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Abstract—We give new lower and upper bounds on the per-
manent of a doubly stochastic matrix. Combined with previous
work, this improves on the deterministic approximation factor
for the permanent.
We also give a combinatorial application of the lower bound,
proving S. Friedland’s ”Asymptotic Lower Matching Conjecture”
for the monomer-dimer problem.

Index Terms—bounds on the permanent, approximation of the
permanent;

I. INTRODUCTION

The permanent of an n× n matrix A = (aij) is given by

Per(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i)

Here Sn is the symmetric group on n elements.

The permanent is a classical mathematical notion, going back

to Binet and Cauchy [22]. One part of its appeal is its strong,

though seemingly spurious, similarity to the determinant.

Another part is in its ability to count things. The permanent of

a 0, 1 matrix A equals the number of perfect matchings in the

bipartite graph it represents. The permanents are also useful in

counting more complex subgraphs, such as Hamiltonian cycles

([7] and the references therein).

In fact, the permanent counts things in a very strong sense,

since it is #P to compute [28], even for 0, 1 matrices.

Hence, from the complexity point of view, the permanent

is very different from the determinant. While the latter is

efficiently computable, the permanent of nonnegative matrices

is (probably) not. The natural question is, therefore, to try and

approximate the permanent as efficiently as possible, and as

well as possible.

We briefly discuss three different approaches to achieve this

goal.

The Monte Carlo Markov Chain approach: As observed by

Jerrum et al [16] an efficient procedure to sample uniformly

from the set of all perfect matchings in a bipartite graph

is computationally equivalent to approximately counting the

matchings. Broder [3] proposed to construct such a procedure

by devising a random walk on an appropriate space, rapidly

converging to its stationary distribution, which would be uni-

form on the set of perfect matchings (and assign a substantial

weight to it). This was accomplished (and extended) in [16],

giving an efficient randomized approximation algorithm for

the permanent of a nonnegative matrix, up to any degree of

precision, and providing a complete solution to the problem.

Exploiting the similarity to determinant: This is based on an

observation of Godsil and Gutman [20], that, for a matrix

A = (aij) with nonnegative entries, the random matrix B =(
εij · √aij

)
where εij are independent random variables with

expectation 0 and variance 1, satisfies Per(A) = E Det2(B).
Hence, for an efficient randomized permanent approximation,

it would suffice to show the random variable Det2(B) to

be concentrated around its expectation. In [1] the random

variables εij were taken to be quaternionic Gaussians, leading

to an efficient randomized approximation algorithm for the

permanent, which achieves an approximation factor of about

1.3n.

Using combinatorial bounds on the permanent: The permanent

of a doubly stochastic matrix was shown to be at least n!
nn ≈

e−n in [5], [6], answering a question of van der Waerden. On

the other hand, this permanent is (clearly) at most 1. Hence,

we already know the permanent of a doubly stochastic matrix

up to a factor of en. In [18] this fortuitous fact was exploited

by showing an efficient reduction of the problem for general

nonnegative matrices to that of doubly stochastic matrices.

This was done via matrix (Sinkhorn’s) scaling: for any matrix

A = (aij) with nonnegative entries and positive perma-

nent, one can efficiently find scaling factors x1, . . . , xn and

y1, . . . , yn such that the matrix B = (xi · aij · yj) is (almost)

doubly stochastic. Since Per(A) = 1∏
i xi·

∏
j yj

· Per(B) this

constitutes a reduction, and in fact achieves en deterministic

approximation for the permanent of a nonnegative matrix.

A. Our results

Our paper is a contribution to the third approach. One may

say that, in a sense, it takes up where [18] left off. The

algorithm of [18] reduces the problem to the case of doubly

stochastic matrices, on which it ”does nothing”, that is returns

1 and quits. The natural next step would be to ”actually look at

the matrix”, that is to come up with an efficiently computable

function of the entries of the matrix, which would provide a

non-trivial estimate of its permanent.

This is precisely what we do. This efficiently computable

function of the doubly stochastic matrix A = (aij) is F (A) =∏
i,j=1n (1− aij)1−aij .

We prove new lower and upper bounds for the permanent of a

doubly stochastic matrix A, showing that for any such matrix
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it holds that

F (A) ≤ Per(A) ≤ 2n · F (A) (1)

Combined with the preceding discussion, this gives our main

algorithmic result.

Theorem 1.1: There is a deterministic polynomial-time al-

gorithm to approximate the permanent of a nonnegative matrix

up to a multiplicative factor of 2n.

Let us now briefly describe the ideas leading to the bounds in

(1).

We proceed via convex relaxation. That is, given a matrix A
with nonnegative entries, we define a concave maximization

problem, whose solution approximates log(Per(A)).
Let us start with pointing out that approximating the permanent

via matrix scaling may also be achieved by solving a convex

optimization problem. In fact, what we need is to find the

product of scaling factors
∏
i xi ·

∏
j yj of A. This could be

done in two different ways:

By solving a concave maximization problem:

log

(
1∏

i xi ·
∏
j yj

)
= max
B∈Ωn

∑
1≤i,j≤i,j

bi,j log

(
ai,j
bi,j

)
(2)

Here Ωn is the set of all n× n doubly stochastic matrices.

And by solving a convex minimization problem:

log

(
1∏

i xi ·
∏
j yj

)
= inf∑

xi=0
log (ProdA (e

x1 ...exn)) (3)

Here ProdA(x1, ..., xn) is the product polynomial of A,

ProdA (x1, ..., xn) =
∏

1≤i≤n

∑
1≤j≤n

aijxj

Note that Per(A) is the mixed derivative of ProdA:

Per(A) = ∂n

∂x1...∂xn
ProdA(0, ..., 0).

