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Abstract—A classical theorem of Spencer shows that any
set system with n sets and n elements admits a coloring of
discrepancy O(

√
n). Recent exciting work of Bansal, Lovett

and Meka shows that such colorings can be found in polynomial
time. In fact, the Lovett-Meka algorithm finds a half integral
point in any “large enough” polytope. However, their algorithm
crucially relies on the facet structure and does not apply to
general convex sets.

We show that for any symmetric convex set K with Gaussian
measure at least e−n/500, the following algorithm finds a point
y ∈ K ∩ [−1, 1]n with Ω(n) coordinates in ±1: (1) take a
random Gaussian vector x; (2) compute the point y in K ∩
[−1, 1]n that is closest to x. (3) return y.

This provides another truly constructive proof of Spencer’s
theorem and the first constructive proof of a Theorem of
Gluskin and Giannopoulos.

Keywords-Discrepancy theory; combinatorics; convex opti-
mization

I. INTRODUCTION

Discrepancy theory deals with finding a bi-coloring
χ : {1, . . . , n} → {±1} of a set system S1, . . . , Sm ⊆
{1, . . . , n} so that the worst inbalance maxi=1,...,m |χ(Si)|
of a set is minimized, where we denote χ(Si) :=∑

j∈Si
χ(j). A seminal result of Spencer [1] says that there

is always a coloring χ so that |χ(Si)| ≤ O(
√
n) if m = n.

The result is in particular interesting since it beats the ran-
dom coloring which has discrepancy Θ(

√
n log n). Spencer’s

technique, which was first used by Beck in 1981 [2] is usu-
ally called the partial coloring method and is based on the
argument that due to the pigeonhole principle many of the 2n

many colorings χ, χ′ must satisfy |χ(Si)−χ′(Si)| ≤ O(
√
n)

for all sets Si. Then one can take the difference between such
a pair of colorings with |{j | χ(j) �= χ′(j)}| ≥ n

2 to obtain
a partial coloring of low discrepancy. Iterating the argument
log n times provides a full coloring.

Few years later and on the other side of the iron curtain,
Gluskin [3] obtained the same result using convex geometry
arguments. In a paraphrased form, Gluskin’s result showed
the following:

Theorem 1 (Gluskin [3], Giannopoulos [4]). For a small
constant δ > 0, let K ⊆ R

n be a symmetric convex set with
Gaussian measure γn(K) ≥ e−δn and v1, . . . , vm ∈ R

n

vectors of length ‖vi‖2 ≤ δ. Then there are partial signs

y1, . . . , ym ∈ {−1, 0, 1} with |supp(y)| ≥ m
2 so that∑m

i=1 yivi ∈ 2K.

For the proof, consider all 2m many translates∑m
i=1 yivi + K with y ∈ {±1}m. Then one can estimate

that the total measure of the translates must be much bigger
than 1, so there must be many pairs y′, y′′ ∈ {±1}m so that
the translates overlap. Then take a pair that differs in at least
half of the entries and y := 1

2 (y
′− y′′) gives the vector that

we are looking for. For more details, we refer to the very
readable exposition of Giannopoulos [4].

In both, Spencer’s original result and the convex geometry
approach of Gluskin and Giannopoulos, the argument goes
via the pigeonhole principle with exponentially many “pi-
geons” and “pigeonholes” which makes both type of proofs
non-constructive. In a more recent breakthrough, Bansal [5]
showed that a random walk, guided by the solution of
an SDP can find the coloring for Spencer’s Theorem in
polynomial time. However, the approach needs a very careful
choice of parameters and the feasibility of the SDP still
relies on the non-constructive argument. A simpler and truly
constructive approach was provided by Lovett and Meka [6]
who showed that a “large enough” polytope of the form
P = {x ∈ R

n : |〈vi, x〉| ≤ λi ∀i ∈ [m]} has a point
y ∈ P ∩ [−1, 1]n that can be found in polynomial time and
satisfies yi ∈ {−1, 1}n for at least half of the coordinates.
If the vi’s are scaled to unit length, then the “largeness”
condition requires that

m∑
i=1

e−λ2

i /16 ≤ n

16
. (1)

The approach of Lovett and Meka is surprisingly simple:
start a random walk at the origin and each time you hit one
of the constraints 〈vi, x〉 = ±λi or xi = ±1, continue the
random walk in the subspace of the tight constraint. The end
point of this random walk is the desired point y.

