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Abstract—We consider sequential decision making in a
setting where regret is measured with respect to a set of
stateful reference policies, and feedback is limited to observing
the rewards of the actions performed (the so called “bandit”
setting). If either the reference policies are stateless rather than
stateful, or the feedback includes the rewards of all actions
(the so called “expert” setting), previous work shows that the
optimal regret grows like Θ(

√
T ) in terms of the number of

decision rounds T .
The difficulty in our setting is that the decision maker

unavoidably loses track of the internal states of the reference
policies, and thus cannot reliably attribute rewards observed
in a certain round to any of the reference policies. In fact,
in this setting it is impossible for the algorithm to estimate
which policy gives the highest (or even approximately high-
est) total reward. Nevertheless, we design an algorithm that
achieves expected regret that is sublinear in T , of the form
O(T/ log1/4 T ). Our algorithm is based on a certain local
repetition lemma that may be of independent interest. We also
show that no algorithm can guarantee expected regret better
than O(T/ log3/2 T ).

I. INTRODUCTION

A player is faced with a sequential decision making

task, continuing for T rounds. There is a finite set [n] =
{1, . . . , n} of actions available in every round. In every

round, based on all information observed in previous rounds,

the player may choose an action i ∈ [n], and consequently

receives some reward r ∈ [0, 1] on that particular round. The

total reward of the player is the sum of rewards accumulated

in all rounds. There are various policies suggested to the

player as to how to choose the sequence of actions in a way

that would lead to high total reward. Examples of policies

can be to play action 2 in all rounds, to play action 2 in odd

rounds and action 3 in even rounds, or to start with action 1,

play the current action repeatedly in every round until the

first round in which it gives payoff less than 1/2, then switch

to the next action in cyclic order, and so on. The number of

given policies is denoted by k. A-priori the player does not

know which is the better policy. An algorithm of the player

is simply a new policy that may be based on the available

given policies. For example, the algorithm may be to follow

policy number 5 in the first T/2 rounds, and play action 3

in the remaining rounds. The regret of the algorithm of the

player is the difference between the total payoff of the best

given policy to that of the player’s algorithm. Our goal is to

design an algorithm for the player that has as small regret

as possible.

There are many different variations on the above setting,

and some have been extensively studied in the past, with

two of the most common variations referred to as expert

algorithms and bandit algorithms [5, 9, 3]. In this work we

study a natural variation that apparently did not receive much

attention in the past. We present this variation in its simplest

form in Section I-A, and defer discussion of extensions to

Section I-F.

I.A. The Stateful Policies Model

We view the sequential decision making problem as a

repeated game between a player and an adversary. Before

the game begins, the adversary determines a sequence1 of

reward functions r1:T = (r1, . . . , rT ), where each function

assigns each of the actions in [n] with a reward value in the

interval [0, 1]. We refer to such adversary as oblivious, since

the functions r1:T cannot change as a result of the player’s

actions (as they are chosen ahead of time). On each round

t, the player must choose, possibly at random, an action

Xt ∈ [n]. He then receives the reward rt(Xt) associated

with that action, and his feedback on that round consists of

this reward only; this is traditionally called bandit feedback.

The player is given as input a set Π of k > 1 policies,

which are referred to as the reference policies. Each policy

π ∈ Π is a deterministic function that maps the sequence of

all previously observed rewards into an action to be played

next. For a policy π, we use the notation xπ
t to denote the

action played by π on round t, had it been followed from

the beginning of the game (note that xπ
t has a deterministic

value). The player’s goal is to minimize his (expected) regret
measured with respect to the set of reference policies Π,

defined by

RegretT = max
π∈Π

T∑
t=1

rt(x
π
t )−E

[
T∑

t=1

rt
(
Xt

)]
.

We say that the player’s regret is non-trivial if it grows

sublinearly with T , namely if RegretT = o(T ).
While regret measures the performance of a specific algo-

rithm on a particular sequence of reward functions, we are

typically interested in understanding the intrinsic difficulty

1We use the notation as:t as a shorthand for the sequence (as, . . . , at).
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of the learning problem. This difficulty is captured by the

game-theoretic notion of minimax regret, which intuitively

is the expected regret of an optimal algorithm when playing

against an optimal adversary. Formally, the minimax regret

is defined as the infimum over all player algorithms, of the

supremum over all reward sequences, of the expected regret.

In this paper we consider a type of reference policies that

we refer to as stateful policies, which we define next (see

also Fig. 1 for an illustration of this concept).

Definition 1 (stateful policy). A stateful policy π =
(sπ0 , f

π, gπ) over n actions and S states is a finite state

machine with state space [S] = {1, 2, . . . , S}, characterized

by three parameters:

(i) the initial state of the policy sπ0 ∈ [S], which is used

to initialize the policy before the first round;

(ii) the action function fπ : [S] �→ [n], describing which

action to take in a given round, depending on the state

the policy is in;

(iii) the state transition function gπ : [S] × [0, 1] �→ [S],
which given the current state and the observed reward

of the action played in the current round, determines to

which state to move for the next round.

The action xπ
t played by a stateful policy π on round t

(had π been followed from the beginning of time) can be

computed recursively, starting from the given initial state sπ0 ,

according to

∀ t
xπ
t = fπ(sπt−1) ,

sπt = gπ(sπt−1, rt(x
π
t )) .

