice of finite field F. By Lemma 2

there exists an explicit m-generator in F for m ≤ |F|
with period |F| that uses time O(m log3m) to emit m
values. Fix some constant c > 1 and let (Γi)

t
i=1 denote

an explicit sequence of constant degree expanders with the

properties given by (3). The average number of operations

per k-independent value output by gt when performing batch

evaluation is given by

O(dctm) +O(m log3m)

ctm
= O(d) +

O(log3 dtk)

ct
. (6)

Setting t = O(log log k) and following the approach of

Lemma 7 we obtain a k-generator with the stated properties.

Based on the discussion in a paper by Capalbo [23]

that introduces unbalanced unique neighbor expanders for

concrete values of c and d, it appears likely that the constants

hidden in Theorem 1 for the current best explicit construc-

tions make our explicit generators unsuited for practical use

since c is close to 1 when d is reasonably small. The next

section explores how randomly generated unique neighbor

expanders can be used to show stronger existence results

and yield k-generators with tractable constants.

IV. CONSTANT TIME GENERATORS WITH OPTIMAL SEED

LENGTH

Randomly constructed expanders of the type used in

this paper have stronger properties than known explicit

constructions, and can be generated with an overwhelming

probability of success. There is no known efficient algorithm

for verifying whether a given graph is a unique neighbor

expander. Therefore randomly generated expanders cannot

be used to replace explicit constructions without some

probability of failure.

In this section we apply the probabilistic method to

show the existence of k-generators with better performance

characteristics than those based on known explicit construc-

tions of expanders. We are able to show the existence of

constant time generators with optimal seed length that use

O(k log2+ε k) words of space for any constant ε > 0. Fur-

thermore, such generators can be constructed for any choice

of constant failure probability δ > 0. The generators we

consider in this section use only a single expander graph but

are otherwise identical to the generators described in Section

III. Using a single expander graph suffices for constant

time generation because the probabilistic constructions are

powerful enough to support an imbalance of c = poly log k
while maintaining constant degree. This imbalance is enough

to amortize the cost of multipoint evaluation in a single

expansion step as opposed to the sequence of explicit

expanders employed in Theorem 1. Our arguments are a

straightforward application of the probabilistic method, but

we include them for completeness and because we are

interested in somewhat nonstandard parameters.
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We consider the following randomized construction of a

(c,m, d, k)-unique expander Γ. For each vertex x in [cm],
we add an edge between x and each distinct node of d
nodes selected uniformly at random from [m]. By a standard

argument, the graph can only fail to be unique neighbor

expander if there exists a subset S of left hand side vertices

with |S| ≤ k such that |Γ(S)| ≤ 
d|S|/2� [2, Lemma 2.8].

In the following we assume that kd ≤ m.

Pr[Γ is not a unique neighbor expander]

≤ Pr[∃S ⊆ [cm], |S| ≤ k : |Γ(S)| ≤ 
d|S|/2�]
≤

∑
S⊆[cm]
|S|≤k

Pr[|Γ(S)| ≤ 
d|S|/2�]

≤
k∑

i=1

(
cm

i

)(
m


id/2�
)(
id/2�

m

)id

≤
k∑

i=1

(cme

i

)i( me

id/2

)id/2(
id/2

m

)id

=
k∑

i=1

(
cme1+d/2

(
(d/2)i1−1/(d/2)

m

)d/2
)i

(7)

If the expression in the outer parentheses in (7) can be

bounded from above by 1/2 for i = 1, 2, . . . , k, then the

expander exists. We also note that the randomized expander

construction can be performed using dk-independent vari-

ables without changing the result in (7). Let γ > 1 be a

number that may depend on k and let δ denote an upper

bound on the probability that the randomized construction

fails. By setting m = O(dkγ) we are able to obtain

the following expression for the relation between δ, the

imbalance c and the left outdegree bound d.

δ = e
cd

γd/2−1 (8)

Equation (8) reveals tradeoffs for the parameters of the ran-

domly constructed k-unique expander graphs. For example,

increasing γ makes it possible to make the graph more

unbalanced while maintaining the same upper bound on the

probability of failure δ. The increased imbalance comes at

the cost of an increase in m, the size of the right side of the

graph. Similarly it can be seen how increasing d can be used

to reduce the probability of error. Setting the parameters

to minimize the space occupied by the expander while

maintaining constant outdegree and by extension constant

generation time, we obtain Theorem 2.