Still, the algorithm of Lovett and Meka does not seem to
generalize to arbitrary convex sets and the condition in (1)
might not be satisfied for convex sets even if they have a
large measure.

A. Related work

If we have a set system S1, . . . , Sm where each element
lies in at most t sets, then the partial coloring technique
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from above can be used to find a coloring of discrepancy
O(
√
t · log n) [7]. A linear programming approach of Beck

and Fiala [8] shows that the discrepancy is bounded by 2t−1,
independent of the size of the set system. On the other hand,
there is a non-constructive approach of Banaszczyk [9] that
provides a bound of O(

√
t log n) using a different type of

convex geometry arguments. A conjecture of Beck and Fiala
says that the correct bound should be O(

√
t). This bound can

be achieved for the vector coloring version, see Nikolov [10].
More generally, the theorem of Banaszczyk [9] shows that

for any convex set K with Gaussian measure at least 1
2 and

any set of vectors v1, . . . , vm of length ‖vi‖2 ≤ 1
5 , there

exist signs εi ∈ {±1} so that
∑m

i=1 εivi ∈ K.
A set of k permutations on n symbols induces a set system

with kn sets given by the prefix intervals. One can use the
partial coloring method to find a O(

√
k log n) discrepancy

coloring [11], while a linear programming approach gives a
O(k log n) discrepancy [12]. On the other hand, for k = 3,
the discrepancy was recently shown to be Θ(log n) [13]
which disproved a conjecture of Beck. Also the recent
proof of the Kadison-Singer conjecture by Marcus, Spielman
and Srivastava [14] can be seen as a discrepancy result.
They show that a set of vectors v1, . . . , vm ∈ R

n with∑m
i=1 viv

T
i = I can be partitioned into two halfs S1, S2

so that
∑

i∈Sj
viv

T
i � ( 12 + O(

√
ε))I for j ∈ {1, 2} where

ε = maxi=1,...,m{‖vi‖22} and I is the n×n identity matrix.
Their method is based on interlacing polynomials and no
polynomial time algorithm is known to find the desired
partition.

For a very readable introduction into discrepancy theory,
we recommend Chapter 4 in the book of Matoušek [15] or
the book of Chazelle [16].

B. Our contribution

Our main contribution is the following:

Theorem 2. There is a polynomial time algorithm, which for
any symmetric convex set K ⊆ R

n with Gaussian measure
at least e−n/500 finds a point y ∈ K ∩ [−1, 1]n with yi ∈
{−1, 1} for at least n

9000 many coordinates. Here it suffices
if a polynomial time separation oracle for the set K exists.

In fact, our method is extremely simple (see Figure 1 for
a visualization):

Algorithm:

(1) take a random Gaussian vector x∗ ∼ Nn(0, 1)
(2) compute the point

y∗ = argmin{‖x∗ − y‖2 | y ∈ K ∩ [−1, 1]n}
(3) return y∗

II. PRELIMINARIES

In the following, we write x ∼ N(0, 1) if x is a Gaussian
random variable with expectation E[x] = 0 and variance

K
0

x∗

y∗

[−1, 1]n

Figure 1. Visualization of the algorithm.

E[x2] = 1. By Nn(0, 1) we denote the n-dimensional Gauss
distribution and γn denotes the corresponding measure with
density 1

(2π)n/2 e
−‖x‖2

2
/2 for x ∈ R

n. In other words,
γn(K) = Prx∼Nn(0,1)[x ∈ K] whenever K is a measurable
set. In fact, all sets K that we deal with will be closed and
convex and thus trivially measurable.

For a convex set K, let d(x,K) := min{‖x − y‖2 | y ∈
K} be the distance of x to K and for δ ≥ 0, let Kδ :=
{x ∈ R

n | d(x,K) ≤ δ} be the set of points that have at
most distance δ to K (in particular K ⊆ Kδ). A half-space
is a set of the form H := {x ∈ R

n | 〈v, x〉 ≤ λ} for some
v ∈ R

n and λ ∈ R. The key theorem on Gaussian measure
that we need is the Gaussian Isoperimetric inequality (see
e.g. [17] for a proof):

Theorem 3. Let K ⊆ R
n be a measurable set and H be

a halfspace so that γn(K) = γn(H). Then for any δ ≥ 0,
γn(Kδ) ≥ γn(Hδ).