The relaxation (2) is very specifically tied to the permanent.

On the other hand, (3) is much more general, in that it aims to

approximate the mixed derivative of a homogeneous polyno-

mial p(x1, ..., xn) of degree n with non-negative coefficients,

given via an evaluation oracle1. Moreover, it is the first step

in a hierarchy of sharper relaxations given by considering

γi =: inf
x1+...+xi=0

log(Qi(e
x1 , ..., exn)),

where Qi(x1, ..., xi) =
∂n−i

∂xi+1...∂xn
p(x1, ..., xi, 0, ..., 0). Con-

sidering this hierarchy for so called H-Stable, or hyperbolic
polynomials turned out to be very useful, both from mathemat-

ical and from algorithmic points of view [12], [13], [19]. Note

that, when this approach is applied to the product polynomial

ProdA, the original matrix structure is essentially lost. But by

giving up the matrix structure, we gain additional inductive

abilities, leading, in particular, to a rather simple proof of

a comprehensive joint generalization of Falikman-Egorychev

and Schrijver lower bounds. Unfortunately this ”hyperbolic

polynomials” approach does not seem to break the en-barrier

1Note that the product polynomial can be efficiently evaluated.

for the approximation of the permanent by a polynomial-time

deterministic algorithm. So, the challenge was to come up with

a better convex relaxation. Such a relaxation was suggested in

[4], and it is a generalization of (2). It is a special case of

a well-known heuristics in Machine Learning, the so called

Bethe Approximation. This heuristics is used to approximate

log partition functions of the following type (appearing, in

particular, in the analysis of Belief Propagation algorithms).

PF =: log

⎛⎝ ∑
xi∈Si

∏
i

Gi (xi) ·
∏

(i,j)∈E
Fi,j (xi, xj)

⎞⎠ (4)

Here S1, ..., SN are finite sets; Gi(xi) and Fi,j(xi, xj) are

given non-negative functions, and E is the set of edges of the

associated undirected graph Γ.
If the graph Γ is a tree then PF can be efficiently evaluated,

e.g. by dynamic programming. The Bethe Approximation

is a heuristic to handle possible cycles. It turns out that

log(Per(A)) can be represented as in (4). This was first

observed in [15]. In this paper we use a simplified version of

this heuristic proposed in [4], which amounts to approximating

the logarithm of the permanent of a nonnegative matrix A by

max
B∈Ωn

n∑
i,j=1

(1− bij) log (1− bij) +
n∑

i,j=1

bij log

(
aij
bij

)
(5)

We should mention that, according to [17], the physicists had

already applied the Bethe Approximation to the closely related

monomer-dimer problem as early as in late 1930s.
Lower bound: We prove that (5) is a lower bound on

log(Per(A)).
Theorem 1.2: Let A = (aij)

n
i,j=1 be a nonnegative matrix

and let B = (bij)
n
i,j=1 be a doubly stochastic matrix. Then

Per(A) ≥
n∏

i,j=1

(1− bij)1−bij · exp
⎧⎨⎩−

n∑
i,j=1

bij log
bij
aij

⎫⎬⎭
Let us note that this claim was first stated (but not proved) in

[29] (see also the discussion in [30]).
If A is doubly-stochastic then setting B = A in Theorem 1.2

gives the lower bound in (1).
Theorem 1.2 has an additional combinatorial application. We

show it to imply S. Friedland’s ”Asymptotic Lower Matching

Conjecture” for the monomer-dimer problem. We will go into

details in Section III.
Upper bound: We prove that 2n times (5) is an upper bound

on log(Per(A)).
Theorem 1.3: The permanent of a stochastic matrix A =

(aij) satisfies

Per(A) ≤ Cn ·
∏
ij

(1− aij)1−aij

for some C ≤ 2.
Note that this implies, in particular, that for a nonnegative

matrix A, and its doubly stochastic scaling B, we have

Per(A) ≤ 2n ·
n∏

i,j=1

(1− bij)1−bij ·exp
⎧⎨⎩−

n∑
i,j=1

bij log
bij
aij

⎫⎬⎭
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Remark 1.4:
• Let

CW (A,B) =

n∑
i,j=1

(1− bij) log (1− bij) +
n∑

i,j=1

bij log

(
aij
bij

)
The functional CW (A,B) is clearly concave in A. Less

obviously, it is concave in B ∈ Ωn [30]. So, in principle,

the concave maximization problem (5) can be solved

in polynomial deterministic time by, say, the ellipsoid

method.

We don’t use the concavity in B in this paper. The

algorithm we propose and analyze first scales the ma-

trix A to a doubly-stochastic matrix D and outputs∏n
i,j=1 (1− dij)1−dij multiplied by the product of the

scaling factors. So, when applied to a doubly-stochastic

matrix, our algorithm has linear complexity.

There are several benefits in using this suboptimal al-

gorithm. First: We can analyze it. Second: It is fast, and

local (looking only at the entries) in the doubly-stochastic

case. Third: it already improves on en-approximation.

Fourth: it might allow (conjectural) generalizations to the

hyperbolic polynomials setting, to be described in the

journal version.

We also conjecture that our algorithm, might in fact turn

out to be optimal. That is, that its worst case accuracy is

the same as that of the Bethe Approximation (5).