Here, sπt represents the state π reaches at the end of round t.
In our setting, we assume that the player is given as input

a reference set Π of k > 1 stateful policies, each over at

most S states. The player may base his decisions on the

description of the k reference policies (in particular, the

policies can serve as subroutines by his algorithm). Without

loss of generality, we shall assume that each policy in Π
has exactly S states. Also, for simplicity we assume that

policies are deterministic (involve no randomization) and

time-independent: the functions fπ and gπ do not depend

on the round number; see Section I-F for extensions of our

results to randomized and to time-dependent policies.

Example. We present a detailed example to illustrate the

model. Suppose that our player, a driver, faces a daily

commute problem, that repeats itself for a very large number

T of days. There are three possible routes that he can take,

and an action is a choice of route (hence n = 3). Each of

the three routes can be better than the others on any given

day. The reward of the player on a given route in a given

day is some number in the range [0, 1] that summarizes his

satisfaction level with the route he took (taking into account

the time of travel, road conditions, courtesy of other drivers,

and so on). The driver learns this reward only after taking the

route, and does not know what the reward would have been

had he taken a different route. We further assume that the

effect of a single driver on traffic experience is negligible:

the presence of the driver on a particular route on a given

day has no effect of the quality (satisfaction level) of that

or any other route on future days.

The driver is told that there is a useful policy for choosing

the route in a given day, based only on the reward of the

previous day. This policy has three states (hence S = 3). The

action function f is simply the identity function (in state i
take route i). The state transition function g is independent

of the current state, and depends only on the reward received.

If x denotes the reward received in the current day, then the

next state is as follows: g(x) = 1 for |x− 1
2 | ≤ 1

6 , g(x) = 2
for |x− 1

2 | > 1
3 , and g(x) = 3 otherwise. The only part not

specified by the policy is the initial state s0 (which route

to take on the first day). Hence effectively there are three

reference policies, different only on their initial state, and

thus k = 3.

The beauty of the policy, so the player is told, is that if he

gets the initial state right and from then on follows the policy

blindly, his overall satisfaction is guaranteed. Not knowing

which is the better reference policy, does the player have a

strategy that guarantees sublinear regret (in T ) against the

best of the three reference policies? If so, how low can this

regret be guaranteed to be?

The kind of policies considered in our example above is

perhaps the weakest type of a stateful policy, one that we

refer to as a reactive policy.

Definition 2 (reactive policy). A reactive policy π over n
actions (with 1-lookback) is specified by an initial action

xπ
1 ∈ [n] to be played in the first round of the game, and by

a function π : [0, 1] �→ [n] that maps the observed reward

of the action played in the current round to an action to be

played on the next round.

A reactive policy simply reacts to the last reward it

receives as feedback and translates it into an action to be

played on the next round. A reactive policy can be seen

as a special type of a stateful policy with S = n states, if

we identify each of the sets π−1(i) ⊆ [0, 1] with a unique

state i ∈ [n]. In this view, the action function fπ is simply

the identity function, and the state transition function gπ is

independent of the current state (and maps a reward r to the

state i if r ∈ π−1(i)). See also Fig. 1 for a visual description

of the reactive policies used in our example.

I.B. Main Results

We now state our main results, which are upper and lower

bounds on the expected regret in the stateful policies model.

Theorem 3. For any given k, S ≥ 1, there is an algorithm
for the player that guarantees sublinear expected regret with
respect to any reference set Π of k stateful policies over S
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Figure 1: (Left) A stateful policy over n = 2 actions with S = 3 states, with s1 being the initial state. The labels on the edges between states indicate
the set of rewards that trigger the corresponding transition (which is the role of the function gπ). The dashed arrows depict the function fπ , that assigns
each state with an action. (Right) A reactive policy over n = 3 actions, considered in the example of Section I-A. The state si is a placeholder that stands
for each of s1, s2, s3 and shows the outgoing transitions that are common to all 3 states.

states. Specifically, for any set Π and any oblivious sequence
of reward functions, Algorithm 3 given in Section II-C
achieves an O

(√
kS · T log log T

log1/4 T

)
upper bound over the

expected regret with respect to Π.

Though the regret achieved in Theorem 3 is sublinear, it

is only slightly so. Unfortunately, this is unavoidable.

Theorem 4. No player algorithm can guarantee expected
regret better than O(T/ log3/2 T ) with respect to any set
of k = 3 reference policies over S = 3 states and n = 3
actions, not even if the reference policies are all reactive (as
in Definition 2). Moreover, this negative result holds in the
commute example given in Section I-A.

For proving the above bounds, it will be convenient for us

to first obtain upper and lower regret bounds in a simplified

model we call the hidden bandit. This model precisely

captures the main difficulties associated with the stateful

policies setting, and may be of independent interest. Our

results in the hidden bandit setting will be stated after we

establish the required definitions in Section I-D.

I.C. Discussion and Related Work

A unifying paradigm for virtually all previous sequential

optimization algorithms, whether in the expert or bandit set-

ting, is the following. As the rounds progress, the algorithm

“learns” which arm had the better past performance (in the

expert setting the algorithm observes all arms, in the bandit

setting the algorithm uses an “exploration and exploitation”

procedure), and then plays this arm (either deterministically

or with high probability). This paradigm is not suitable for

our stateful policies model (with bandit feedback), as there

is no way by which the algorithm can learn the identity of

the best reference policy, even if this reference policy gives

reward 1 in every round and all other reference policies give

reward 0 in every round. This difficulty stems from the fact

that reference policies might differ only in their initial state,

and their identity is lost because the player cannot track

the state evolution of policies, due to the bandit nature of

the feedback. (This aspect will become more evident in the

proof of Theorem 4.)

