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Abstract—We show an exponential gap between communi-
cation complexity and information complexity, by giving an
explicit example for a communication task (relation), with info-
rmation complexity ≤ O(k), and distributional communication
complexity ≥ 2k. This shows that a communication protocol
cannot always be compressed to its internal information. By
a result of Braverman [1], our gap is the largest possible. By
a result of Braverman and Rao [2], our example shows a gap
between communication complexity and amortized communi-
cation complexity, implying that a tight direct sum result for
distributional communication complexity cannot hold.
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I. INTRODUCTION

Communication complexity is a central model in com-

plexity theory that has been extensively studied in numerous

works. In the two player distributional model, each player

gets an input, where the inputs are sampled from a joint

distribution that is known to both players. The players’

goal is to solve a communication task that depends on

both inputs. The players can use both common and private

random strings and are allowed to err with some small

probability. The players communicate in rounds, where in

each round one of the players sends a message to the other

player. The communication complexity of a protocol is the

total number of bits communicated by the two players.

The communication complexity of a communication task

is the minimal number of bits that the players need to

communicate in order to solve the task with high probability,

where the minimum is taken over all protocols. For excellent

surveys on communication complexity see [3], [4].
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The information complexity model, first introduced by

[5]–[7], studies the amount of information that the players

need to reveal about their inputs in order to solve a com-

munication task. The model was motivated by fundamental

information theoretical questions of compressing communi-

cation, as well as by fascinating relations to communication

complexity, and in particular to the direct sum problem

in communication complexity, a problem that has a rich

history, and has been studied in many works and various

settings [5], [7]–[15] (and many other works). In this paper

we will mainly be interested in internal information com-

plexity (a.k.a, information complexity and information cost).

Roughly speaking, the internal information complexity of a

protocol is the number of information bits that the players

learn about each other’s input, when running the protocol.

The information complexity of a communication task is the

minimal number of information bits that the players learn

about each other’s input when solving the task, where the

minimum is taken over all protocols.

Many recent works focused on the problem of compress-

ing interactive communication protocols. Given a communi-

cation protocol with small information complexity, can the

protocol be compressed so that the total number of bits com-

municated by the protocol is also small? There are several

beautiful known results, showing how to compress com-

munication protocols in several cases. Barak, Braverman,

Chen and Rao showed how to compress any protocol with

information complexity k and communication complexity c,
to a protocol with communication complexity Õ(

√
ck) in

the general case, and Õ(k) in the case where the underlying

distribution is a product distribution [7]. Braverman and

Rao showed how to compress any one round (or small

number of rounds) protocol with information complexity k
to a protocol with communication complexity O(k) [2].

Braverman showed how to compress any protocol with

information complexity k to a protocol with communication

complexity 2O(k) [1] (see also [16], [17]). This last protocol

is the most related to our work, as it gives a compression

result that works in the general case and doesn’t depend at
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all on the communication complexity of the original proto-

col. Braverman also described a communication complexity

task that has information complexity O(k) and no known

communication protocol with communication complexity

smaller than 2k [18]. However, there is no known lower

bound on the communication complexity of that problem.

Another line of works shows that many of the known

general techniques for proving lower bounds for random-

ized communication complexity also give lower bounds for

information complexity [1], [16], [17].

In this work we show the first gap between information

complexity and communication complexity of a communica-

tion task. We give an explicit example for a communication

task (a relation), called the bursting noise game, parame-

terized by k ∈ N and played with an input distribution μ.

We prove that the information complexity of the game is

O(k), while any communication protocol for solving this

game, with communication complexity at most 2k, almost

always errs. By the above mentioned compression protocol

of Braverman [1], our result gives the largest possible

gap between information complexity and communication

complexity.

Theorem 1 (Communication Lower Bound): Every ran-

domized protocol (with shared randomness) for the bursting

noise game with parameter k, that has communication

complexity at most 2k, errs with probability ε ≥ 1− 2−Ω(k)

(over the input distribution μ).

Theorem 2 (Information Upper Bound): There exists a

randomized protocol for the bursting noise game with pa-

rameter k, that has information cost O(k) and errs with

probability ε ≤ 2−Ω(k) (over the input distribution μ).

We note that both the inputs and the outputs in our burst-

ing noise game example are very long. Namely, the input

length is triple exponential in k, and the output length is

double exponential. The protocol that achieves information

complexity O(k) has communication complexity double

exponential in k.

As mentioned above, information complexity is also re-

lated to the direct sum problem in communication com-

plexity. Braverman and Rao showed that information com-

plexity is equal to the amortized communication complexity,

that is, the limit of the communication complexity needed

to solve n tasks of the same type, divided by n [2] (see

also [1], [18], [19]). Our result therefore shows a gap

between distributional communication complexity and amor-

tized distributional communication complexity, proving that

tight direct sum results for the communication complexity

of relations cannot hold.

Organization: The paper is organized as follows. In

Section II we define the bursting noise game. In Section III

we give general definitions and preliminaries. In Section IV

we state the graph correlation lemma, a central tool that

we will use in the lower bound proof. Section V gives an

overview of our main result, the lower bound for the commu-

nication complexity of the bursting noise game (Theorem 1).

Section VI gives a general tool that can be used to upper

bound the information cost of a protocol, using the notion

of a divergence cost of a tree. In Section VII we give a

protocol for the bursting noise game with low information

cost, thus proving the upper bound required by Theorem 2.

II. BURSTING NOISE GAMES

The bursting noise game is a communication game be-

tween two parties, called the first player and the second
player. The game is specified by a parameter k ∈ N, where

k > 2100. We set c = 24
k

and w = 2100k.