A simple consequence is that any set K that is not too
small, is close to almost all the measure1.

Lemma 4. Let ε > 0. Then for any measurable set K with
γn(K) ≥ e−εn one has γn(K3

√
εn) ≥ 1− e−εn.

Proof: We assume that indeed γn(K) = e−εn ≤ 1
2 .

Choose λ ∈ R so that the halfspace H = {x ∈ R
n | x1 ≤ λ}

has measure γn(H) = γn(K) (note that λ ≤ 0). First, we
claim that |λ| ≤ 3

2

√
εn. This follows from∫ − 3

2

√
εn

−∞

1√
2π

e−x2/2dx ≤ e−
9

8
εn ≤ e−εn

using the estimate
∫∞
t

1√
2π

e−x2/2dx ≤ e−t2/2 for all t ≥ 0.
By symmetry, we get γn(K3

√
εn) ≥ 1− e−εn.

For a vector v ∈ R
n and λ ≥ 0, the set S = {x ∈ R

n :
|〈v, x〉| ≤ λ} is called a strip. If v is a unit vector, then

1Instead of using the Gaussian isoperimetric inequality, one can prove
Lemma 4 also using the well-known measure concentration inequality
for Gaussian space: given a 1-Lipschitz function F : R

n → R (i.e.
|F (x) − F (y)| ≤ ‖x − y‖2) one has Prx∼Nn(0,1)[|F (x) − μ| >

λ] ≤ 2e−λ2/2 with μ = Ex∼Nn(0,1)[F (x)]. One can then choose
F (x) := d(x,K) with λ := 3

2

√
εn and one obtains Pr[|d(x,K)− μ| >

3
2

√
εn] ≤ 2e−

9

8
εn < e−εn for n large enough. Since γn(K) ≥ e−εn,

we know that μ ≤ 3
2

√
εn and thus Pr[d(x,K) > 2 · 3

2

√
εn] ≤ e−εn as

claimed.
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the strip has width 2λ and γn(S) = Φ(λ) where we define
Φ(λ) :=

∫ λ

−λ
1√
2π

e−x2/2dx. Useful estimates are Φ(1) ≥
e−1/2 and Φ(λ) ≥ 1− e−λ2/2 for all λ ≥ 0.

A convex body is called symmetric if x ∈ K ⇔ −x ∈ K.
It is a convenient fact, that if we intersect a symmetric con-
vex body with a strip, the measure decreases only slightly.

Lemma 5 (Šidák [18], Khatri [19]). Let K ⊆ R
n be a

symmetric convex body and S ⊆ R
n be a strip. Then γn(K∩

S) ≥ γn(K) · γn(S).
The still unproven correlation conjecture suggests that

this claim is true for any pair K,S of symmetric convex
sets. For more details on Gaussian measures, see the book
of Ledoux and Talagrand [17].

For 0 ≤ ε ≤ 1, let H(ε) = ε log2(
1
ε ) + (1− ε) log2(

1
1−ε )

be the binary entropy function. Recall that for 0 ≤ ε ≤ 1
2 ,

the number of subsets I ⊆ {1, . . . , n} of size |I| ≤ εn is
bounded by 2H(ε)n. One can easily estimate that 2H(ε) ≤
e

3

2
ε log

2
( 1

ε ) which provides us with a bound for later.
A simple fact about convexity is that the optimum solution

to a convex optimization problem does not change if we
discard constraints that are not tight for the optimum.

Lemma 6. Let P,Q ⊆ R
n be convex sets and let g :

R
n → R be a strictly convex function. Suppose that x∗ is

an optimum solution to min{g(x) | x ∈ P ∩Q} and x∗ lies
in the interior of Q. Then x∗ is also an optimum solution
to min{g(x) | x ∈ P}.

Proof: Suppose for the sake of contradiction that there
is a y∗ ∈ P with g(y∗) < g(x∗), then some convex
combination (1 − λ)y∗ + λx∗ with 0 < λ < 1 lies also
in Q and has a better objective function than x∗, which is
a contradiction.

III. PROOF OF THE MAIN THEOREM

Now we have everything to analyze the algorithm.