Several variants of our model have been extensively

studied in the past. However, to the best of our knowledge,

our results constitute the first known example of a learning

problem where the minimax regret rate is of the form

Θ(T/polylog(T )). For this reason, we believe that the prob-

lem we consider is substantially different from previously

studied, seemingly related sequential decision problems.

The full-feedback analog of our setting is widely known

to be captured by the so-called “experts” framework, and has

been studied under the name of “simulatable experts” [4].

Basically, when the player observes the rewards of all actions

he is able to “simulate” each of his contending policies and

keep track of their cumulative rewards. Hence, we can treat

each policy as an independent expert and use standard online

learning techniques (such as the weighted majority algo-

rithm) to obtain O(
√
T ) regret in this setting. Consequently,

we exhibit an exponential gap between the minimax regret

rates of the full-feedback and bandit-feedback variants of

the problem2. As far as we know, this is the first evidence

of such gap to date: the only previously known gap is in the

case of the multi-armed bandit problem with switching costs,

where the minimax regret rates are Θ(
√
T ) and Θ̃(T 2/3) in

the full-feedback and bandit-feedback versions, respectively

[2, 6].

Further discussion of related work is deferred to the full

version of the paper [8].

I.D. The Hidden Bandit Problem

In this section we present a setting that we shall refer

to as the hidden bandit problem, which captures the main

difficulties associated with the stateful policies model. It will

2We say that the gap between the achievable rates is exponential, since
the average (per-round) regret decays like 1/polylog(T ) in the bandit case,

while in the full-information case it decays like 1/
√
T .
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be convenient for us to first obtain results in the hidden

bandit model, and then translate them to the stateful policies

model.

To motivate the hidden bandit problem, let us discriminate

between two different modes a player in the stateful policies

model may be in, at any given round: the “good mode”,

in which the algorithm is following the best reference

policy in its correct state, and the “bad mode” in which

the algorithm is doing something else (i.e., following other

reference policy or executing a sequence of actions that

do not correspond to any reference policy). Inevitably, the

player is not aware of his current mode and is unable to

switch between the modes deterministically. However, if

at some point in time the player is told that he is in the

“good mode”, then from that point onwards he can replicate

the actions of the best policy by observing its rewards and

emulating its state transitions, and remain in the same mode.

Roughly, the hidden bandit problem can be described as

a multi-armed bandit problem with two arms, the reference
arm and the decoy arm, that correspond to the “good

mode” and the “bad mode” in the stateful policies model,

respectively. Unlike standard multi-armed bandit problems,

a key aspect of this problem is that in any given round the

player does not know which of the arms he is currently

pulling. Accordingly, the player is not able to select which

arm to pull on each round; rather, he can only choose

whether to stay on the current arm or to switch to the

other arm with some probability. These aspects capture the

difficulties in the stateful policies model, in which once the

player leaves a certain policy, attempting to return to that

policy involves guessing correctly the policy’s internal state,

an aspect that a player is not sure of.

The model: We now turn to the formal description

of the hidden bandit model. There are two parameters

associated with the hidden bandit model. One is T , the

number of rounds, and the other is p, a parameter in the

range 0 < p < 1. There are two arms, arm 0 and arm 1,

that will be referred to as the reference arm and the decoy
arm, respectively. At each round, the player has only two

possible actions available:

• stay: stays on the same arm on which the player entered

the round;

• switch: switches to arm 1 if the player entered the

round on arm 0; otherwise, switches to arm 0 with

probability p, and stays on arm 1 with probability 1−p.

The dynamics of the switch action can be seen as a two-

state Markov chain, with states corresponding to the arms.

Initially, prior to round 1, the player is placed on one of

the arms at random, being on arm 0 with probability p
1+p

and on arm 1 with probability 1
1+p . This initial probability

distribution is the stationary distribution with respect to

the randomized switch action defined above. Hence, any

sequence of actions (either stay or switch) of the player

gives rise to a sequence of random variables X1:T , where

Xt ∈ {0, 1} indicates which arm is pulled by the player on

round t. Even though at each round the player is pulling

some arm, the player cannot observe on which arm he is
playing. In other words, the sequence X1:T is not observable
by the player.

On each round t = 1, . . . , T , the adversary assigns a

reward to each arm. We let rt(i) ∈ [0, 1] denote the reward of

arm i on round t. The rewards of the reference arm are set by

the adversary in an oblivious way, before the game begins.

The rewards of the decoy arm are set by the adversary in an

adaptive way as the game progresses: at every round t, the

reward of arm 1 can be based on the entire history of the

game up to round t. The feedback to the player on round

t in which arm Xt is played consists only of the reward

rt(Xt), and the player does not get to observe the reward

of the other arm on that round.

The goal of the player is to minimize his expected regret,
which is computed only with respect to the reference arm,

namely RegretT =
∑T

t=1 rt(0) − E
[∑T

t=1 rt(Xt)
]
,

where the expectation on the right-hand side is taken with

respect to the randomization of the switch actions, as well

as to the internal random bits used by the player.

Remark: The fact that the adversary can set the rewards

on the decoy arm in an adaptive manner will allow us to

simulate any execution in the stateful policies model by

an execution in the hidden bandit model. Consequently, all

positive results (algorithms with low regret) that we shall

prove in the hidden bandit model will transfer easily to the

stateful policies model (basically, by setting p = 1/(Sk),
where k is the number of reference policies and S is the

maximum number of states that a policy might have). On

the other hand, it might not be true that negative results

in the hidden bandit model transfer to the stateful policies

model. Nevertheless, our negative results for the hidden

bandit model will be obtained with an oblivious adversary
(which is oblivious not only on the reference arm but also on

the decoy arm), and consequently will transfer to the stateful

policies model.