The game is played on the binary tree T with c ·w layers

(the root is in layer 1 and the leaves are in layer c · w),

with edges directed from the root to the leaves. Denote the

vertex set of T by V . Each player gets as input a bit for

every vertex in the tree. Let x be the input given to the

first player, and y be the input given to the second player,

where x, y ∈ {0, 1}V . For a vertex v ∈ V , we denote by

xv and yv the bits in x and y associated with v. The input

pair (x, y) is selected according to a joint distribution μ on

{0, 1}V × {0, 1}V , defined below.

Denote by Even(T ) ⊆ V the set of non-leaf vertices in

an even layer of T and by Odd(T ) ⊆ V the set of non-leaf

vertices in an odd layer of T . We think of the vertices in

Odd(T ) as “owned” by the first player and the vertices in

Even(T ) as “owned” by the second player. Let v ∈ V be a

non-leaf vertex. Let v0 be the left child of v and v1 be the

right child of v. Let b ∈ {0, 1}. We say that vb is the correct
child of v with respect to x, y, if either the first player owns

v and xv = b, or the second player owns v and yv = b.
We think of the c · w layers of the tree T as partitioned

into c multi-layers, each consisting of w consecutive layers

(e.g., the first multi-layer consists of layers 1 to w). We

denote by i∗ the first layer of the ith multi-layer, that is,

i∗ = (i− 1)w + 1.

For s ≤ t ∈ N, denote by [s, t] the set {s, . . . , t} and by

[t] the set {1, . . . , t}. Let i ∈ [c] be a multi-layer. Denote

s = i∗ and t = s+w−1 = (i+1)∗−1. Let t′ ∈ [(i+1)∗, cw],
and let v ∈ V be a vertex in layer t′ of T . For j ∈ [s, t+1],
let vj be v’s ancestor in layer j. We say that v is typical
with respect to i, x, y, if the followings hold:

1) For at least 0.8-fraction of the indices j ∈ [s, t] ∩
Odd(T ), the vertex vj+1 is the correct child of vj
with respect to x, y.

2) For at least 0.8-fraction of the indices j ∈ [s, t] ∩
Even(T ), the vertex vj+1 is the correct child of vj
with respect to x, y.

Observe that in order to decide whether v is typical with

respect to i, x, y, it suffices to know the bits that x, y assign

to the vertices vs, . . . , vt. When x, y are clear from the

context, we omit x, y and say that v is typical with respect

to multi-layer i.
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Algorithm I: Sample (x, y) according to μ

1) Randomly select i ∈ [c] (the noisy multi-layer).

2) Set every vertex in multi-layer i (layers [i∗, i∗+
w − 1]) to be noisy.

3) If i < c: Let L be the set of all non-typical

vertices in layer i∗+w = (i+1)∗ with respect

to i, x, y (note that x, y were already defined on

layers [i∗, i∗+w− 1], and therefore the typical

vertices are defined). For every v ∈ L, set all the

vertices in the subtree rooted at v to be noisy.

4) Set all unset vertices in V to be non-noisy.

Figure 1: Illustration of Algorithm I

We next define the distribution μ on {0, 1}V ×{0, 1}V by

an algorithm for sampling an input pair (x, y) (Algorithm I

below). In the algorithm, when we say “set v to be non-

noisy”, we mean “select xv ∈ {0, 1} uniformly at random

and set yv = xv”. By “set v to be noisy”, we mean “select

xv ∈ {0, 1} and yv ∈ {0, 1} independently and uniformly

at random”. Figure 1 illustrates Algorithm I. The players’

mutual goal is to output the same leaf v ∈ V , where v is

typical with respect to i, x, y (that is, v is typical with respect

to the noisy multi-layer; see Algorithm I).

For i ∈ [c], we denote by μi the distribution μ conditioned

on the event that the noisy multi-layer selected by Step 1 of

the algorithm defining μ, is i. Note that μ = 1
c

∑
i∈[c] μi.

Remark 1: Observe that it is not always possible to

deduce i (i.e., the index of the noisy multi-layer used to

construct the pair (x, y)) from the pair (x, y). Therefore, the

bursting noise game does not induce a relation. Nevertheless,

with extremely high probability, the first multi-layer on

which x and y disagree is i. Thus, the game can be easily

converted to a relation, by omitting the rare inputs (x, y)
that agree on multi-layer i. Note that since the statistical

distance between the two distributions is negligible, both

our upper bound and lower bound trivially apply to the new

game as well. For that reason, it will be helpful to think of

the supports of the different μi’s as if they were pairwise

disjoint.

Remark 2: Observe that c is set to be double exponential

in k. If c were set to be just exponential in k, a simple binary

search algorithm would have been able to find the location

of the noisy multi-layer, and thus solve the bursting noise

game with communication complexity polynomial in k.

III. DEFINITIONS AND PRELIMINARIES

A. General Notation

Throughout the paper, all logarithms are taken with

base 2, and we define 0 log(0) = 0. For a set S, when

we write “x ∈R S” we mean that x is selected uniformly

at random from the set S. For a distribution τ , when we

write “x← τ” we mean that x is selected according to the

distribution τ . For Z that is either a random variable taking

values in {0, 1}V or an element in {0, 1}V , and a set T ⊆ V ,

we define ZT to be the projection of Z to T .

B. Information Cost

Definition 1 (Information Cost): The information cost of

a protocol π over random inputs (X,Y ) that are drawn

according to a joint distribution μ, is defined as

ICμ(π) = I(Π;X|Y ) + I(Π;Y |X),

where Π is a random variable which is the transcript of the

protocol π with respect to μ. That is, Π is the concatenation

of all the messages exchanged during the execution of π. The

ε information cost of a computational task f with respect to

a distribution μ is defined as

ICμ(f, ε) = inf
π

ICμ(π),

where the infimum ranges over all protocols π that solve f
with error at most ε on inputs that are sampled according to

μ.