Theorem 7. Let 0 < ε ≤ 1
9000 be a constant and δ :=

3
2ε log2(

1
ε ). Suppose that K ⊆ R

n is a symmetric, convex
body with γn(K) ≥ e−δn. Choose a random Gaussian
x∗ ∼ Nn(0, 1) and let y∗ be the point in K ∩ [−1, 1]n that
minimizes ‖x∗−y∗‖2. Then with probability 1− e−Ω(n), y∗

has at least εn many coordinates i with y∗i ∈ {−1, 1}.
Proof: First, we want to argue that x∗ has at least a

distance of Ω(
√
n) to the hypercube. A simple calculation

shows that

Pr
x∼Nn(0,1)

[|xi| ≥ 2] = 2

∫ ∞

2

1√
2π

e−t2/2dt >
1

25
.

Then with probability 1− e−Ω(n) we have

d(x∗, [−1, 1]n) ≥
√

n

25
· (2− 1)2 =

1

5
· √n.

The crucial idea is that by the Gaussian isoperimetric
inequality, x∗ will not be far from any body that has a large
enough Gaussian measure. The set K ∩ [−1, 1]n itself has
only a tiny Gaussian measure, but we can instead consider
the super-set K(I∗) := K ∩ {x ∈ R

n : |xi| ≤ 1 ∀i ∈ I∗}
where I∗ := {i ∈ [n] | y∗i ∈ {±1}} are the tight cube
constraints for y∗. We claim that d(x∗,K ∩ [−1, 1]n) =
d(x∗,K(I∗)) since the distance is already defined by the
tight constraints for y∗! More formally, this claim follows
from an application of Lemma 6 with P := K(I∗),
Q := {x ∈ R

n | |xi| ≤ 1 ∀i /∈ I∗} and g(y) := ‖x∗ − y‖2
which is a strictly convex function.

Now, let us see what happens if |I∗| ≤ εn. We can apply
the Lemma of Šidák and Khatri (Lemma 5) to lower bound
the measure of K(I∗) as

γn(K(I∗)) ≥ γn(K) ·
∏
i∈I∗

γn({x ∈ R
n : |xi| ≤ 1})

≥ γn(K) · e−|I∗|/2

≥ e−δn · e−(ε/2)n ≥ e−2δn

using that strips of width 2 have measure at least e−1/2 and
that ε ≤ δ. Now we know that the measure of K(I∗) is not
too small and hence almost all Gaussian measure is close
to it. Formally we obtain γn(K(I∗)3

√
2δn) ≥ 1− e−2δn by

Lemma 4. It seems we are almost done since we derived
that with high probability, a random Gaussian vector has a
distance of at most 3

√
2δn to K(I∗) and one can easily

check that 3
√
2δn < 1

5

√
n for all ε ≤ 1

9000 . But we need
to be a bit careful since I∗ did depend on x∗. So, let us
define B :=

⋂
|I|≤εn(K(I)3

√
2δn). Observe that we have

defined δ so that there are at most eδn many sets I ⊆ [n]
with |I| ≤ εn. Then by the union bound γn(B) ≥ 1 −
eδn · e−2δn ≥ 1 − e−δn. Now we can conclude that with
probability 1−e−Ω(n), a random Gaussian will have distance
at least 1

5

√
n to the hypercube while at the same time it

has distance at most 3
√
2δn < 1

5

√
n to all sets K(I) with

|I| ≤ εn. This shows that with high probability |I∗| > εn.

We get the constants as claimed in Theorem 2 if we
choose ε = 1

9000 and observe that in this case δ ≥ 1
500 .

We should spend few words on the computational aspects
of our algorithm: the problem of finding the point y∗ ∈
K ∩ [−1, 1]n that is closest to x∗ is a convex optimization
problem that can be solved in polynomial time using the
Ellipsoid method [20]. Typically one has to be aware of
numerical issues when dealing with arbitrary convex sets.
But K as above is guaranteed to be full-dimensional and
it must even contain a ball of radius Ω(e−δn), otherwise
the measure could not be e−δn. Moreover, we had a small
slack in the above arguments, which means we can solve
the optimization problem and find a y∗ in a slightly scaled
body (1−Θ( 1n ))K; then even if we made a small numerical
error, the resulting y∗ would be in K. This concludes the
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proof of the main result, Theorem 2.