Theorem 2 (Repeated). For every finite field F with constant
time arithmetic and every choice of positive constants ε,
δ there exists a data structure that for every choice of
k = O(|F|) is a constant time k-generator with failure prob-
ability δ, range F, period |F|, seed length O(k), space usage
O(k log2+ε k), and initialization time O(k poly log k).

Proof: Let ε̃ < ε be a constant and set γ = logε̃ k.

Choosing d to be a sufficiently large constant (dependent

on ε̃), equation (8) shows that for every δ > 0 there exists

a (c,m, d, k)-unique expander Γ with c = Ω(log2+ε k) and

m = O(kγ). Using multipoint evaluation, the right side ver-

tices of Γ can be associated with Θ(k)-independent variables

over F using O(k log2+ε k) operations. By the properties of

Γ and applying Lemma 5 we are able to generate batches

of k-independent variables of size Ω(k log2+ε k) using

O(k log2+ε) operations. The seed length of O(k) holds by

the observation that randomized construction of the expander

only requires O(k)-independence. The O(k poly log k) ini-

tialization time is obtained by using multipoint evaluation to

construct a table for Γ.

V. FASTER MULTIPOINT EVALUATION FOR

k-GENERATORS

This section presents an improved generator based directly

on multipoint evaluation of a polynomial hash function

h ∈ Hk over a finite field. For our purpose of generating

an (n, k)-sequence from h, we are free to choose the order

of elements of F in which to evaluate h. We present an

algorithm for the systematic evaluation of h over disjoint

size k subsets of F using Fast Fourier Transform (FFT)

algorithms. Our technique yields a k-generator over F with

generation time O(log k), and space usage and seed length

that is optimal up to constant factors. The algorithm depends

upon the structure of F, similarly to other FFT algorithms

over finite fields [24].
The nonzero elements of F form a multiplicative cyclic

group F
∗ of order q − 1. The multiplicative group has a

primitive element ω which generates F
∗.

F
∗ = {ω0, ω1, ω2, . . . , ωq−2}. (9)

For k that divides q − 1, we can construct a multiplicative

subgroup S∗k,0 of order k with ωk = ω(q−1)/k as the

generating element. S∗k,0 contains k distinct elements of F.

Define for j = 0, 1, . . . , (q − 1)/k − 1,

S∗k,j = ωjSk,0 = {ωjω0k, ω
jω1k, . . . , ω

jωk−1
k }. (10)

Viewed as subsets of F
∗ the sets S∗k,j form an exact

cover of F
∗. We now consider how to evaluate a degree

k − 1 polynomial h(x) ∈ F[X] in the points of S∗k,j . The

polynomial takes the form

h(x) = a0x
0 + a1x

1 + · · ·+ ak−1xk−1. (11)

Rewriting the polynomial evaluation over S∗k,j in matrix

notation:⎡
⎢⎢⎢⎢⎢⎢⎣

ω0·0k ω0·1k . . . ω
0·(k−1)
k

ω1·0k ω1·1k . . . ω
1·(k−1)
k

ω2·0k ω2·1k . . . ω
2·(k−1)
k

...
...

...

ω
(k−1)·0
k ω

(k−1)·1
k . . . ω

(k−1)2
k

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ωj·0a0
ωj·1a1
ωj·2a2

...

ωj·(k−1)ak−1

⎤
⎥⎥⎥⎥⎥⎦ (12)
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We assume that the coefficients of h and ωj are given

and consider algorithms for efficient evaluation of the

matrix-vector product. The coefficients ãj,i = ωj·iai for

i = 0, 1, . . . , k − 1 can be found in O(k) operations and

define a polynomial h̃j(x) =
∑k−1

i=0 ãi,jx
i. Evaluating h̃0(x)

over S∗k,0 corresponds to computing the Discrete Fourier

Transform over a finite field.

Theorem 3 (Repeated). For every finite field F that sup-
ports computing the discrete Fourier transform of length
k in O(k log k) operations, there exists a data structure
that, for every choice of k ≤ |F| and given a primitive
element ω, is an explicit O(log k) time k-generator with
range F, period |F|, seed length k, space usage O(k), and
initialization time O(k log k).

Proof: Evaluation of h̃j(x) over S∗k,j takes O(k log k)
operations by assumption. For every batch j starting at

j = 0, the value of ωj is stored and used to compute the

coefficients of h̃j+1(x) ing O(k) operations.