C. Relative Entropy

Definition 2 (Relative Entropy): Let μ1, μ2 : Ω → [0, 1]
be two distributions, where Ω is discrete (but not necessarily

finite). The relative entropy between μ1 and μ2, denoted

D(μ1‖μ2), is defined as

D(μ1‖μ2) =
∑
x∈Ω

μ1(x) log
(

μ1(x)
μ2(x)

)
.

Proposition 3: Let μ1, μ2 : Ω → [0, 1] be two distribu-

tions. Then,

D(μ1‖μ2) ≥ 0.

The following relation is called Pinsker’s inequality, and

it relates the relative entropy to the �1 distance.
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Proposition 4 (Pinsker’s Inequality): Let μ1, μ2 : Ω →
[0, 1] be two distributions. Then,

2 ln(2) ·D(μ1‖μ2) ≥ ‖μ1 − μ2‖2,
where

‖μ1 − μ2‖ =
∑
x∈Ω

|μ1(x)− μ2(x)|

= 2max
E⊆Ω

{μ1(E)− μ2(E)} .

D. Information

Definition 3 (Information): Let μ : Ω → [0, 1] be a

distribution and let U be the uniform distribution over Ω.

The information of μ, denoted I(μ), is defined by

I(μ) = D(μ ‖ U)

=
∑

x∈supp(μ)
μ(x) log

(
μ(x)

1
|Ω|

)

=
∑

x∈supp(μ)
μ(x) log (|Ω|μ(x)) .

Equivalently,

I(μ) = log(|Ω|)−H(μ),

where H(μ) denotes the Shannon entropy of μ.

For a random variable X taking values in Ω, with distri-

bution PX : Ω→ [0, 1], we define I(X) = I(PX).

E. Shearer-Like Inequality for Information

The following version of Shearer’s inequality [20], [21]

is due to [22].

Lemma 5 (Shearer’s Inequality): Let X1, . . . , XM be

M random variables. Let X = (X1, . . . , XM ). Let T =
{Ti}i∈I be a collection of subsets of [M ], such that each

element of [M ] appears in at least K members of T . For

A ⊆ [M ], let XA = {Xj : j ∈ A}. Then,∑
i∈I

H[XTi ] ≥ K ·H[X].

We state here the following “Shearer-like” inequality for

information. A variant of this lemma was proved in [23].

Lemma 6 (Shearer-Like Inequality for Information):
Let X1, . . . , XM be M random variables, taking values

in Ω1, . . . ,ΩM , respectively. Let X = (X1, . . . , XM ) be

a random variable, taking values in Ω1 × · · · × ΩM . Let

T = {Ti}i∈I be a collection of subsets of [M ], such that

each element of [M ] appears in at most 1
K fraction of the

members of T . For A ⊆ [M ], let XA = {Xj : j ∈ A}.
Then,

K · E
i∈RI

[I(XTi)] ≤ I(X).

The next lemma generalizes Lemma 6, and gives a

Shearer-like inequality for relative entropy. A variant of this

lemma was proved in [23]. The lemma will not be used in

the paper, but we include it here as it may be useful in this

context.

Lemma 7 (Shearer-Like Inequality for Relative Entropy):
Let P,Q : Ω1 × · · · × ΩM → [0, 1] be two distributions,

such that Q is a product distribution, i.e., for every

j ∈ [M ], there exists Qj : Ωj → [0, 1], such that

Q(x1, . . . , xM ) =
∏

j∈[M ] Qj(xj). Let T = {Ti}i∈I be a

collection of subsets of [M ], such that each element of [M ]
appears in at most 1

K fraction of the members of T . For

A ⊆ [M ], let PA and QA be the marginal distributions of

A in the distributions P and Q (respectively). Then,

K · E
i∈RI

[D(PTi
‖QTi

)] ≤ D(P‖Q).

IV. THE GRAPH CORRELATION LEMMA

Lemma 8 (Graph Correlation Lemma): 1 Let G = (U ∪
W,E) be a bipartite (multi)-graph with sets of vertices U,W
and (multi)-set of edges E, such that, G is bi-regular and

|U | = |W |. Let M > T > k ∈ N be such that,

T ≤ 2−20kM , and k ≥ 4. For every (u,w) ∈ E, let

T (u,w) ⊂ [M ] be a set of size T , such that, for every u ∈ U ,

each element of [M ] appears in at most 2−20k fraction of

the sets in {T (u,w)}(u,w)∈E , and for every w ∈ W , each

element of [M ] appears in at most 2−20k fraction of the sets

in {T (u,w)}(u,w)∈E .

Let Σ be a finite set. For every u ∈ U , let Xu ∈ ΣM be

a random variable, such that, I(Xu) ≤ 24k, and for every

w ∈ W , let Y w ∈ ΣM be a random variable, such that,

I(Y w) ≤ 24k, and such that, for every u ∈ U and w ∈ W ,

the random variables Xu and Y w are mutually independent.

For (u,w) ∈ E, denote

μ(u,w) =
PrXu,Y w [Xu

T (u,w) = Y w
T (u,w)]

|Σ|−T .

Let

D = {(u,w) ∈ E : μ(u,w) ≤ 1− 2−4k}.

Then,
|D|
|E| ≤ 2−4k.

V. OVERVIEW OF THE LOWER BOUND PROOF

Due to space limitations, we give an overview of the proof

of Theorem 1.