IV. EXTENSION TO INTERSECTION WITH SUBSPACES

As already mentioned, our algorithm includes the result of
Lovett and Meka in the following sense: Suppose our convex
set is a polytope of the form K = {x ∈ R

n : |〈vi, x〉| ≤
λi ∀i ∈ [m]} where all the vi’s are unit vectors and λi ≥ 1.
In this case, the strip S = {x ∈ R

n : |〈vi, x〉| ≤ λi} of
length 2λi has measure γn(S) = Φ(λi) ≥ 1 − e−λ2

i /2 ≥
exp(−2e−λ2

i /2) using that λi ≥ 1. By the Lemma of Šidák-
Khatri this means that

γn(K) ≥
m∏
i=1

exp(−2e−λ2

i /2)

= exp
(
− 2

m∑
i=1

e−λ2

i /2
) !≥ e−n/500

as long as
∑m

i=1 e
−λ2

i /2 ≤ n
1000 , exactly as in Lovett-

Meka (apart from different constants). Please note that
this line of arguments appeared already in the paper of
Giannopoulos [4]. In the following we want to argue how
Ω(n) many constraints with λi = 0 can be incorporated in
the analysis.

For a subspace H we denote NH(0, 1) as the dim(H)-
dimensional Gauss distribution restricted to the subspace
H and we denote γH as the corresponding measure. For
example one can generate a random z ∼ NH(0, 1) by
selecting any orthonormal basis u1, . . . , udim(H) of H and
letting z =

∑dim(H)
i=1 giui where g1, . . . , gdim(H) ∼ N(0, 1)

are independent 1-dim. Gaussians. Note that γH(H) = 1
and γH(Rn\H) = 0. We want to remind the reader that for
any symmetric convex set K and any subspace H , one has
γH(K) ≥ γn(K).

We want to argue that the following variation of our main
claim still holds:

Theorem 8. Fix 0 < ε ≤ 1
60000 and δ := 3

2ε log2(
1
ε ).

Let K ⊆ R
n be a symmetric, convex body with K ⊆ H

and γH(K) ≥ e−δn where H = {x ∈ R
n | 〈vi, x〉 =

0 ∀i ∈ [m]} is a subspace defined by m ≤ 2δn equations.
Choose a random Gaussian x∗ ∼ Nn(0, 1) and let y∗ be the
point in K ∩ [−1, 1]n that minimizes ‖x∗− y∗‖2. Then with
probability 1−e−Ω(n), y∗ has at least εn many coordinates
i with y∗i ∈ {−1, 1}.

Proof: Reinspecting the proof of Theorem 7, we see
that it suffices to argue that most of the measure is still
close to the sets K(I). Formally, we will argue that for
all |I| ≤ εn one has γn(K(I)7

√
2δn) ≥ 1 − 2e−2δn. Then

7
√
2δn < 1

5

√
n for ε ≤ 1

60000 and the claim follows.
Hence, take a random point x∗ ∼ Nn(0, 1) and let z∗ ∈

H be the projection of x∗ onto H (that means z∗ is the point
in H closest to x∗). We may assume w.l.o.g. that v1, . . . , vm
are orthonormal. First, at least some part of the measure is
close to H , since γn(H√2δn) ≥ γn({x ∈ R

n : |〈vi, x〉| ≤

1 ∀i ∈ [m]}) ≥ e−2δn by Lemma 5. By Lemma 4 this
implies that

γn(H4
√
2δn) = γn((H√2δn)3

√
2δn) ≥ 1− e−2δn

and hence with the latter probability ‖x∗ − z∗‖2 ≤ 4
√
2δn.

In a second step, observe that we need to argue that z∗

is close to K(I). We know that γH(K(I)) ≥ γH(K) ·
e−(ε/2)n ≥ e−2δn as before. Since z∗ is an orthogonal
projection of a Gaussian, we know that z∗ ∼ NH(0, 1)
and we obtain that d(z∗,K(I)) ≤ 3

√
2δn with probability

1− e−2δn. The claim then follows.
For being able to use the algorithm iteratively to find a

full coloring, it is important that we admit centers that are
not the origin. But this is very straightforward to obtain.
In the following, for x0 ∈ R

n and K ⊆ R
n we define

x0 +K = {x0 + x : x ∈ K} as the translate of K by x0.