• Let us remark that our results can be viewed as reasonably

sharp bounds on a specific partition function in terms of

its Bethe Approximation. To the best of our knowledge,

this might be one of the first results of this type, and one

of the first applications of the Bethe Approximation to

theoretical computer science.

Discussion. It would seem that the improvement of the approx-

imation factor from one exponential to a smaller one leaves

something to be desired. This is, of course, true. On the other

hand, let us remark that any algorithm which considers only

the distribution of the entries of the matrix cannot achieve

better than 2n/2 approximation for the permanent. This was

pointed out to us by [31]. In fact, consider the following two

0, 1 matrices, both having 2 ones in each row and column.

The matrix A1 is a block-diagonal matrix, with n/2 blocks of(
1 1
1 1

)
on the diagonal (assume n is even). The matrix A2

is the adjacency matrix of a 2n-cycle, viewed as a bipartite

graph with n vertices on each side. The permanent of A1 is

clearly 2n/2, while the permanent of A2 is 2.

We conjecture that this optimal approximation factor of 2n/2

can be attained, by improving our upper bound.

Conjecture 1.5: The permanent of a doubly stochastic ma-

trix A = (aij) satisfies

Per(A) ≤ 2n/2 ·
∏
ij

(1− aij)1−aij

Note that this conjectured bound would be tight for the doubly

stochastic matrix 1
2 ·A1.

Organization: The organization of this paper is as follows: We

discuss known combinatorial bounds for the permanent and

their relation to our bounds in Section II. We prove the lower

bound in Section III, and the upper bound in Section IV and V.

II. BOUNDS FOR THE PERMANENT

A. Lower bounds

In general, the permanent of a nonnegative matrix may

vanish. Hence, we need to impose additional constraints on

the matrix to allow non-trivial lower bounds. Usually, the

matrix is assumed to be doubly stochastic, that is to have row

and column sums equal 1. In this case it is easy to see that

the permanent has to be positive. The most famous bound

for permanents is that of Egorychev [5] and Falikman [6],

resolving the question of van der Waerden, and showing the

permanent of a doubly stochastic matrix to be at least n!
nn .

This bound is tight and is attained on the matrix all of whose

entries equal 1/n.

If we impose additional constraints on the matrix, we may

expect a stronger bound. The class Λ(k, n) of integer matrices

whose row and column sums equal k (adjacency matrices of

k-regular bipartite graphs with multiple edges) was considered

by Schrijver and Valiant [25]. Normalizing by k, one obtains

a class of doubly stochastic matrices with entries of the form
m
k for integer m (and hence, with support of size at most k in

each row and column). The authors conjectured the minimal

permanent for this class to be at least ((k − 1)/k)
(k−1)n

. This

conjecture was proved in [26]2. A more general bound from

[26] will be of special interest to us: Let B = (bij) be a doubly

stochastic matrix, and let A = (bij · (1− bij)). Then

Per(A) ≥
n∏

i,j=1

(1− bij) (6)

We observe, for future reference, that the matrix B is replaced

by a new matrix A, obtained by applying a concave function

φ(t) = t(1 − t) entry-wise to B. For this new matrix, an

explicit, efficiently computable, lower bound on the permanent

is given.

All these bounds are very difficult technical results, some

of them using advanced mathematical tools, such as the

Alexandrov-Fenchel inequalities. Let us note that more general

bounds (with easier proofs), implying all the results above,

were given in [12], using the machinery of hyperbolic polyno-

mials. The point we would like to make (for future comparison

with the situation with upper bounds) is that the lower bounds

for the permanent are hard to prove, but they are essentially

optimal.

We now consider a more general notion than the permanent.

For an n × n matrix A, and 1 ≤ m ≤ n, let Perm(A)
be the sum of permanents of all m × m submatrices of

2Let us remark that the assumption on the rationality of the entries was
removed in [12], making only the structure of the support matter.
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A. Note that if A is a 0, 1 matrix, the permanent counts

the perfect matchings of the corresponding bipartite graph,

while Perm(A) counts all the matchings with m edges.

Friedland [9] stated a conjectured lower bound on Perm for

the class Λ(k, n) of integer matrices3. This conjecture has

significance in statistical physics and is a natural generalization

of the Schrijver-Valiant conjecture. Partial results towards this

conjecture were obtained in [10].

Our results:
We restate our lower bound Theorem 1.2 here for the conve-

nience of the reader:

Let A = (aij)
n
i,j=1 be a nonnegative matrix and let B =

(bij)
n
i,j=1 be a doubly stochastic matrix. Then

Per(A) ≥
n∏

i,j=1

(1− bij)1−bij · exp
⎧⎨⎩−

n∑
i,j=1

bij log
bij
aij

⎫⎬⎭
We note that this lower bound is the first lower bound on

the permanent which actually ”looks at the matrix”, that is

depends explicitly on the entries of A, rather than on its

support pattern.

Note that the bound (6) follows, by taking A =
(bij · (1− bij)). Hence Theorem 1.2 is a generalization of (6).

On the other hand, let us say that we view it as a corollary of

(6), since it is proved by analysis of the first order optimality

conditions on the RHS of the inequality above, viewed as a

function on doubly stochastic matrices, and the key part of the

analysis is applying (6).

The conjecture of Friedland. Let α(m,n, k) =
minA∈Λ(k,n) Perm(A). Think about m growing linearly

in n and k being fixed4. Then α(m,n, k) is exponential in n,

and we are interested in the exponent.