Rectangle Partition: We fix the random strings for the

protocol so that we have a deterministic protocol. We show

that if the protocol communicates at most 2k bits, it errs

with probability 1− 2−Ω(k) on inputs sampled according to

μ. We will show that for almost all i ∈ [c], the protocol errs

with probability 1 − 2−Ω(k) on inputs sampled according

to μi, that is, the distribution μ conditioned on the event

1Many variants of this lemma can be proven. In particular, a similar
argument can be used to prove a similar statement with sets T (u,w) that
are not of the same size. We state the lemma here for sets T (u,w) of the
same size T , for convenience of notation.
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that the noisy multi-layer selected by Step 1 of Algorithm I

defining μ, is i. Note that the distribution μi is uniformly

distributed over supp(μi), and that for every pair of inputs

(x, y) ∈ supp(μi), the projection of x and y on the first

i− 1 multi-layers is the same.

As mentioned above, it will be helpful to think of the

supports of the different μi’s as if they were pairwise disjoint

(this property holds if we remove a μi-negligible set of

inputs from the support of each μi).

Let {R1, . . . , Rm} be the rectangle partition induced by

the protocol, where Rt = At × Bt, and m ≤ 22
k

. For

i ∈ [c] and an assignment z to the first i − 1 multi-layers,

we denote by Rt,z = At,z × Bt,z , the rectangle of all

pairs of inputs (x, y) ∈ Rt, such that the projection of

both x, y on the first i − 1 multi-layers is equal to z. Let

Xt,z be a random variable uniformly distributed over At,z .

Let Y t,z be a random variable uniformly distributed over

Bt,z . We denote by Xt,z
i , Y t,z

i the projections of Xt,z, Y t,z ,

respectively, on multi-layer i.
For fixed i, z, we define ρi,z to be a probability distribu-

tion that selects a rectangle in {R1,z, . . . , Rm,z} according

to its relative size. That is, ρi,z is defined as follows:

Randomly select x, y, such that the projection of both x
and y on the first i− 1 multi-layers is z. Select t to be the

index of the unique rectangle Rt,z containing (x, y).
Bounding the Information on the Noisy Multi-Layer:

The main intuition of the proof is that since c is significantly

larger than 2k, the protocol cannot make progress on all

multi-layers i ∈ [c] simultaneously. We first show that for a

random i ∈ [c], a random z, and a random rectangle Rt,z ,

chosen according to ρi,z , very little information is known

about Xt,z
i and Y t,z

i .

Formally, we prove that

E
i

E
z

E
t←ρi,z

[
I
(
Xt,z

i

)]
≤ m

c
, (1)

and similarly,

E
i

E
z

E
t←ρi,z

[
I
(
Y t,z
i

)]
≤ m

c
. (2)

The proof doesn’t follow by a trivial application of super-

additivity of information. That’s because choosing i, z at

random and t according to ρi,z and then choosing a random

variable X to be uniformly distributed on At,z , gives a

random variable X with distribution that may be very far

from uniform. Moreover, the probability that X is in the set

At, associated with a rectangle Rt, may be very far from

the probability that a uniformly distributed input is in At.

Nevertheless, we are still able to prove this using the fact

that we have a bound of m on the total number of times

that an input x appears in the cover {A1, . . . , Am}.
We fix γ = 2−k/4, and we fix i, z, t, such that,

1) I
(
Xt,z

i

)
≤ 1

γ · mc
2) I

(
Y t,z
i

)
≤ 1

γ · mc

3) The rectangle Rt,z is not too small.

By equations (1) and (2), and by Markov’s inequality, we

know that when we choose i, z uniformly at random, and t
according to ρi,z , the triplet (i, z, t) satisfies all three con-

ditions with high probability. Therefore, we ignore triplets

(i, z, t) that do not satisfy all three conditions.

Unique Answer Rectangles: In the rectangle Rt,z , the

answer of each of the two players in the protocol may not

be unique, as the answer of each player may also depend

on the input that she gets. Nevertheless, using the fact that

if the two players answer differently then the protocol errs,

we are able to subdivide the rectangle Rt,z into poly(1/γ)
sub-rectangles Rt,s,z , such that in each rectangle Rt,s,z the

answer is unique, except for a bad set of rectangles whose

total size is negligible compared to the size of Rt,z . When

subdividing Rt,z , we also need to change the answers given

by the two players on each rectangle, but we are able to do

that without adding errors to the protocol.

We ignore rectangles Rt,s,z where the answer of the

protocol is not unique, as their total size is small, and

only consider rectangles Rt,s,z = At,s,z ×Bt,s,z where the

answer is unique. Let Xt,s,z be a random variable uniformly

distributed over At,s,z . Let Y t,s,z be a random variable

uniformly distributed over Bt,s,z . For the rectangles Rt,s,z

we no longer have the strong bounds I
(
Xt,z

i

)
≤ 1

γ · mc , and

I
(
Y t,z
i

)
≤ 1

γ · mc , but rather the weaker bounds

I
(
Xt,s,z

i

)
≤ O (log (1/γ)) ,

and

I
(
Y t,s,z
i

)
≤ O (log (1/γ)) .

How the Proof Works: Fix i, z, t, s. In the rectangle

Rt,s,z the answer is unique, denote that answer by ωt,s,z . We

define Λt,s,z to be the set of input pairs (x, y) ∈ supp(μi),
such that ωt,s,z is not a correct answer for the input (x, y).
Let Pi be the probability for a uniformly distributed pair of

inputs (x, y), that have the same projection on the first i−1
multi-layers, to be in supp(μi). We prove that

Pr
[
(Xt,s,z, Y t,s,z) ∈ Λt,s,z

]
≥
(
1− 2−Ω(k)

)
Pi. (3)

Summing over all possibilities for t, s, z, this implies, for

almost all i ∈ [c], that the protocol errs on μi with

probability 1− 2−Ω(k), which concludes the proof.

In what follows, we outline the proof of (3).

The Graph G: We define the complete bipartite graph

G = (U ∪W,E), where U = W is the set of all possible

assignments for multi-layer i (for one player), and E =
U ×W .