Lemma 9. Let ε ≤ 1
60000 and δ := 3

2ε log2(
1
ε ). Given

a subspace H ⊆ R
n of dimension at least (1 − δ)n, a

symmetric convex set K ⊆ H with γH(K) ≥ e−δn and
a point x0 ∈ [−1, 1]n. There exists a polynomial time
algorithm to find a point y ∈ (x0+K)∩ [−1, 1]n so that at
least ε

2n many indices i have yi ∈ {−1, 1}.
Proof: After translating by x0 our goal is to find a

y ∈ K ∩ {x : −ai ≤ xi ≤ bi ∀i} with ai + bi = 2. Assume
without loss of generality that bi ≤ ai. Imagine that we
take all the boundaries xi ≥ −ai and replace them with
xi ≥ −bi, which geometrically means that we push them
closer to the origin. Then we aim to find a y ∈ K ∩ {x :
|xi| ≤ bi ∀i} with εn many coordinates satisfying |yi| = bi.
Obviously we might have the problem that many coordinates
i are tight at “fake” boundaries, i.e. yi = −bi. But either y
or the mirrored point −y will have 1

2εn many coordinates i
having a value of +bi.

So it suffices to find points y ∈ K∩{x : |xi| ≤ bi ∀i} with
many coordinates i satisfying |yi| = bi. The easy solution is
to rescale K ∩ {x : |xi| ≤ bi ∀i} along the coordinate
axes to K̃ ∩ {x : |xi| ≤ 1 ∀i}, which only increases
the Gaussian measure (we will see formal arguments for
γH(K̃) ≥ γH(K) in Cor. 13). Then we can apply Theorem 8
to find the desired vector y.

We want to briefly outline how one can iteratively apply
Lemma 9 in order to find a full coloring (similar arguments
can be found in [4]). Intuitively, whenever we induce on a
subset of coordinates, the convex set needs to be still large
enough. For a subset J ⊆ [n] of indices, we call U = {x ∈
R

n : xi = 0 ∀i ∈ J} an axis-parallel subspace.

Lemma 10. Suppose that K ⊆ R
n is a symmetric convex

body so that for all axis-parallel subspaces U ⊆ R
n one

has that γU (K) ≥ e− dim(U)/500. Then there is a polynomial
time algorithm to compute a y ∈ {±1}n ∩O(log n) ·K.

Proof: In iteration t = 1, . . . , T we compute y(t) ∈
(y(t−1)+K)∩[−1, 1]n using Lemma 9 starting with y(0) :=

143143



0 and ending with y := y(T ), each time restricting to the
subspace U := {x : xi = 0 for |y(t−1)

i | < 1}. In each
iteration a constant fraction of coordinates becomes integral
and after T = O(log n) iterations we have y(T ) ∈ {±1}n.
If ‖x‖K := min{λ ≥ 0 : x ∈ λK} denotes the Minkowski
norm of x, then ‖y(t)−y(t−1)‖K ≤ 1 and hence ‖y‖K ≤ T .
This settles the claim.

For Spencer’s theorem it turns out that the O(log n)-term
can be replaced by O(1) since the incurred discrepancy
bounds decrease from iteration to iteration. A general way
to state this is as follows:

Lemma 11. Suppose that K ⊆ R
n is a symmetric convex

body so that for all axis parallel subspaces U ⊆ R
n one has

γU ((
dim(U)

n )εK) ≥ e− dim(U)/500 for some constant ε > 0.
Then one can compute a vector y ∈ {±1}n ∩ (cεK) in
polynomial time.

Proof: Now we can apply the procedure from
Lemma 10 even with a body K̃ := (dim(U)

n )ε · K that
shrinks over the course of the iterations. For some constant
0 < c < 1 we have dim(U) ≤ ct−1 · n in iteration t, hence

‖y‖K ≤
T∑

t=1

‖y(t) − y(t−1)‖K ≤
∞∑
t=1

(ct−1n

n

)ε

=
1

1− cε
.

Let us illustrate how to apply Lemma 11 in Spencer’s
setting. Consider a set system S1, . . . , Sn ⊆ [n] with n sets
over n elements and define a convex body K := {x ∈
R

n : |∑j∈Si
xj | ≤ 100

√
n ∀i ∈ [n]}. If at some point

we have already all elements except of m many colored,
then this means that we have a subspace U of dimension
dim(U) = m left. For such a set system with m elements
(but still n ≥ m sets), we can reduce the right hand

side from 100
√
n to a value of 100

√
m · log 2n

m and the
Gaussian measure is still large enough. More formally, if
we want γU (λ · K) ≥ e−m/500, then a scalar of size

λ = 100
√

m · log 2n
m /(100

√
n) ≥ (mn )1/3 suffices. Then

Lemma 11 finds a full coloring of discrepancy O(
√
n).