Results: We now present our results for the hidden

bandit problem, that we later show how to translate into

the corresponding upper and lower bounds in the stateful

policies model.

Theorem 5. For any given 0 < p < 1, there is an algorithm
for the player in the hidden bandit setting that guarantees
sublinear expected regret (in T ). Specifically, Algorithm 2
presented in Section II-B achieves an expected regret of
O

(
1√
p · T log log T

log1/4 T

)
over any sequence of reward functions.

Theorem 6. For p = 1
2 , no algorithm for the player in the

hidden bandit setting guarantees expected regret better than
O(T/ log3/2 T ), not even if the adversary uses an oblivious
strategy on both arms.
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There is a gap between the upper bound of Theorem 5

and the lower bound of Theorem 6, that translates into a gap

between our main upper and lower bounds of Theorems 3

and 4. In some natural special cases, we are able to close this

gap. We say that an adversary is consistent if there is a fixed

offset 0 < Δ ≤ 1 such that in every round t, rt(0)−rt(1) =
Δ. Say that the player’s algorithm is semi-Markovian if the

choice of action taken at any given round depends only on

the sequence of rewards obtained since the last switch action.

(See exact definitions in [8].)

Theorem 7. In the hidden bandit setting, if the player’s
algorithm is required to be semi-Markovian and the adver-
sary is required to be consistent, then there is an algorithm
achieving expected regret O(T/ log T ), and this is best
possible up to constants (that may also depend on p).

We remark that we actually prove a slightly stronger

statement than that of Theorem 7: for the positive results

a Markovian algorithm suffices, for the negative results a

consistent adversary suffices. See [8] for more details.

I.E. Our Techniques and Additional Related Work

Our algorithm in the proofs of Theorem 5 and Theorem 3

is based on a principle that to the best of our knowledge has

not been used previously in sequential optimization settings.

This is the local repetition lemma which will be explained

informally here, and addressed formally in Section II-A (see

Lemma 11).

In the hidden bandit setting, suppose first that the se-

quence of rewards that the adversary places on the reference

arm is repetitive—the same reward r on every round. If the

player knows that the reference arm is repetitive, it should

not be difficult for the player to achieve sublinear regret,

even if he does not know what r is. He can start with an

exploration phase (occasional switch requests embedded in

sequences of stay actions) that will alert him to repeated

patterns of r values in-between two switches. Thereafter, in

an exploitation phase, whenever the player gets a reward

below r, he will ask for a switch. The only way the decoy

arm can cause the player not to reach the reference arm

is by offering rewards higher than r, but getting rewards

higher than r on the decoy arm causes no regret. (The

above informal argument is made formal in the proof of

Theorem 5.)

The above argument can be extended (with an O(εT ) loss

in the regret) to the case that the rewards on the reference

arm are ε-repetitive, namely, in the range of r±ε for some r.

Suppose now that given some integer d < T , the reference

arm is not ε-repetitive, but only (d, ε)-locally repetitive, in

the following sense: starting at any round that is a multiple

of d, the sequence of rewards on the d rounds that follows is

ε-repetitive. A (d, ε)-locally repetitive sequence need not be

ε-repetitive—it can change values arbitrarily every d rounds.

However, if d is sufficiently large (compared to 1/p in the

hidden bandit setting), the player should be able to achieve

small regret, by breaking the sequence of length T to T/d
blocks of size d, and treating each block as an ε-repetitive

sequence.

But what happens if the rewards on the reference arm are

not (d, ε)-repetitive? Then we can use a notion of scales. For

0 ≤ � < logd T , the scale-� version of a sequence of length

T is obtained by bunching together groups of d� consecutive

rounds into one super-round, and making the reward of the

super-round equal to the average of the rewards of the rounds

it is composed of. The player in the hidden bandit setting

may choose a random scale �, in hope that in this scale

the resulting sequence of super rounds is (d, ε)-repetitive. It

turns out this approach works. This is a consequence of the

local repetition lemma that we state here informally.

Lemma 11 (Local repetition lemma, informal statement).
For every choice of integer d ≥ 2 and 0 < ε, δ < 1, if T is
sufficiently large (as a function of d, ε and δ), then for every
string in σ ∈ [0, 1]T , in almost all scales (say, a fraction of
1− δ) the resulting sequence is almost (d, ε)-repetitive (i.e.,
only a δ fraction of the blocks fail to be ε-repetitive).

We are not aware of a previous formulation of the local

repetition lemma. However, it has connections to results

that are well known in other contexts. We briefly mention

several such connections, without attempting to make them

formal. The regularity lemma of Szemerédi asserts that

every graph has some “regular” structure. Likewise, the

local repetition lemma asserts that every string has some

“regular” (in the sense of being nearly repetitive) structure.

Our proof for the local repetition lemma follows standard

techniques for proving the regularity lemma, though is easier

(because strings are objects that are less complicated than

graphs). An alternative proof for the local repetition lemma

can go through martingale theory (e.g., through the use of

martingale upper-crossing inequalities). The relation of our

setting to that of martingales is that the sequence of values

observed when going from a super round in the highest scale

all the way down to a random round in smallest scale is a

martingale sequence. Yet another related topic is Parseval’s

identity for the coefficients of Fourier transforms. It gives an

upper bound on the sum of all Fourier coefficients, implying

that most of them are small. This means that a random scale

a sequence of values has small Fourier coefficients, and

small Fourier coefficients correspond to not having much

variability at this scale.