Let M be the number of vertices in layer (i+ 1)∗ of the

tree T . We identify the set [M ] with the set of vertices in

layer (i+1)∗. Let u ∈ U,w ∈W . We define T (u,w) ⊂ [M ]
to be the set of all vertices in layer (i+1)∗ that are set to be

non-noisy for inputs u,w, by Algorithm I defining μ, when
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the noisy multi-layer is i. Observe that u and w determine

for every vertex in layer (i+ 1)∗ if it is noisy or not. Note

that by a symmetry argument, T (u,w) is of the same size T
for every u,w.

Let E ⊆ E be the set of all (u,w) ∈ E for which the

output ωt,s,z is correct for inputs (x, y) ∈ supp(μi), where

xi = u and yi = w. Note that if the noisy multi-layer is i,
then u and w determine the correctness of ωt,s,z . It holds

that

|E| ≤ 2−20k|E|,
as for any fixed u and every v ∈ [M ], at most a fraction

of 2−20k of the sets {T (u,w)}(u,w)∈E contain v, and the

output ωt,s,z is correct only if it has an ancestor in T (u,w).
Let Σ be the set of all possible boolean assignments to

the vertices of a subtree of T rooted at layer (i+ 1)∗.
Denote X := Xt,s,z and Y := Y t,s,z . For u ∈ U , we

define the random variable Xu, over the domain Σ[M ], to be

the conditional variable (X>i|Xi = u), that is, Xu has the

distribution of X>i conditioned on the event Xi = u, where

X>i denotes the projection of X to all multi-layers after

multi-layer i. Similarly, for w ∈ W , we define the random

variable Y w, over the domain Σ[M ], to be (Y>i|Yi = w),
that is, Y w has the distribution of Y>i conditioned on the

event Yi = w.
Application of the Graph Correlation Lemma: By the

definition of the distribution μi, the left hand side of (3) is

equal to∑
(u,w)∈E
(u,w)/∈E

Pr [Xi = u] ·Pr [Yi = w] ·Pr
[
Xu

T (u,w) = Y w
T (u,w)

]
,

(4)

where Xu
T (u,w) and Y w

T (u,w) are the projections of Xu, Y w,

respectively, to coordinates in T (u,w). This is true because

a pair (x, y) is in supp(μi) if and only if x, y agree on all

the subtrees rooted at vertices in layer (i+ 1)∗ that are set

to be non-noisy for inputs xi, yi, by Algorithm I defining μ,

when the noisy multi-layer is i.
Our graph correlation lemma (Lemma 8), that may be

interesting in its own right, gives a general way to bound

such expressions by

≥
(
1− 2−Ω(k)

)
|Σ|−T

·
∑

(u,w)∈E
(u,w)/∈(E∪D)

Pr [Xi = u] · Pr [Yi = w] , (5)

where D ⊂ E is a small set, compared to the size of E,

and |Σ|−T is a normalization factor that would have been

equal to Pr[Xu
T (u,w) = Y w

T (u,w)] if Xu, Y w were uniformly

distributed (independent) random variables.

Thus, using Lemma 8, we are able to bound the left

hand side of (3), which is an expression that depends on

the variables X,Y , by the expression in (5) that depends

only on the projections of these variables to multi-layer i.

We still need to bound from below the expression∑
(u,w)∈E

(u,w)/∈(E∪D)

Pr [Xi = u] · Pr [Yi = w] . (6)

Since E ∪D is a small set (compared to the size of E), we

will first ignore the set E ∪ D, and observe that∑
(u,w)∈E

Pr [Xi = u] · Pr [Yi = w]

=
∑
u∈U

Pr [Xi = u] ·
∑
w∈W

Pr [Yi = w] = 1. (7)

It remains to show that∑
(u,w)∈E∪D

Pr [Xi = u] · Pr [Yi = w] ,

is negligible.

Bounding the Sum over the Bad Sets: We use the fact

that Rt,s,z ⊆ Rt,z , to bound the last sum by

|Rt,z|
|Rt,s,z|

∑
(u,w)∈E∪D

Pr
[
Xt,z

i = u
]
· Pr

[
Y t,z
i = w

]
.

Since I
(
Xt,z

i

)
≤ 1

γ · m
c , and I

(
Y t,z
i

)
≤ 1

γ · m
c , we know

that the distributions of Xt,z
i and Y t,z

i are extremely close

to uniform, and hence the sum in the last expression is

negligible. Using also the fact that
|Rt,z|
|Rt,s,z| ≤ poly(1/γ),

we get that the entire expression is negligible.

A difficulty that we ignored in the discussion so far,

is that the graph correlation lemma (Lemma 8) requires

random variables Xu, Y w with bounded information for all

u,w, while we have variables with bounded information for

almost all u,w. To fix that, we just replace every Xu or

Y w that has large information, with a uniformly distributed

random variable. This works since G is the complete graph.

Proof of the Graph Correlation Lemma and Shearer’s
Inequality: To bound expressions such as the expression in

(4), we show that if Pr[Xu
T (u,w) = Y w

T (u,w)] is significantly

smaller than what is obtained by uniformly distributed

variables, then either I(Xu
T (u,w)) or I(Y w

T (u,w)) are non

negligible (or both). We use this to show that for some u (or

some w) we have that I(Xu) (or I(Y w)) are large, deriving

a contradiction.

Our proof relies on a variant of Shearer’s inequality

[20], [21] that follows easily by Radhakrishnan’s beautiful

information theoretical proof [22] (see Lemmas 6 and 7

and [23]).

VI. BOUNDING INFORMATION COST BY TREE

DIVERGENCE COST

In this section we give a general tool that can be used to

upper bound the information cost of a protocol π, using the

notion of a divergence cost of a tree. This notion is implicit

in [7] and was formally defined in [2].
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Let π be a communication protocol between two players.