To be more precise, fix p ∈ [0, 1] (this is the so called limit
dimer density). Let m(n) ≤ n be an integer sequence with

limn→∞
m(n)
n = p. Finally, let5

β(p, k) = lim
n→∞

1

n
log(α(m(n), n, k))

The challenge is to find β(p, k). S. Friedland had conjectured

that, similarly to [26], one can replace the minimum in

the definition of α(m,n, k) by an (explicitly computable)

average over a natural distribution μ = μk,n on Λ(k, n) (see

Section III).

We show this conjecture to hold, deducing it from Theo-

rem 1.2.

Theorem 2.1:

β(p, k) = lim
n→∞

1

n
log

(
Eμ(Perm(n)(A))

)
Remark 2.2: Friedland’s conjecture was proved, using the

hyperbolic polynomials, in [10] for limit dimer densities of

the form p = k
k+s , s ∈ N.

3This lower bound is complicated, we will state it explicitly below.
4The bounds below hold for any k, though.
5It follows from Theorem 2.1 that this definition is independent of the

choice of the sequence m(n) and that the limit exists.

Remark 2.3: A preliminary report on the lower bounds from

this paper and some applications can be found in [11].

B. Upper bounds

The notable upper bound for the permanents is due to

Bregman [2], proving a conjecture of Minc. This is a bound

for permanents of 0, 1 matrices. For a 0, 1 matrix A with ri
ones in the ith row,

Per(A) ≤
n∏
i=1

(ri!)
1/ri (7)

To the best of our knowledge, there is no satisfying extension

of this bound to general nonnegative matrices. We will now

give a different view of (7), suggesting a natural way to extend

it. Let A = (aij) be a stochastic matrix, whose values in the

ith row are either 0 or 1/ri. Let B = (bij) be a matrix with

bij = 0 if aij = 0 and bij = (1/ri!)
1/ri if aij = 1/ri. Then:

Per(B) ≤ 1.

There is a natural construction of a function on the interval

[0, 1] taking 1/r to (1/r!)
1/r

for all integer r. This is the

function φ0(x) = Γ
(
1+x
x

)−x
.

Conjecture 2.4: ([24]) Let A = (aij) be a stochastic matrix,

and let B = (φ0 (aij)). Then Per(B) ≤ 1.

Unfortunately, we do not know how to prove this conjecture.

There is, however, a way to view it as a special (difficult)

case in a general family of upper bounds for the permanent.

The function φ0(x) = Γ
(
1+x
x

)−x
is a concave [27] increasing

function taking [0, 1] onto [0, 1]. We can ask for which concave

functions φ of this form, Conjecture 2.4 holds. Note the

similarity of this point of view with that of the bound (6).

In both cases we apply a concave function entry-wise to the

entries of a stochastic matrix and ask for an explicit efficiently

computable upper (or lower) bound for the permanent of the

obtained matrix.

Let φ be concave increasing function taking [0, 1] onto [0, 1].
The function ψ = φ−1 is convex increasing taking [0, 1] onto

[0, 1]. It defines an Orlicz norm ([32]) ‖·‖ψ on R
n as follows:

for v = (v1, . . . , vn) ∈ R
n

‖v‖ψ = s, where s is such that

n∑
i=1

φ

( |vi|
s

)
= 1

Note that this is a generalization of the more familiar lp norms.

For ψ(x) = xp, ‖ · ‖ψ = ‖ · ‖p.

If v is a stochastic vector, the vector w = (φ (v1) , . . . , φ (vn))
has ‖w‖ψ = 1. Thus, the question we are asking is: For which

Orlicz norms ‖ · ‖ψ , a matrix B whose rows are unit vectors

in this norm has permanent at most 1. Using homogeneity

of the norm and multilinearity of the permanent, we obtain

an appealing form of the general family of upper bounds

to consider: We want any nonnegative matrix B with rows

b1, . . . , bn satisfy

Per(B) ≤
n∏
i=1

‖bi‖ψ (8)
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Our results: We prove (8) for a family of functions ψ.

Theorem 1.3 follows as a corollary.

We note, that in strong contrast to the lower bounds case, our

bounds are far from being optimal, and, in particular, are far

from proving Conjecture 1.5 or Conjecture 2.4.

III. PROOFS OF THE LOWER BOUNDS

A. Proof of Theorem 1.2

Notation. We will denote by Ωn the class of doubly stochas-

tic n × n matrices. For a pair P = (pij) , Q = (qij) of non-

negative matrices, we let

CW (P,Q) =

n∑
i,j=1

(1− qij) log (1− qij)−
n∑

i,j=1

qij log

(
qij
pij

)
Let P be a non-negative n×n matrix with positive permanent

(which we may assume, without loss of generality). We will

prove the theorem by showing

log(Per(P )) ≥ maxQ∈ΩnCW (P,Q)

Note that, by continuity, we may assume all the entries in

P to be strictly positive. Then the functional CW (P,Q) is

bounded from above and continuous as function of Q on Ωn.

Therefore, the maximum is attained. Let V ∈ Ωn be one of

points at which it is attained.

We first isolate ones in the doubly-stochastic matrix

V : up to rearrangement of the rows and columns,

V =

(
I 0
0 T

)
, where the doubly -stochastic matrix

T does not have ones; and block-partition accordingly the

matrix P =

(
P (1,1) P (1,2)

P (2,1) P (2,2)

)
.

Note that CW (P, V ) = CW
(
P (2,2), T

)
+

∑
i log

(
P

(1,1)
i,i

)
.