Our lower bound of Theorem 6 is based on a construction

that was used by Dekel et al. [6] for proving lower bounds

on the regret for bandit settings with switching costs. The

construction is a full binary tree with T leaves that corre-

spond to the rounds, in which each edge of the tree has

a random reward, and the reward at a leaf is the sum of

rewards along the root to leaf path. The reward on the decoy

arm is identical to that of the reference arm, except for a
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constant offset, which on the one hand should not be too

large so that the player cannot tell when he is switching

between arms, and on the other hand should not be too small

as it determines the regret. In the context of Dekel et al. [6],

such a construction results in a regret of Ω(T 2/3/ log T ).
In our context, a similar construction gives a much higher,

almost linear lower bound. We remark that our modification

of this randomized construction share similarities with a

construction used by Dwork et al. [7] to obtain positive

results in a different context, that of differential privacy. (The

inability of the player to distinguish between the reference

arm and the decoy arm is analogous to keeping the value of

an offset “differentially private”.)

The upper bound in Theorem 7 is based on a simple

randomized algorithm that in every round asks for a switch

with probability that is exponential in the negative of the

reward of that particular round. The proof that this algorithm

has low regret (when the adversary is consistent) is based

on showing that the expected fraction of rounds spent on

the decoy arm is exponential in the (negative) offset of the

decoy arm compared to the reference arm.

The lower bound in Theorem 7 (against semi-Markovian

algorithms) is based on the adversary choosing at random

a fixed reward on the reference arm and a fixed smaller

reward on the decoy arm. Natural distributions for choosing

these two rewards only lead to a regret that behaves roughly

like Ω(T/ log3/2 T ). To get the matching lower bound of

Ω(T/ log T ) we use a distribution similar to the distribution

of queries that was used in work of Raskhodnikova [11] on

monotonicity testing with a small number of queries.

I.F. Extensions of Our Upper Bound

We discuss a few simple extensions of the basic model

presented in Section I-A.

Time-dependent policies: In our stateful policies model,

reference policies were assumed to be time independent. We

may also consider a model in which reference policies can

be time dependent (the functions fπ, gπ have an additional

input which is the round number). Our lower bound (Theo-

rem 4) is proved with respect to time independent reference

policies, and hence holds without change when reference

policies can be time dependent. Our upper bound (Theo-

rem 3) also holds without change when reference policies are

time dependent—nothing in the proof of Theorem 3 requires

time independence.

Randomized policies: In our stateful policies model,

reference policies were assumed to be deterministic. We

may also consider a model in which reference policies

can be randomized (the functions fπ, gπ have access to

random coin tosses). Our lower bound (Theorem 4) is

proved with respect to deterministic reference policies, and

hence holds without change when reference policies can be

randomized. For the upper bound, there are two natural ways

of evaluating the regret. One, less demanding, is against the

expected total reward of the reference policy with highest

total expected reward. The other, more demanding, is against

the expectation of the realized maximum of the total rewards

of the reference policies. (That is, one runs each one of

the reference policies using independent randomness, and

observes which policy achieves the highest reward.) Our

upper bound (Theorem 3) extends to randomized reference

policies, even under the more demanding interpretation—

one simply fixes for each reference policy all its random

coin tosses in advance, thus making it deterministic, and

then Theorem 3 applies with no change.

Stateful and reactive adversaries: One of the moti-

vations of the current study was to consider also stateful

adversaries, and not just stateful policies. For a stateful

adversary, the reward at a given round can depend not

only on the action taken by the player, but also on the

entire history of the game up to that round (via some state

variable that the adversary keeps and updates after every

round). In general, it is hopeless to attain sublinear regret

in such settings (for example, the action taken in the first

round might determine the rewards in all future rounds, and

then one mistake by the player already gives linear regret).

However, our positive results do extend to a certain class

of stateful adversaries, for which the reward received at any

round is a function of the actions of the player on that and the

� previous rounds (for some fixed �). We refer to this class

as reactive adversaries, in analogy to our notion of reactive

policy, though it has been studied in the literature under

the names “loss functions with memory” [10] and “bounded

memory adaptive adversary” [1]. See [8] for more details.

II. PROOFS

II.A. The Local Repetition Lemma

In this section we formulate and prove the local repetition

lemma, which is a key lemma for the proof of Theorem 5. As

this lemma may have other applications, we use a generic

terminology that is not specific to our sequential decision

models. In the notation of the local repetition lemma, a

sequence will be referred to as a string, its length will

typically be denoted by n (rather than T ), and the entries

of the string (which will still have values in [0, 1]) will be

referred to as characters rather than rewards. Hence, strings

are concatenation of individual characters, where the value

of a character is a real number in the range [0, 1]. However,

it will be convenient for us to sometimes view a string as

a concatenation of substrings. Namely, each entry of the

string might be a string by itself, and the whole string is a

concatenation of these substrings. We may apply this view

recursively, namely, the entries of each substring might also

be substrings rather than individual characters. The notation

that we introduce below is flexible enough to encompass this

view.

For arbitrary n, given a string s ∈ [0, 1]n, xs denotes its

average value. Using s(i) to denote the ith entry of s, and
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using xs(i) to denote the value of this entry, we thus have

xs =
1
n

∑n
i=1 xs(i). This notation naturally extends to the

case that s is not a string of characters, but rather a string

of n substrings, in which each substring s(i) is by itself a

string of m characters (same m for every 1 ≤ i ≤ n). In

this case, xs(i) is the average value of string s(i), and the

expression 1
n

∑n
i=1 xs(i) still correctly computes xs.

As a rule, whenever we view a string as being composed

of substrings, all these substrings will be of exactly the same

length.

Definition 8 (repetitive string). Let n be a multiple of d.