We assume that the first player has the private input x and

the second player has the private input y, where (x, y) were

chosen according to some joint distribution μ. In this section,

we assume without loss of generality that π does not use

public randomness (but may use private randomness), as

for the purpose of upper bounding the information cost,

the public randomness can always be replaced by private

randomness. We also assume, without loss of generality, that

the players take alternating turns sending bits to each other.

That is, in odd rounds, the first player sends a bit to the

second player, and in even rounds the second player sends

a bit to the first player (if this is not the case, we can add

dummy rounds that do not change the information cost).

We denote by Tπ the binary tree associated with the

communication protocol π. That is, every vertex v of Tπ
corresponds to a possible transcript of π, and the two edges

going out of v are labeled by 0 and 1, corresponding to the

next bit to be transmitted. We think of the first player as

owning the vertices in odd layers of Tπ (where the root is

in layer 1), and of the second player as owning the vertices

in even layers of Tπ . When the protocol π reaches a non-

leaf vertex v, the player who owns v sends a bit to the other

player.

Every input pair (x, y) for the protocol π induces a

distribution Pv = (pv, 1 − pv) for every non-leaf vertex v
of the tree Tπ , where pv is the probability that the next bit

transmitted by the protocol π on the vertex v and inputs x, y
is 0. We think of Pv as a distribution over the two children of

the vertex v. Observe that the player who owns v knows Pv .

Given the binary tree Tπ and the distributions Pv for every

non-leaf vertex v of Tπ , where for each v the player who

owns v knows Pv , we can assume without loss of generality

that the protocol π operates as follows: Starting from the root

until reaching a leaf, at every vertex v, the player who owns

v samples a bit according to Pv and sends this bit to the

other player. Both players continue to the child of v that is

indicated by the communicated bit.

Assume that for every non-leaf vertex v of Tπ , we have

an additional distribution Qv = (qv, 1 − qv) that is known

to the player who doesn’t own v. We think of every Pv as

the “correct” distribution over the two children of v. This

distribution is known to the player who owns v. We think

of Qv as an estimation of Pv , based on the knowledge of

the player who doesn’t own v. For the rest of the section,

we think of Tπ as the tree Tπ together with the distributions

Pv and Qv , for every non-leaf vertex v in the tree Tπ .

To upper bound the information cost of a protocol π it is

convenient to use the notion of divergence cost of a tree [2],

[7].

Definition 4 (Divergence Cost [2], [7]): Consider a bi-

nary tree T , whose root is r, and distributions Pv =
(pv, 1 − pv), Qv = (qv, 1 − qv) for every non-leaf vertex

v in the tree. We think of Pv and Qv as distributions over

the two children of the vertex v. We define the divergence
cost of the tree T recursively, as follows. D(T ) = 0 if the

tree has depth 0, otherwise,

D(T ) = D(Pr‖Qr) + E
v∼Pr

[D(Tv)], (8)

where for every vertex v, Tv is the subtree of T whose root

is v.

An equivalent definition of the divergence cost of T is

obtained by following the recursion in (8) and is given by

the following equation:

D(T ) =
∑
v∈V

p̃v ·D(Pv‖Qv), (9)

where V is the vertex set of T , and for a vertex v ∈ V , p̃v
is the probability to reach v by following the distributions

Pv , starting from the root. Formally, if v is the root of the

tree T , then p̃v = 1, otherwise,

p̃v =

{
p̃u · pu if v is the left-hand child of u

p̃u · (1− pu) if v is the right-hand child of u.

Let X be the input to the first player and Y be the input

to the second player. In the protocol π, the players use two

private random strings and no public randomness. Denote

the private random string of the first player by R1, and the

private random string of the second player by R2. For a layer

d of Tπ , let Πd be the vertex in layer d that the players reach

during the execution of the protocol π, when the inputs are

(X,Y ) and the private random strings are R1 and R2 (if π
ends before layer d, then Πd is undefined).

Let the tree T ′π be the same as Tπ , except that every

distribution Qv , for every non-leaf vertex v in Tπ , is replaced

with the distribution Q′v = (q′v, 1− q′v), where q′v is defined

as follows: Let d be the layer of v. If v is owned by the first

player, q′v is the function of v, y and r2, defined as

q′v = E
X,R1

[pv|Y = y,R2 = r2,Πd = v].

If v is owned by the second player, q′v is the function of v, x
and r1, defined as

q′v = E
Y,R2

[pv|X = x,R1 = r1,Πd = v].

We think of Q′v as the best estimation of the correct

distribution Pv , based on the knowledge of the player who

doesn’t own v, whereas Qv is some estimation. Intuitively,

D(Pv‖Qv) is the information that the player who doesn’t

own v learns on Pv from the bit sent during the protocol

at the vertex v, assuming that she expects this bit to be

distributed according to Qv , whereas D(Pv‖Q′v) is the info-

rmation that she learns based on the best possible estimation

of Pv . Therefore, intuitively, the divergence cost of T ′π is

at most the divergence cost of Tπ , in expectation. This is

formulated in the following lemma.
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Observe that the protocol π induces the distributions Pv

(known to the player who owns v) and Q′v (known to the

player who doesn’t own v), while the distribution Qv may

be any distribution known to the player who doesn’t own v.

The following lemma relates the information cost of π to

the expected divergence cost of Tπ .

Lemma 9: For every protocol π and distributions Qv

known to the player who doesn’t own v, as above, it holds

that

ICμ(π) = E[D(T ′π)] ≤ E[D(Tπ)],
where the expectation is over the sampling of the inputs

according to μ and over the randomness.