Since

Per(P ) ≥ Per
(
P (1,1)

)
· Per

(
P (2,2)

)
≥

∏
i

P
(1,1)
i,i · Per

(
P (2,2)

)
we only need to prove log

(
Per(P (2,2))

) ≥ CW
(
P (2,2), T

)
.

Let d be the dimension of matrices P (2,2), T . We express

the local extremality conditions for T not on the full Ωd but

rather in the interior of the compact convex subset of doubly-

stochastic d×d matrices supported on the support of T = (tkl).
We first compute the partial derivatives (writing them out for

general d-dimensional P,Q). For 1 ≤ i, j ≤ d:

∂

∂qij
CW (P,Q) = −2− log (1− qij)− log (qij) + log (pij)

By the first order optimality conditions for T , we get that there

exists real numbers {αk}, {βl} such that for (k, l) ∈ Supp(T )
holds

−2− log (1− tkl)− log (tkl) + log
(
P

(2,2)
kl

)
= αk + βl

Which gives, for some positive numbers {ak}, {bl} the fol-

lowing scaling:

P
(2,2)
kl = akbl · tkl (1− tkl) ; (k, l) ∈ Supp(T )

Now, we can conclude the proof.

1) It follows from the definition of the support that (apply-

ing the inequality below entry-wise)

P (2,2) ≥ Diag (ak) · T̃ ·Diag(bl);
where T̃kl = tkl (1− tkl).

2) It follows from doubly-stochasticity of T that

CW (P (2,2), T ) =
∑

log (ak) +
∑

log (bl)+∑
(k,l)∈Supp(T )

log (1− tkl) (9)

Finally it follows from (9) and (6) that

log
(
Per

(
Diag (ak) · T̃ ·Diag (bl)

))
≥ CW

(
P (2,2), T

)
and therefore

log
(
Per

(
P (2,2)

))
≥

log
(
Per

(
Diag (ak) · T̃ ·Diag (bl)

))
≥ CW

(
P (2,2), T

)

B. Proof of Theorem 2.1

Let us first recall the following well known identity (see,

for instance, [8]), expressing Perm(A) as a single permanent:

Perm(A) = ((n−m)!)−2 · Per(L),

L =

(
A Jn,n−m

JTn,n−m 0

)
where Jn,n−m is n× (n−m) matrix of all ones. If the matrix

A ∈ c·Ωn (i.e. proportional to a doubly-stochastic matrix) then

it is easy to scale the matrix L. In particular, if A ∈ Λ(k, n)
then

Perm(A) =
Per(K)

amb2(n−m)((n−m)!)2 (10)

where K ∈ Ω2n−m is defined as follows

K =

(
a ·A b · Jn,n−m

(b · Jn,n−m)T 0

)
with p = m

n , a = p
k =

m
kn , b = 1

n .

We note that the identity (10) follows from the diagonal

scaling:

K =

(√
aIn ⊕ b√

a
In−m

)
· L ·

(√
aIn ⊕ b√

a
In−m

)
To proceed with the proof, we will need the following simple

claim, following from the convexity of (1− x) log(1− x).
Proposition 3.1: Let p1, ..., pk be non-negative numbers,

with 0 ≤ pi ≤ 1 and
∑k
i=1 pi = s. Then, setting b = s

k ,

k∏
i=1

(1− pi)1−pi ≥ (1− b)k(1−b)

9494



Our main claim is:

Theorem 3.2: Let A ∈ Λ(k, n), Let 1 ≤ m ≤ n and let

p = m
n . Then the following inequality holds6:

Perm(A) ≥
(k−pk )n(k−p) · (1− n−1)(1−n

−1)2n2(1−p)

( pk )
np · n−2n(1−p) · ((n(1− p))!)2 (11)

Proof: Apply the lower bound in (1) to the doubly-stochastic

matrix K and use (10). If A is boolean then this already gives

the inequality we need. In the non-boolean case an immediate

application of Proposition 3.1 finishes the proof.

Proof of Theorem 2.1.

First, we define the distribution μ on Λ(k, n). Consider

the following construction of a matrix A ∈ Λ(k, n). For

a permutation π ∈ Skn, let M = Mπ be the standard

representation of π as a kn × kn matrix of zeroes and ones.

Now, view M in the natural way as a k × k block matrix

M = (Mij), where each block Mij is an n×n matrix. Finally,

set A = A(π) =
∑k
i,j=1Mij . The distribution μ is the one

induced on Λ(k, n) by the uniform distribution on Skn.

We point out that the expectation Eμ (Perm(A)) is known

(see for instance [9], [10]). In particular, if limn→∞
m(n)
n =

p ∈ [0, 1] then the following equality holds:

lim
n→∞

log
(
Eμ

(
Perm(n)(A)

))
n

=

p log

(
k

p

)
− 2(1− p) log(1− p)+ (k− p) log

(
1− p

k

)
(12)

The claim of the theorem follows directly from (11), (12), and

Stirling’s formula.

IV. PROOFS OF THE UPPER BOUNDS

Recall that we are interested in upper bounds of the form

given in (8). We prove the following general claim.

Theorem 4.1: Let ψ be a convex increasing thrice differ-

entiable function taking [0, 1] onto [0, 1]. Assume ψ has the

following properties

1) The function x · ψ′(x)ψ(x) is increasing.

2) The function x · ψ′′(x)ψ′(x) is increasing.

3)

ψ
(
e−r/e

)
+ ψ

(
r · e−r/e

)
≥ 1 for 0 ≤ r ≤ 1

Then, for any nonnegative matrix B with rows b1, . . . , bn it

holds that

Per(B) ≤
n∏
i=1

‖bi‖ψ

For this theorem to be useful, we need to provide examples of

functions it applies to. We now give an example of a function

ψ satisfying the conditions of the theorem. Let a ≈ 1.54 be

the unique root of the equation 1−ln a
a = 1

e .