Consider a string s ∈ [0, 1]n, viewed as a concatenation of

d substrings, s(1), . . . , s(d), each in [0, 1]n/d. Given ε >
0, we say that s is (d, ε)-repetitive if for every i we have

|xs − xs(i)| ≤ ε.

A key aspect of our approach is that we shall typically

not consider the string as a whole, but rather consider only a

local portion of the string, namely, a substring. Moreover, the

size of the local portion depends on the level of resolution at

which we wish to view the string. Consequently, we endow

the string with a probability distribution over its substrings,

as in Definition 9.

Definition 9 (d-sampling). Let n be a power of d, say n =
dk. A d-sampling of a string s ∈ [0, 1]n proceeds as follows.

First a value � (for level) is chosen uniformly at random from

{0, . . . , k − 1}. Then s is partitioned into d� consecutive

substrings, each of length dk−�. Thereafter, one of these

substrings is chosen uniformly at random, and declared the

result of the sampling.

The result of d-sampling is always a string whose length

is divisible by d, and hence compatible in terms of length

with the requirements of Definition 8.

Remark. In Definition 9 we assume that n is a power of d.

We shall make similar simplifying assumptions throughout

this section. However, our work easily extends to cases that n
is not a power of d. We explain how to do this in the context

of d-sampling. Let k be largest such that dk ≤ n. With

probability dk/n choose the prefix of length dk of s and

on it do d-sampling as in Definition 9. With the remaining

probability 1−dk/n choose the suffix of length n−dk of s,

and recursively partition it into a prefix and suffix as above,

applying Definition 9 only to the prefix. When the suffix

becomes shorter than d, stop (this suffix can be discarded

from s without affecting our results).

We can now state the key definition for this section.

Definition 10 (locally-repetitive string). Let n be a power of

d, and consider a string s ∈ [0, 1]n. Given ε, δ > 0, we say

that s is (d, ε, δ)-locally-repetitive if with probability at least

1 − δ, a random substring of s sampled using d-sampling

(as in Definition 9) is (d, ε)-repetitive (as in Definition 8).

The main result of this section is the following.

Lemma 11 (Local repetition lemma). Let d be a positive
integer, and ε, δ > 0. Then for every n > dk where k = d

4ε2δ ,
every string s ∈ [0, 1]n is (d, ε, δ)-locally repetitive.

Proof: For simplicity, we shall assume that 1
ε and 1

δ are

integers. Let s be a string in [0, 1]n with n = dk. We say

that a substring v is aligned if its location in s is such that it

may be obtained as a result of d-sampling. Observe that if v
is aligned, then it is a concatenation of d equal length strings

v(1), . . . , v(d), each of which is aligned as well. Recall that

we refer to � in Definition 9 as the level. We use the notation

v ∈ � to say that v is aligned, and moreover, v is in level

� with respect to d-sampling. Define the variability of level

0 ≤ � ≤ k to be V� =
1
d�

∑
v ∈ �(xv)

2.

Proposition 12. We have Vk − V0 ≤ 1
4 .

V� is monotonically nondecreasing with �, because for

a given aligned string v with substrings v(1), . . . , v(d),
we have that xv = 1

d

∑d
i=1 xv(i), and the square of an

average is never larger than the average of the squares. For

aligned strings v that are not (d, ε)-repetitive, the following

proposition shows that there is a noticeable increase in

variability in the next level.

Proposition 13. If v is an aligned string that is not (d, ε)-
repetitive, then 1

d

∑d
i=1(xv(i))

2 > (xv)
2 + ε2

d .

Let δ� be the conditional probability that given that

the d-sampling procedure sampled level �, the substring v
sampled is not (d, ε)-repetitive. Hence δ = 1

k

∑k−1
�=0 δ�. Then

applying Proposition 13 level by level implies Vk − V0 >
ε2

d

∑k−1
�=0 δ� = kδε2

d . Contrasting this with Proposition 12

gives kδε2

d < 1
4 , implying that δ < d

4ε2k .

The full proof of the lemma can be found in [8], where

we also show that its guarantee is essentially optimal.

II.B. Upper Bound for Hidden Bandits

In this section we present an algorithm for the hid-

den bandit problem whose worst-case expected regret is

sublinear. Our algorithm exploits the fact that the reward

sequence of the reference arm, whose values are set in

an oblivious manner by the adversary, is (d, ε, δ)-locally

repetitive (see Definition 10) for appropriately chosen values

of d, ε, δ, as implied by the local repetition lemma. Hence,

it would be instrumental to first consider the simpler case

where the reference sequence is in fact (d, ε)-repetitive (see

Definition 8).

When the reference sequence is (d, ε)-repetitive, we pro-

pose an algorithm, described in Algorithm 1, which is

based on a simple first-explore-then-exploit strategy. The

algorithms begins with an exploration phase (Phase I), where

it tries to hit the reference arm at least once and obtain

an estimate of its reward, which is almost constant at the

appropriate scale. Then, in the exploitation phase (Phase
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II), the algorithm repeatedly asks for a switch whenever

the observed rewards drops below the top estimated rewards

obtained in Phase I. Eventually, since the reference arm is

(d, ε)-repetitive, the algorithm should stabilize on that arm

no matter what the rewards on the decoy arm are.

• let m = 1
p log

1
ε

• Phase I: for i = 1, . . . ,m: stay on chosen arm for

T/d rounds and let r̄i be the average of the observed

rewards, then switch once

• sort the averages r̄1, . . . , r̄m in descending order to

obtain r̄1 ≥ . . . ≥ r̄m
• Phase II: initialize i = 1, s = 0 and repeat (until T

rounds have elapsed):

– stay for T/d rounds and let r̄ be the average of the

observed rewards

– if r̄ < r̄i − 2ε, switch once and update s← s+ 1
– if s ≥ m, update i← i+ 1 and reset s = 0

Algorithm 1: Algorithm for (d, ε)-repetitive reference sequences.