Proof: It was shown in [2] (see Lemma 5.3 therein)

that ICμ(π) = E[D(T ′π)]. We will prove that E[D(T ′π)] ≤
E[D(Tπ)]. By (9),

E
X,Y,R1,R2

[D(Tπ)−D(T ′π)]

= E
X,Y,R1,R2

[∑
v

p̃v (D(Pv‖Qv)−D(Pv‖Q′v))
]
,

where p̃v is as in Definition 4. We separate the sum on the

vertices to layers and work on each layer separately. Fix a

layer d in the tree. Let Ld be the set of vertices in layer d.

To simplify notation, let A denote (X,R1), let B denote

(Y,R2), and let V denote Πd. Then,

E
X,Y,R1,R2

[∑
v∈Ld

p̃v (D(Pv‖Qv)−D(Pv‖Q′v))
]

= E
A,B,V

[D(PV ‖QV )−D(PV ‖Q′V )] .

(Recall that V is undefined when the protocol ends before

layer d. In that case, for simplicity, we think of PV , QV

and Q′V as all being equal, and hence D(PV ‖QV ) =
D(PV ‖Q′V ) = 0). By the definition of relative entropy,

E
A,B,V

[D(PV ‖QV )−D(PV ‖Q′V )]

= E
A,B,V

[
pV

(
log

(
pV
qV

)
− log

(
pV
q′V

))

+ (1− pV )

(
log

(
1− pV
1− qV

)
− log

(
1− pV
1− q′V

))]

= E
A,B,V

[
pV log

(
q′V
qV

)
+ (1− pV ) log

(
1− q′V
1− qV

)]
.

(10)

Assume that the first player owns the vertices in layer d.

The case that the second player owns the vertices in layer

d is analogous. Consider the first summand in (10). It holds

that,

E
A,B,V

[
pV log

(
q′V
qV

)]

= E
B,V

[
E
A

[(
pV log

(
q′V
qV

))∣∣∣∣B, V

]]
.

By the definition of q′V , for fixed B, V , it holds that q′V =
EA [pV |B, V ]. Since q′V and qV are functions of B and

V , when we condition on B and V , q′V and qV are fixed.

Therefore, conditioned on B and V , the term log
(

q′V
qV

)
is

independent of A. We get that,

E
B,V

[
E
A

[(
pV log

(
q′V
qV

))∣∣∣∣B, V

]]

= E
B,V

[
E
A
[pV |B, V ] log

(
q′V
qV

)]

= E
B,V

[
q′V log

(
q′V
qV

)]
.

In the same way, we get that the second summand in (10)

is

E
A,B,V

[
(1− pV ) log

(
1− q′V
1− qV

)]

= E
B,V

[
(1− q′V ) log

(
1− q′V
1− qV

)]
.

Put together it holds that,

E
A,B,V

[D(PV ‖QV )−D(PV ‖Q′V )]

= E
B,V

[D(Q′V ‖QV )] ≥ 0,

since the divergence is non-negative. This is true for every

layer d in the tree. Therefore, summing over all layers, we

get that

E
A,B

[D(T ′π)] ≤ E
A,B

[D(Tπ)].

VII. INFORMATION UPPER BOUND

In this section we prove Theorem 2. Let (x, y) ∈ supp(μ)
be an input pair to the bursting noise game. Consider the fol-

lowing protocol π′ for the bursting noise game. Starting from

the root until reaching a leaf, at every vertex v, if the first

player owns v, she sends the bit xv with probability 0.9, and

the bit 1− xv with probability 0.1. Similarly, if the second

player owns v, she sends the bit yv with probability 0.9, and

the bit 1 − yv with probability 0.1. Both players continue

to the child of v that is indicated by the communicated

bit. When they reach a leaf they output that leaf. By the

Chernoff bound, the probability that the players output a

leaf that is not typical with respect to the noisy multi-layer

is at most 2−Ω(w). That is, the error probability of π′ is

exponentially small in k.

The information cost of the protocol π′ is too large. The

reason is that if the protocol reaches a non-typical vertex

at the end of the noisy multi-layer (with respect to the

noisy multi-layer), an event that occurs with probability

exponentially small in k, then the rest of the protocol

reveals to each player Ω ((c− i)w) bits of information about

the input of the other player, in expectation (as all the

183183



vertices below a non-typical vertex are noisy), and note that

Ω ((c− i)w) is double exponentially large (for almost all i).
Thus, in expectation, the information revealed to each player

about the input of the other player is double exponential in

k.

For that reason, we consider a variant of the protocol π′,
called π. Informally speaking, the protocol π operates like

π′ but aborts if too much information about the inputs is

revealed. Recall that in every round of the protocol π′, the

players are at a vertex v of T and the player who owns

v sends a bit bv indicating one of v’s children. In the new

protocol π, after receiving that bit, the receiving party sends

a bit av indicating whether they should abort the protocol,

where av = 1 stands for abort and av = 0 stands for

continue. If a bit av = 1, indicating an abort, was sent,

the protocol terminates and both players output an arbitrary

leaf of the tree T . It remains to specify how the receiving

party, without loss of generality the second player, decides

whether to abort or continue, that is, how she determines

the value of av .

To determine whether to abort, the second player con-

siders the last � = 2100k vertices v1, . . . , v�, reached by the

protocol and owned by the first player, and the corresponding

bits bv1 , . . . , bv�
that were sent by the first player (if less

than � bits were sent by the first player so far, then the

second player does not abort). For every j ∈ [�], the second

player compares bvj
and yvj

. The second player decides to

abort and sends av = 1 if and only if less than 0.8� of these

pairs are equal (otherwise the second player sends av = 0).

The following claim shows that the probability that π
aborts is exponentially small in k. If π does not abort, it

gives the same output as π′. We conclude that the error

probability of π is exponentially small in k.