Lemma 4.2: The function

ψa(x) = 1− (1− x) · ax
6Assuming, for typographic simplicity, all the relevant values on LHS to

be integer.

satisfies the conditions of Theorem 4.1.

We now show how to deduce Theorem 1.3 from Theorem 4.1,

using the function ψa. We start with a technical lemma.

Lemma 4.3:
• For any stochastic vector x = (x1, . . . , xn), the maximum

of the entries of the vector
(

xj∏n
k=1(1−xk)1−xk

)n
j=1

is at

most e1/e ≈ 1.44.

• Let ψa be the function in Lemma 4.2. Then for any

stochastic vector x = (x1, . . . , xn) holds7

n∑
j=1

ψa

(
xj

C ·∏n
k=1 (1− xk)1−xk

)
≤ 1

for some e1/e ≤ C ≤ 2.

Given the lemma, Theorem 1.3 follows immediately: In fact,

by the definition of ‖ · ‖ψ , we have for any stochastic vector

x,

‖x‖ψa ≤ C ·
n∏
k=1

(1− xk)1−xk

Hence, by Theorem 4.1, for any stochastic matrix B, whose

rows are stochastic vectors b1, . . . , bn,

Per(B) ≤
n∏
i=1

‖bi‖ψa ≤ Cn ·
n∏

i,j=1

(1− bij)1−bij

giving Theorem 1.3.

The full proofs of the claims in this section are given in the

next section.

V. PROOFS OF THE TECHNICAL CLAIMS FOR THE UPPER

BOUND

A. Proof of Theorem 4.1

A word on notation. We denote by ‖x‖ψ the norm of a

vector x in R
k, without stating k explicitly. Thus, we may and

will compare ‖ · ‖ψ-norms of vectors of different dimensions.

We denote by Aij the submatrix of a matrix A obtained by

removing the ith row and the jth column of A.

The proof is by induction on the dimension n. For n = 1 the

claim holds since for a scalar a ∈ R,

Per(a) = a = ‖a‖ψ
The second equality is due to the fact that ψ(1) = 1.

Assume the theorem holds for n− 1. The induction step from

n− 1 to n is incorporated in the following lemma.

Lemma 5.1: Let φ∗ : R+ → R+ be a scalar function

defined by

φ∗(r) = min
y∈Rn−1

+ : ‖y‖ψ=1
‖(y, r)‖ψ

Assume φ∗ satisfies the following functional inequality: For

any r1, . . . , rn ∈ R+

n∏
k=1

φ∗ (rk) ≥
n∑
k=1

rk (13)

7Note that by the first claim of the lemma, all the arguments of ψ in LHS
are in the allowed range [0, 1].

9595



Then, if the theorem holds for n− 1, it holds also for n.

Proof: of Lemma 5.1
Write the rows of the n× n matrix A as ak = (xk, bk), with

xk ∈ R
n−1 and bk = akn ∈ R.

Clearly, if any of ak is 0 the claim of the theorem holds. The

other boundary case we need to treat separately is the case in

which one of the vectors xk is 0. Without loss of generality,

assume x1 = 0. Expanding the permanent with respect to the

first row, and using the induction hypothesis for A1n, we have

Per(A) = a1n · Per (A1n) ≤ a1n ·
n∏
k=2

‖xk‖ψ ≤
n∏
k=1

‖ak‖ψ

establishing the theorem in this case.

Assume none of xk is 0. Expanding the permanent of A with

respect to the last column, and using the induction hypothesis,

we have

Per(A) =
n∑
i=1

bi · Per (Ain) ≤
n∑
i=1

bi ·
∏
j �=i
‖xj‖ψ =

n∏
j=1

‖xj‖ψ ·
n∑
i=1

bi
‖xi‖ψ

Hence, to prove the theorem for A, we need to show

n∑
i=1

bi
‖xi‖ψ ≤

n∏
k=1

‖ (xk, bk) ‖ψ
‖xk‖ψ

Let rk = bk/‖xk‖ψ , yk = xk/‖xk‖ψ . Then the inequality

translates to
n∏
k=1

‖ (yk, rk) ‖ψ ≥
n∑
i=1

ri

which follows from (13), since ‖yk‖ψ = 1, and hence

‖ (yk, rk) ‖ψ ≥ φ∗ (rk).
It remains to prove (13).

First, we observe that the function φ∗ has an explicit form.

Lemma 5.2:
φ∗(r) = ‖(1, r)‖ψ

Proof: (of Lemma 5.2)

We may assume r > 0, otherwise the claim of the lemma

holds trivially.

Consider the optimization problem of minimizing ‖(y, r)‖ψ
for y in the unit sphere of the norm in R

n−1. Note that the

minimum is attained, since we are looking for the minimum

of a continuous function in a compact set.

Let y∗ be a point of minimum. We will show y∗ to be a unit

vector, implying the claim of the lemma.

First step: We show y∗ to be constant on its support.

Since ‖(y∗, r)‖ψ = φ∗(r), we have∣∣∣∣∣∣ ( y∗
φ∗(r)

,
r

φ∗(r)

) ∣∣∣∣∣∣
ψ
= 1 ≤

∣∣∣∣∣∣ ( y

φ∗(r)
,

r

φ∗(r)

) ∣∣∣∣∣∣
ψ

for any y of norm 1. Therefore z∗ = y∗
φ∗(r)

is a

point of minimum of
∑n−1
i=1 ψ (zi) in the domain D =

{z : ‖z‖ψ = 1/φ∗(r)}.