The following lemma shows that for small values of ε, if

d is large enough as a function of ε then the expected regret

of Algorithm 1 is not large (the proof is deferred to [8]).

Lemma 14. Assume that the reward sequence of the refer-
ence arm is (d, ε)-repetitive, with d ≥ 1

p2ε log
2 1

ε . Then the
expected regret of Algorithm 1 is at most 8εT .

Our general algorithm, that works for any reference se-

quence, is described in Algorithm 2. The algorithm invokes

Algorithm 1 above as a subroutine on a randomly-chosen

block size, exploiting the locally-repetitive structure guaran-

teed by the local repetition lemma.

• set ε = 1√
p · log log T

log1/4 T
, d = 1

p2 log
2 1

ε

• choose block size b = di, where i is chosen uniformly

at random from {1, . . . , �logd T �}
• for i = 1, . . . , T/b: invoke Algorithm 1 on a block of

size b with parameters d, ε, p, b

Algorithm 2: Algorithm for the hidden bandit problem.

We are now ready to prove Theorem 5, which gives an

upper bound over the expected regret of Algorithm 2. The

proof uses the local repetition lemma (Lemma 11).
Proof of Theorem 5: Set d = 1

p2ε log
2 1

ε , δ = ε, k = d
4ε3

in Lemma 11, which then states that any sequence of length

at least Tε = dk is (d, ε, ε)-locally repetitive. It is not hard to

verify that for T ≥ Ω(1) and our choice of ε one has Tε ≤ T ,

which means that the reward sequence of the reference arm

is (d, ε, ε)-locally repetitive. Since b was chosen uniformly

at random, this means that each b-aligned block of size b in

this reward sequence is (d, ε)-repetitive with probability at

least 1− ε.

Now, consider a certain iteration of the algorithm. With

probability 1 − ε, the corresponding block in the reference

reward sequence is (d, ε)-repetitive with d = 1
p2ε log

2 1
ε .

Hence, according to Lemma 14, following the strategy of

Algorithm 1 in this block yields an expected regret of O(εb).
Overall, the expected regret in all T/b blocks is then O(εT ).
Using the definition of ε concludes the proof.

II.C. Upper Bound for Stateful Policies

We now show how our algorithm for the hidden bandit

setting can be applied, via a simple reduction, in the state-

ful policy model. The resulting algorithm is presented in

Algorithm 3, that provides implementations of the stay and

switch actions of the hidden bandit model. The basic idea is

to think of the best performing policy (in hindsight) within

the set Π as the reference arm, and let the decoy arm capture

all other policies, as well as other action paths that do not

correspond to any policy.

• choose a policy π1 ∈ Π and a state s1 ∈ [S] uniformly

at random

• invoke Algorithm 2 with parameters p = 1/kS and T ,

and the following implementation of stay and switch:

– stay on round t: play action fπt(st), observe re-

ward r, and update πt+1 ← πt , st+1 ← gπt(st, r)
– switch on round t: play the action fπt(st), then

choose a policy πt+1 ∈ Π and a state st+1 ∈ [S]
uniformly at random

Algorithm 3: Algorithm for competing with stateful policies.

We now prove Theorem 3, which provides a regret guar-

antee for Algorithm 3.

Proof of Theorem 3: Let π∗ ∈ Π be the best policy in

the set Π, namely, the one having the highest total reward

in hindsight. For all t = 1, 2, . . . , T , we let s∗t ∈ [S] denote

the state visited by π∗ on round t had it been followed

from the beginning of the game. Consider a hidden bandit

problem where the reward sequence of the reference arm is

the sequence obtained by following the policy π∗ throughout

the game, and the arm being pulled on round t is given by

the random variable Xt = 11πt �=π∗ ∨ st �=s∗t . The decoy arm

models any situation where the algorithm deviates from the

policy π∗, and each reward obtained on that arm is possibly

a function of the entire history of the game, including even

the random bits used by the player. Since the model allows

for the decoy arm to be completely arbitrary, we do not

precisely specify the rewards associated with that arm. The

claimed regret bound would then follow from Theorem 5

once we verify that the implementations of the stay and

switch actions are correct, namely:

(i) if Xt = 0 (i.e., the algorithm is on the reference arm

on round t), then choosing stay ensures that Xt+1 = 0;
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(ii) if Xt = 1 and the algorithm chooses switch then

Xt+1 = 0 with probability at least p = 1/kS.

Again, since the decoy arm may be completely adversarial,

it is not crucial to verify the transitions directed towards it

(in particular, the decoy arm might imitate the reference arm

in response to a certain action of the algorithm).

To see (i), note that Xt = 0 implies πt = π∗ and st = s∗t .

In particular, the algorithm picks on round t the same

action played by π∗ on that round and observes the same

reward. Hence, if the algorithm chooses stay then the update

st+1 ← gπt(st, r) ensures that st+1 = s∗t+1, retaining the

algorithm in the correct state on round t+1. Next, if Xt = 1
which means that the algorithm is not on the reference

arm on round t, then by choosing switch the random

choice of (πt+1, st+1) hits the configuration (π∗, s∗t+1) with

probability p = 1/kS. That is, with probability at least 1/nS
the algorithm would be on the reference arm on round t+1,

which proves (ii).