Claim 10: Let (x, y) ∈ supp(μ) be an input pair to the

bursting noise game. The protocol π aborts with probability

at most 2−10k on the input (x, y).
Proof: Fix (x, y) ∈ supp(μi) for some i ∈ [c]. Let

E be the event that the protocol π reaches a non-typical

vertex after multi-layer i (with respect to multi-layer i). By

the Chernoff bound, the event E occurs with probability at

most 2−100k, as w = 2100k. Let A be the event that the

protocol π aborts. Assume that E does not occur. By the

Chernoff bound, the probability of aborting after each round

is at most 2−2
50k

, as � = 2100k and since if E does not occur

then xv and yv can only differ for at most w vertices reached

by the protocol π. By the union bound, the probability of

abort (conditioned on ¬E) is at most cw · 2−250k < 2−100k.

Therefore, Pr[A] ≤ Pr[E] + Pr[A|¬E] ≤ 2 · 2−100k.

To upper bound the information cost of the protocol

π we will use Lemma 9. We denote by Tπ the binary

tree associated with the communication protocol π, as in

Section VI. That is, every vertex v of Tπ corresponds to

a possible transcript of π, and the two edges going out of

v are labeled by 0 and 1, corresponding to the next bit to

be transmitted. The non-leaf vertices of the tree Tπ have

the following structure: Every non-leaf vertex v in an odd

layer of Tπ corresponds to a non-leaf vertex of T , the binary

tree on which the bursting noise game is played. Since the

correspondence is one-to-one, we refer to the vertex in T
corresponding to v also as v. The next bit to be transmitted

by π on the vertex v is bv . For a non-leaf vertex v in an

even layer of Tπ , the next bit to be transmitted by π on the

vertex v is av .

As explained in Section VI, every input pair (x, y) ∈
supp(μ) to the bursting noise game, induces a distribution

Pv = (pv, 1−pv) for every non-leaf vertex v of the tree Tπ ,

where pv is the probability that the next bit transmitted by

the protocol π on the vertex v and inputs x, y is 0. Namely,

if v is in an odd layer of Tπ (and recall that in this case we

think of v as both a vertex of Tπ and of T ), the distribution

Pv is the following: In the case that the first player owns

v in T , if xv = 0 then Pv = (0.9, 0.1), and if xv = 1
then Pv = (0.1, 0.9). In the case that the second player

owns v, if yv = 0 then Pv = (0.9, 0.1), and if yv = 1
then Pv = (0.1, 0.9). If v is in an even layer of Tπ then

Pv is Pv = (0, 1) if the player sending av decides to abort,

and Pv = (1, 0) if she decides to continue (note that given

x, y, v, this decision is deterministic).

For every non-leaf vertex v of Tπ , we define an additional

distribution Qv = (qv, 1 − qv) (depending on the input

(x, y)). We think of every Pv as the “correct” distribution

over the two children of v. This distribution is known to the

player who sends the next bit on the vertex v. We think of Qv

as an estimation of Pv , based on the knowledge of the player

who doesn’t send the next bit. For a vertex v in an odd layer

of Tπ (and recall that in this case we think of v as both a

vertex of Tπ and of T ), the distribution Qv is the following:

In the case that the first player owns v in T , if yv = 0
then Qv = (0.9, 0.1), and if yv = 1 then Qv = (0.1, 0.9).
In the case that the second player owns v, if xv = 0 then

Qv = (0.9, 0.1), and if xv = 1 then Qv = (0.1, 0.9). If v is

in an even layer of Tπ then Qv = (1− 1
cw , 1

cw ).
For the rest of the section, we think of Tπ as the tree Tπ

together with the distributions Pv and Qv , for every vertex

v in the tree Tπ .

Proposition 11: It holds that

D(Tπ) = O(k).

Proof: Fix (x, y) ∈ supp(μi) for some i ∈ [c]. By (9),

D(Tπ) =
∑
v

p̃v ·D(Pv‖Qv),

where p̃v is the probability that the protocol π reaches

the vertex v on input (x, y). We will bound the last sum

separately for vertices v in odd layers and for vertices v in

even layers.

We first sum over vertices in even layers. For every

vertex v in an even layer of Tπ , if Pv = (0, 1) (protocol
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aborts) we have D(Pv‖Qv) = log(cw), and if Pv = (1, 0)

(protocol continues) we have D(Pv‖Qv) = log
(

1
1−1/cw

)
=

log
(
1 + 1

cw−1
)
< 2

cw . By Claim 10, the probability that π

aborts is at most 2−10k. Therefore, the sum in (9) taken over

vertices in even layers is at most cw · 2
cw +2−10k · log(cw) ≤

3, as for each of the cw even layers, the probability of

reaching a vertex in this layer is at most 1.

We next sum over vertices in odd layers. Recall that each

such vertex corresponds to a vertex in T . Let v be a vertex in

an odd layer of Tπ . If v corresponds to a non-noisy vertex

in T we have D(Pv‖Qv) = 0, and if v corresponds to a

noisy vertex in T we have D(Pv‖Qv) ≤ 4. Recall that i is

the noisy multi-layer. Then,

1) The vertices above multi-layer i in T add nothing to

the divergence cost.

2) Multi-layer i of T adds O(w) to the divergence cost.

3) If i < c: Let v be the vertex in layer i∗ + w of

T that the players reach during the execution of the

protocol π. If v is a typical vertex with respect to

multi-layer i, the vertices below v add nothing to

the divergence cost. If v is a non-typical vertex, the

protocol aborts after at most 4� rounds in expectation.

Since the probability that v is a non-typical vertex

with respect to multi-layer i is at most 2−1000k (as

w = 2100k), the expected divergence cost added by

this case is at most 2−1000k · 4� · 4 ≤ 1.

Together, the total divergence cost is O(w) = O(k), as

claimed.

By Proposition 11 and Lemma 9 we get that ICμ(π) ≤
O(k).
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