V. EXTENSION TO VECTOR BALANCING

The attentive reader might have realized that we have es-
sentially proven Giannopolous’ Theorem only in the variant
in which the vectors vi correspond to the unit basis vectors.
But we want to argue here that the algorithm from above
can also handle Giannopoulos’ general claim (apart from the
fact that our partial signs xi will be in [−1, 1] and not in
{−1, 0, 1}).

For this sake, consider Q = {x ∈ R
m |∑m

i=1 xivi ∈ K}.
Then Q is again a symmetric convex set and all we need to
do is to find a vector y ∈ Q∩ [−1, 1]m that has Ω(m) many
entries in ±1. We know that it suffices to show that γm(Q)
is not too small — and this is what we are going to do now.

First, let us discuss how the Gaussian measure of a body
can change if we scale it in some direction:

Lemma 12. Let K ∈ R
n be symmetric and convex

and for some λ ≥ 0 define Q := {(x1, x2, . . . , xn) |
(λx1, x2, . . . , xn) ∈ K}. Then Q is symmetric and convex
and γn(Q) ≥ 1

max{1,λ} · γn(K).

Proof: Define f(x1) := Prx2,...,xn∼N(0,1)[x ∈ K].
Note that f is a symmetric function and it is monotone in
the sense that 0 ≤ x1 ≤ y1 ⇒ f(x1) ≥ f(y1). Then we can
express both measures as

γn(Q) = 2

∫ ∞

0

1√
2π

e−x2

1
/2 · f(λx1) dx1

= 2

∫ ∞

0

1√
2πλ

e−(x1/λ)
2/2

︸ ︷︷ ︸
(∗)

·f(x1) dx1

and

γn(K) = 2

∫ ∞

0

1√
2π

e−x2

1
/2

︸ ︷︷ ︸
(∗∗)

·f(x1) dx1

For λ ≤ 1, we see that f(λx1) ≥ f(x1) and hence
γn(Q) ≥ γn(K). For λ ≥ 1, we can estimate that (∗)

(∗∗) =
1
λ exp(12x

2
1(1− 1

λ2 )) ≥ 1
λ and hence γn(Q) ≥ 1

λγn(K).
Since also the scaled set Q is symmetric, iteratively

applying Lemma 12 gives:

Corollary 13. Let K ⊆ R
n be symmetric and convex and

λ ∈ R
n. Then

Pr
x∼Nn(0,1)

[(λ1x1, . . . , λnxn) ∈ K]

≥ 1∏n
i=1 max{1, |λi|} Pr

x∼Nn(0,1)
[x ∈ K]

Lemma 14. Let v1, . . . , vm ∈ R
n vectors with ‖vi‖22 ≤ ε

for i = 1, . . . ,m and let K ⊆ R
n be a symmetric convex set.

For Q = {x ∈ R
m | ∑m

i=1 xivi ∈ K} one has γm(Q) ≥
γn(K) · e−εm.

Proof: We consider the random vector X =
∑m

i=1 xivi
with independent Gaussians xi ∼ N(0, 1). It is a well known
fact in probability theory (see e.g. page 84 in [21]), that there
is an orthonormal basis b1, . . . , bn ∈ R

n and u ∈ R
n so that

one can write X =
∑n

i=1 yiuibi with y1, . . . , yn ∼ N(0, 1)
being independent Gaussians and the total variance of X is
preserved, that means ‖u‖22 =

∑m
i=1 ‖vi‖22. If we abbreviate

Λ :=
∏n

i=1 max{1, |ui|}, then we can apply Corollary 13
to lower bound

γm(Q) = Pr[X ∈ K] = Pr
y∼Nn(0,1)

[ n∑
i=1

yiuibi ∈ K
]

≥ 1

Λ
Pr

y∼Nn(0,1)

[ n∑
i=1

yibi ∈ K
]
=

1

Λ
γn(K)
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using the rotational symmetry of γn. It remains to provide
a (fairly crude) upper bound on Λ, which is

Λ =
n∏

i=1

max{1, |ui|} ≤
n∏

i=1

(1 + u2
i )

1+x≤ex

≤ exp
( n∑

i=1

u2
i

)
= exp

( m∑
i=1

‖vi‖22
)
≤ eεm

For example, if γn(K) ≥ e−m/1000 and ‖vi‖22 ≤ 1
1000 ,

then γm(Q) ≥ e−m/500 and we can apply Theorem 2 to
obtain:

Theorem 15. Given a symmetric convex set K ⊆ R
n with

γn(K) ≥ e−m/1000 and vectors v1, . . . , vm ∈ R
n, with

‖vi‖2 ≤ 1
40 for all i = 1, . . . ,m, there is a polynomial

time algorithm to find a y ∈ [−1, 1]m with
∑m

i=1 viyi ∈ K
and at least m

9000 many indices i that have yi ∈ {±1}. Here
it suffices to have access to a polynomial time separation
oracle for K.