Consider this new optimization problem. Set a = φ∗(r) for

typographic convenience. Note a > 1, since, by assumption,

r > 0. Then

D =

{
z ∈ Rn−1

+ :
n−1∑
i=1

ψ (azi) = 1

}
We know that z∗ is a point of minimum of the target function∑n−1
i=1 ψ (zi) on D.

Let S = S (z∗) be the support of z∗. The first order optimality

conditions for z∗ imply that there exists a constant λ ∈ R such

that for any i ∈ S,

ψ′ (zi)
ψ′ (azi)

= λ · a (14)

We would like to deduce from this that z∗ (and hence also y∗)
is constant on its support S.

Let η(x) = lnψ′ (ex). We claim that η is strictly convex on

(−∞, 0]. In fact, η′(x) = exψ′′(ex)
ψ′(ex) , which is strictly increasing

in x, by the second assumption of the theorem.

Note that ψ′(x) = exp {η(lnx)}. Therefore (14) is equivalent

to

η (ln (zi))− η (ln (zi) + ln(a)) = ln (λ · a)
And this can’t hold for different values of zi if η is strictly

convex. This shows z∗ is constant on S, completing the first

step.

Second step: |S| = 1.

Let |S| = k, for some 1 ≤ k ≤ n− 1.

Since
∑
i∈S ψ (a · (z∗)i) = 1 and z∗ is constant on S, we

have for all i ∈ S,

(z∗)i = (1/a) · ψ−1 (1/k). Therefore

n−1∑
i=1

ψ ((z∗)i) = k · ψ
(
ψ−1 (1/k)

a

)
(15)

Consider the function f(x) = (1/x) · ψ
(
ψ−1(x)

a

)
. We will

show this function to decrease on the interval [0, 1]. This would

imply the minimum over k of LHS of (15) is attained at k = 1,

completing this step.

Taking the first derivative, and denoting α = ψ−1, we need to

verify for x ∈ (0, 1)

0 > f ′(x) = − 1

x2
· ψ

(
α (x)

a

)
+
1

x
· ψ′

(
α (x)

a

)
· α

′(x)
a

That is,

ψ

(
α (x)

a

)
>
x

a
· ψ′

(
α (x)

a

)
· α′(x)

ψ

(
α (x)

a

)
· ψ′(α(x)) > x

a
· ψ′

(
α (x)

a

)
Since x = ψ(α(x)), we want to show

ψ′(α(x))
ψ(α(x))

>
1

a
·
ψ′

(
α(x)
a

)
ψ
(
α(x)
a

) ⇐⇒

9696



α(x) · ψ
′(α(x))
ψ(α(x))

>
α(x)

a
·
ψ′

(
α(x)
a

)
ψ
(
α(x)
a

)
That is, it suffices to show that y · ψ′(y)ψ(y) increases in y, and

this is true by the first assumption of the theorem.

This completes the second step and the proof of Lemma 5.2.

As the next step towards the proof of (13), we give a sufficient

condition for a function g : R+ → R+ to satisfy the functional

inequality stated in (13) for φ∗.
Lemma 5.3: If

g(x) ≥
{
ex/e for 0 ≤ x ≤ e
x otherwise

then
∏n
k=1 g (rk) ≥

∑n
k=1 rk.

Proof: Let 0 ≤ r1 ≤ r2 ≤ . . . ≤ rn be given, and assume

rk < e, rk+1 ≥ e.
First assume k < n. Write y =

∑k
i=1 ri, z =

∑n
j=k+1 rj .

Clearly, z ≥ e. Note that, by assumption,

n∏
j=k+1

g (rj) ≥
n∏

j=k+1

rj ≥
n∑

j=k+1

rj = z

We have

n∏
i=1

g (ri) =
k∏
i=1

g (ri)·
n∏

j=k+1

g (rj) ≥ e1/e·
∑k
i=1 ri ·z = ey/e ·z

It remains to show ey/e ·z ≥ y+z for z ≥ e. Since ex ≥ x+1,

we have

ey/e ≥ y/e+ 1 ≥ y + z

z

and we are done in this case.

The other case to consider is k = n. Write y =
∑k
i=1 ri.

In this case we need to show ey/e ≥ y for all y ≥ 0. This

again follows from the inequality ex ≥ x + 1, substituting

x = y/e− 1.

To prove (13) and complete the proof of the theorem, it

remains to verify φ∗(r) = ‖(1, r)‖ψ satisfies the assumptions

of Lemma 5.3. First, clearly,

φ∗(r) ≥ ‖r‖ψ = r

Next, φ∗(r) ≥ er/e iff

ψ
(
e−r/e

)
+ ψ

(
r · e−r/e

)
≥ 1 (16)

So we need to verify this for 0 ≤ r ≤ e.
We now claim that we may reduce the problem to a subinter-

val.

Lemma 5.4: Let ψ be an increasing differentiable convex

function, taking [0, 1] to itself. If ψ
(
e−r/e

)
+ψ

(
r · e−r/e) ≥ 1

on [0, 1], then this also holds for [0, e].
Observe that the third assumption of the theorem is that (16)

holds for r ∈ [0, 1]. Thus, proving the lemma will complete

the proof of the theorem.