Remark. Following the same idea explained in the proof

above, it is actually possible to obtain a slightly improved

dependence on the number of policies n and save a n1/4

factor in the resulting bound, albeit with a more involved

algorithm.

II.D. Lower Bound for Hidden Bandits

In this section we prove our lower bound for the hidden

bandit problem with p = 1
2 given in Theorem 6.

In order to prove Theorem 6 we make use of Yao’s

principle [12], which in our context states that the expected

regret of a randomized algorithm on the worst case reward

sequence is no better than the expected regret of the optimal

deterministic algorithm on any stochastic reward sequence.

Hence, Theorem 6 would follow once we establish the

existence of a single sequence of stochastic reward functions,

Γ1:T , which is difficult for any deterministic algorithm of the

player (in terms of expected regret).

Our construction of the required stochastic sequence Γ1:T

is based on a variant of the Multi-scale Random Walk

stochastic process [6].

Definition 15 (Multi-scale Random Walk [6]). Given a se-

quence ξ1, . . . , ξT of i.i.d. random variables, the Multi-scale
Random Walk (MRW) process W0:T is defined recursively

by W0 = 0, and

∀ t Wt = Wρ(t) + ξt , (1)

where ρ(t) = t− 2δ(t) , δ(t) = max{i ≥ 0 : 2i divides t}.
Our construction, described in Fig. 2, is similar to the one

used by Dekel et al. [6], with one crucial difference: instead

of using a Gaussian distribution for the step variables ξ1:T ,

we employ a two-sided geometric distribution supported

on integer multiples of ε (this is a discrete analog of the

continuous Laplace distribution). We then use the resulting

• set

ε = 1

320 log
3/2
2 T

and γ = 1
4 log2 T (2)

• define W1:T to be a MRW process generated accord-

ing to Eq. (1), where ξ1:t are i.i.d. random variables

equipped with the distribution

∀ n ∈ Z , Pr(ξt = εn) = 1−e−γ

1+e−γ · e−γ|n| (3)

• for x ∈ {0, 1} set

∀ t Γ̃t(x) = 1
2 +Wt − ε 11x �=0 ,

Γt(x) = clip
(
Γ̃t(x)

)
,

where clip(r) = min{max{r, 0}, 1}

Figure 2: An oblivious strategy that forces a regret of Ω(T/ log3/2 T ) for
any algorithm for the hidden bandit problem with p = 1/2.

MRW process W1:T to form a sequence of intermediate

reward functions Γ̃1:T , where the reward of arm x = 0 is

consistently better than that of arm x = 1 by a gap of ε.
The actual reward functions Γ1:T are obtained from Γ̃t by

clipping the reward values to the [0, 1] interval.

For this construction, we prove the following lower bound

on the performance of any deterministic algorithm that

immediately implies Theorem 6.

Theorem 16. The expected regret of any deterministic
player algorithm on the stochastic sequence of reward
functions Γ1:T defined in Fig. 2 is at least 10−4 ·T/ log3/22 T.

The proof of the theorem is omitted from this extended

abstract, and can be found in [8].

II.E. Lower Bound for Stateful Policies

We now sketch a proof of Theorem 4, using the lower

bound proved in Section II-D in the hidden bandit setting.

For the formal proof of the theorem, refer to [8].

Proof of Theorem 4 (sketch): Suppose that there is

an algorithm A with o(T/ log3/2 T ) worst-case expected

regret. We will show that A can be used to achieve the same

expected regret in the hidden bandit model with p = 1
2 , in

contradiction to Theorem 6. Given an instance of the hidden

bandit problem, we will construct a set of reference reactive

policies Π = {π1, π2, π3} and a randomized construction of

reward functions over actions {1, 2, 3} that simulates it.

For any two consecutive rounds, we choose a random

permutation over the three actions. This defines three dis-

joint random paths of actions throughout the game, each

corresponds to one of the reference policies π1, π2, π3. The

reference policies will all share the same action function

π and only differ by their initial action on round t = 1,

where policy πi begins by playing action i. One of the paths,

chosen at random, is the “good” path (that corresponds to the
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t = 1 t = 2 t = 3 t = 4 t = 5 · · ·

±2 ±3 ±1 ±2 ±1 · · ·

π∗ ±3 ±2 ±3 ±3 ±2 · · ·

±1 ±1 ±2 ±1 ±3 · · ·

Figure 3: An illustration of the reward functions and policies used in the reduction. The marked path represents the path of the policy π∗, that corresponds
to the reference arm in the hidden bandit problem. The absolute value of each rounded reward on one of the paths indicates the next action on that path.

best policy π∗) along which the rewards encountered are the

rewards of the reference arm. The other two are the “bad”

ones, both assigned with the rewards of the decoy arm. Next,

we round the rewards via randomized rounding to either ±1,

±2, or ±3, in a way that keeps the correct expected reward.3

The type of rounding used for each reward value (i.e., the

absolute value of the rounded reward) on each of the paths

signals the action function π which is the next action to

be played on that path. See Fig. 3 for an illustration of the

resulting structure.

Now, we can execute the assumed algorithm A on the

construction described above, and translate the sequence of

actions it produces into a sequence of stay and switch ac-

tions for the underlying hidden bandit problem that achieves

o(T/ log3/2 T ) expected regret. We can do so by emitting a

switch action on round t if and only if A deviates from the

next action on its current path (as indicated by π) on that

round. It is not hard to show that A remains on the same

path whenever stay is emitted, and when switch is emitted

the probability of switching between good and path paths

precisely matches the dynamics of the switch action in the

hidden bandit model (see definition in Section I-D).
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