Acknoweledgements: The author is very grateful to
Daniel Dadush and to the anonymous referees for their
helpful comments.

REFERENCES

[1] J. Spencer, “Six standard deviations suffice,” Transactions of
the American Mathematical Society, vol. 289, no. 2, pp. 679–
706, 1985.

[2] J. Beck, “Roth’s estimate of the discrepancy of integer
sequences is nearly sharp,” Combinatorica, vol. 1, no. 4,
pp. 319–325, 1981.

[3] E. D. Gluskin, “Extremal properties of orthogonal paral-
lelepipeds and their applications to the geometry of banach
spaces,” Mathematics of the USSR-Sbornik, vol. 64, no. 1,
p. 85, 1989.

[4] A. Giannopoulos, “On some vector balancing problems,”
Studia Mathematica, vol. 122, no. 3, pp. 225–234, 1997.

[5] N. Bansal, “Constructive algorithms for discrepancy mini-
mization,” in FOCS, pp. 3–10, 2010.

[6] S. Lovett and R. Meka, “Constructive discrepancy minimiza-
tion by walking on the edges,” in FOCS, pp. 61–67, 2012.

[7] A. Srinivasan, “Improving the discrepancy bound for sparse
matrices: Better approximations for sparse lattice approxima-
tion problems,” in SODA’97, (Philadelphia, PA), pp. 692–701,
ACM SIGACT, SIAM, 1997.

[8] J. Beck and T. Fiala, ““Integer-making” theorems,” Discrete
Appl. Math., vol. 3, no. 1, pp. 1–8, 1981.

[9] W. Banaszczyk, “Balancing vectors and Gaussian measures
of n-dimensional convex bodies,” Random Structures Algo-
rithms, vol. 12, no. 4, pp. 351–360, 1998.

[10] A. Nikolov, “The Komlos Conjecture Holds for Vector Col-
orings,” ArXiv e-prints, Jan. 2013.

[11] J. H. Spencer, A. Srinivasan, and P. Tetali, “The discrepancy
of permutation families.” Unpublished manuscript.

[12] G. Bohus, “On the discrepancy of 3 permutations,” Random
Structures Algorithms, vol. 1, no. 2, pp. 215–220, 1990.

[13] A. Newman, O. Neiman, and A. Nikolov, “Beck’s three
permutations conjecture: A counterexample and some con-
sequences,” in FOCS, pp. 253–262, 2012.

[14] A. Marcus, D. A. Spielman, and N. Srivastava, “Interlac-
ing Families II: Mixed Characteristic Polynomials and the
Kadison-Singer Problem,” ArXiv e-prints, June 2013.

[15] J. Matoušek, Geometric discrepancy, vol. 18 of Algorithms
and Combinatorics. Berlin: Springer-Verlag, 1999. An
illustrated guide.

[16] B. Chazelle, The discrepancy method - randomness and
complexity. Cambridge University Press, 2001.

[17] M. Ledoux and M. Talagrand, Probability in Banach spaces.
Classics in Mathematics, Springer-Verlag, Berlin, 2011.
Isoperimetry and processes, Reprint of the 1991 edition.

[18] Z. Šidák, “Rectangular confidence regions for the means of
multivariate normal distributions,” J. Amer. Statist. Assoc.,
vol. 62, pp. 626–633, 1967.

[19] C. G. Khatri, “On certain inequalities for normal distributions
and their applications to simultaneous confidence bounds,”
Ann. Math. Statist., vol. 38, pp. 1853–1867, 1967.

[20] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid
method and its consequences in combinatorial optimization,”
Combinatorica, vol. 1, no. 2, pp. 169–197, 1981.

[21] W. Feller, An introduction to probability theory and its
applications. Vol. II. Second edition, John Wiley & Sons,
Inc., New York-London-Sydney, 1971.

145145