We now discuss the validity of the assumption that we are

able to compute the DFT over a finite field in O(k log k)
operations. Assume that k | (q−1) and that ωk is known. If

k is highly composite there exist Fast Fourier Transforms for

computing (12) in O(k log k) field operations [25]. If k is not

highly composite there exists an algorithm for computing the

DFT in equation (12) in O(kz log kz) operations for fields

of cardinality q = pz in our model of computation [26]. For

q = pO(1) this reduces to the desired O(k log k) operations.

VI. A LOAD BALANCING APPLICATION

We next consider how our new generator yields stronger

guarantees for load balancing. Our setting is motivated by

applications such as splitting a set of tasks of unknown

duration among a set of m machines, in order to keep the

load as balanced as possible. Once a task is assigned to

a machine, it cannot be reassigned, i.e., we do not allow

migration. For simplicity we consider the unweighted case

where we strive to keep the number of tasks on each machine

low, and we assume that m divides |F| for some field F

with constant time operations on a word RAM. Suppose

that each machine has capacity (e.g. memory enough) to

handle b tasks at once, and that we are given a sequence

of t tasks T1, . . . , Tt, where we identify each task with its

duration (an interval in R). Now let k = mb and suppose

that we use our constant time k-generator to determine for

each i = 1, . . . , t which machine should handle Ti. (We

emphasize that this is done without knowledge of Ti, and

without coordination with the machines.) Compared to using

a fully random choice this has the advantage of requiring

only k poly log k words of random bits, which in turn may

make the algorithm faster if random number generation is

a bottleneck. Yet, we are able to get essentially the same

guarantee on load balancing as in the fully random case. To

see this let L(x) = {i | x ∈ Ti} be the set of tasks active

at time x, and let Lq(x) be the subset of L(x) assigned to

machine q using our generator. We have:

Lemma 8. For ε > 0, if |L(x)|(1 + ε) < mb then
Pr[maxq |Lq(x)| > b] < m exp(−ε2b/3).

Proof: Since |L(x)| < mb = k we have that the

assignment of tasks in L(x) to machines is uniformly ran-

dom and independent. This means that the number of tasks

assigned to each machine follows a binomial distribution

with mean b/(1+ε), and we can apply a Chernoff bound of

exp(−ε2b/3) on the probability that more than b tasks are

assigned to a particular machine. A union bound over all m
machines yields the result.

Lemma 8 allows us to give a strong guarantee on the

probability of exceeding the capacity b of a machine at any

time, assuming that the average load is bounded by b/(1+ε).
In particular, let S ⊆ R be a set of size at most 2t such that

every workload L(y) is equal to L(x) for some x ∈ S. The

existence of S is guaranteed since the t tasks are intervals,

and they have at most 2t end points. This means that

sup
x∈R

max
q
|Lq(x)| = max

x∈S
max

q
|Lq(x)|,

so a union bound over x ∈ S gives

Pr[sup
x∈R

max
q
|Lq(x)| > b] < 2tm exp(−ε2b/3) .

For constant ε and whenever b = ω(log k) and tm = 2o(b)

we get an error probability that is exponentially small in

b. Such a strong error guarantee can not be achieved with

known constant time hashing methods [2], [27], [28], [17] in

reasonable space, since they all have an error probability that

decreases polynomially with space usage. Even if explicit

constructions for the expanders needed in Siegel’s hash

functions were found, the resulting space usage would be

polynomially higher than with our k-generator.

VII. EXPERIMENTS

This section contains experimental results of an imple-

mentation of a k-generator over F264 . There are two main

components to the generator: an algorithm for filling a table

of size m with dk-independent variables and a bipartite

unbalanced expander graph.

For the first component, we use an implementation of

Gao-Mateer’s additive FFT [29, Algorithm 2.]. Utilizing the

Gao-Mateer algorithm we can generate a batch of k elements

of an (|F|, k)-sequence using space O(k) and O(k log2 k)
operations on a word RAM that supports arithmetic over F.

The additive complexity of the FFT algorithm is O(k log2 k)
while the multiplicative complexity is O(k log k). Addition

in F264 is implemented as an XOR-operation on 64-bit

words. Multiplication is implemented using the PCLMUL

instruction along with the techniques for modular reduction

specified by Gueron et al. [30].
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The second component of the generator is the expander

graph. Let F2w be a field of characteristic two and let

M be a cm × m adjacency matrix of a graph Γ where

each entry of M is viewed as an element of F2w . By a

similar argument to the one used in Lemma 5 the linear

system Mx defines a (cm, k)-sequence if x is a vector of

dk-independent variables over F2w and M has row rank at

least k. We consider randomized constructions of M over

F2 with at most d 1s in each row and row rank at least

k. It is easy to see that a matrix M over F2 with these

properties also defines a matrix with the same properties

over F2w . Since k-uniqueness of Γ implies that M has row

rank k, but not the other way around, we are able to obtain

better performance characteristics of generators over F2w by

focusing on randomized constructions of M.

The matrix M is constructed in the following way. Inde-

pendently, for each i ∈ [cm] sample d integers uniformly

with replacement from [m] and define the ith row of M
as the vector constructed by taking the zero vector and

adding 1s in the d positions sampled for row i. Observe

that if M does not have row rank at least k then some

non-empty subset of at most k rows of M sum to the zero

vector. In order for a non-empty set of vectors over F
m
2 to

sum to the zero vector, the bit-parity must be even in each

of the m positions of the sum. The sum of any i rows of M
corresponds to a balls and bins process that distributes id
balls into m bins, independently and uniformly at random.

Let id be an even number. Then there are (id − 1)!! ways

of ordering the balls into pairs and the probability that the

outcome is equal to any particular pairing is (1/m)id/2. This

yields the following upper bound on the probability that a

subset of i rows sums to zero:

βpair(i, d,m) = (id− 1)!!

(
1

m

)id/2

. (13)

A comparison between this bound and the bound for k-

uniqueness from equation (7) shows that, for each term in

the sum, the multiplicative factor applied to the binomial

coefficient
(
cm
i

)
is exponentially smaller in id for the bound

in (13).

The pair-based approach which yields the bound βpair

overestimates the probability of failure on subsets of size i,
increasingly as id grows large compared to m. We therefore

introduce a different bound based on the Poisson approxi-

mation to the binomial distribution: the number of balls in

each of the m positions can approximately be modelled as

independent Poisson distributed variables [31, Ch. 5.4]. The

probability that that the parity is even in each of the m
positions in a sum of i rows is bounded by

βpoisson(i, d,m) = e
√
id

(
1 + e−2

id
m

2

)m

, (14)

where we use the same approach as Mitzenmacher et

al. [32]. For any given subset of rows of M, we are free

to choose between the two bounds. The probability that a

randomly constructed matrix M fails to be have rank at

least k can be bounded from above using a union bound

over subsets of rows of M.

δ ≤
k∑

i=1

(
cm

i

)
min(βpair(i, d,m), βpoisson(i, d,m)).

(15)

Table II shows the generation time in nanoseconds per

64-bit value using Horner’s scheme, Gao-Mateer’s FFT and

the implementation of our generator (FFT+Γ). The choice of

parameters for the expander graphs were based on a search

for the fastest generation time over every combination of

imbalance c ∈ {16, 32, 64} and outdegree d ∈ {4, 8, 16}.
Given choices of d, c and independence k, the size of the

right side of the expander m was increased until existence

could be guaranteed by the bound in (15). The experiments

were run on a machine with an Intel Core i5-4570 processor

with 6MB cache and 8GB of RAM.

The generation time for Horner’s scheme is approximately

linear in k and logarithmic in k for the FFT, as predicted by

theory. The FFT is faster than using Horner’s scheme already

at k = 64 and orders of magnitude faster for large k. For

small values of k, our generator is an order of magnitude

faster than the FFT and comes close to the 4 ns per output

performance of the 64-bit C++11 implementation of the

popular Mersenne Twister.

In practice, the memory hierarchy appears to be the

primary obstacle to maintaining a constant generation time

as k increases. Our generator reads the expander graphs

sequentially and performs random lookups into the table of

Table II
GENERATION TIME IN NANOSECONDS PER 64-BIT VALUE

k Horner FFT FFT+Γ
25 177 243 15

26 361 294 16

27 730 338 19

28 1470 375 23

29 2950 412 24

210 5902 449 25

211 11808 487 35

212 23627 523 43

213 47183 561 54

214 94429 599 68

215 188258 638 69

216 376143 678 77

217 751781 719 85

218 1505016 765 93

219 3015969 808 110

220 6082313 864 175
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dk-independent values. As k grows large, the table can no

longer fit into cache and for large imbalance c, the expander

can no longer be stored in main memory.
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