Proof: Set

h(r) = ψ
(
e−r/e

)
+ ψ

(
r · e−r/e

)

Then h′(r) is(
e−r/e − 1

e
re−r/e

)
· ψ′

(
re−r/e

)
− 1

e
e−r/e · ψ′

(
e−r/e

)
First, we claim that h′ is nonnegative on [1, e− 1]. In fact, on

this interval re−r/e ≥ e−r/e. Consequently, by convexity of

ψ, ψ′
(
re−r/e

) ≥ ψ′
(
e−r/e

)
. Hence

h′(r) ≥ ψ′
(
e−r/e

)
· e−r/e ·

(
1− r + 1

e

)
≥ 0

Next, we claim that h(e− r) ≥ h(r) for 0 ≤ r ≤ 1. We need

to show that

ψ
(
(e− r) · e−(e−r)/e

)
+ ψ

(
e−(e−r)/e

)
≥

ψ
(
e−r/e

)
+ ψ

(
r · e−r/e

)
Let a, b be the arguments on LHS, and c, d on RHS. Note

a ≥ b and c ≥ d. Since ψ is convex and increasing, it will

suffice to show a + b ≥ c + d and a ≥ c (this would imply

(a, b) majorizes (c, d)).

• We argue a+ b ≥ c+ d. Let f(x) = (x+ 1)e−x/e, and

let g(x) = f(e − x). We want to show g(x) ≥ f(x) for

0 ≤ x ≤ 1. Note that f is increasing on [0, e − 1] and

decreasing on [e − 1, e], so both f and g are increasing

on [0, 1]. First, we argue f ′ ≥ g′. In fact, we have

f ′(x) =
1

e
· ((e− 1)− x) · e−x/e ≥

g′(x) =
1

e
· (1− x) · e−(e−x)/e

So, it would suffice to check g(1) ≥ f(1) which, after

simplification, is the same as e1/e ≥ 21/2. And this is

true.

• We argue a ≥ c, that is (e − r) · e−(e−r)/e ≥ e−r/e

on [0, 1]. Let g(x) be the first function, and f(x) the

second. Note that f(0) = g(0) = 1. Hence, it suffices

to prove f ′ ≤ g′. We have f ′(x) = −1/e · e−x/e and

g′(x) = −e−(e−x)/e + e−x
e · e−(e−x)/e. Therefore

g′(x)− f ′(x) =
1

e
·
(
(e− x) · e−(e−x)/e + e−x/e − e · e−(e−x)/e

)
=

1

e
·
(
e−x/e − x · e−(e−x)/e

)
≥ 0

B. Proof of Lemma 4.2

We will prove the lemma in greater generality, that is for

all functions ψ = ψa, with 1
e ≤ 1−ln a

a < 1.

First, we compute the first three derivatives of ψ.

ψ′(x) = (1− (1− x) · ln a) · ax

ψ′′(x) = ln a · (2− (1− x) · ln a) · ax

ψ′′′(x) = ln2 a · (3− (1− x) · ln a) · ax
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We now prove the required properties of ψ.

1) For 1 < a < e, the function ψ is increasing strictly

convex taking [0, 1] to [0, 1]. In fact, by observation,

ψ′ > 0 for 0 ≤ x ≤ 1 and ψ′′ > 0 for 0 ≤ x ≤ 1.

2) The function x · ψ′(x)ψ(x) is strictly increasing for 1 < a <√
e.8

It suffices to show for 0 < x < 1

(ψ′ + xψ′′) · ψ > x (ψ′)2

For typographic convenience, write b = ln a. Substi-

tuting the expressions for ψ and its derivatives, and

introducing notation

P (x) = b2x2 +
(
2b− 2b2

)
x+ (1− b)2,

Q(x) = b2x2 +
(
3b− b2)x+ (1− b),

we need to verify

Q(x) · (1− (1− x) · ebx) > xP (x) · ebx

Observe that Q is strictly positive on (0, 1). Rearranging,

we need to show

e−bx > x · P (x)
Q(x)

+ (1− x) = 1− x · Q(x)− P (x)
Q(x)

Since e−bx > 1− bx on (0, 1), it suffices to show (Q−
P )/Q ≥ b, that is (1− b) ·Q ≥ P . And this is directly

verifiable, for x ∈ (0, 1) and b ∈ (0, 1/2).
3) The function x · ψ′′(x)ψ′(x) is strictly increasing for 1 < a <√

e.
This is true iff

(ψ′′(x) + xψ′′′(x)) · ψ′(x) > x · (ψ′′(x))2

Since ψ′′′ > 0, it suffices to prove

ψ′′(x)·ψ′(x) ≥ x·(ψ′′(x))2 ⇐⇒ x·ψ′′(x) ≤ ψ′(x)

Substituting the expressions for the derivatives of ψ and

simplifying, we need to verify

bx(2− (1− x)b) ≤ 1− (1− x)b
This is a quadratic inequality in x. For 0 < b < 1/2,

the interval between the roots of this quadratic is easily

seen to contain [0, 1], and we are done.
4)

ψ
(
e−r/e

)
+ ψ

(
r · e−r/e

)
≥ 1 for 0 ≤ r ≤ 1

As in the proof of Lemma 5.4, we set

h(r) = ψ
(
e−r/e

)
+ ψ

(
r · e−r/e

)
Hence h′(r) is(
e−r/e − 1

e
re−r/e

)
·ψ′

(
re−r/e

)
−1
e
e−r/e·ψ′

(
e−r/e

)
8It is easy to check that all a for which 1

e
≤ 1−ln a

a
< 1 lie in this interval.

Observe h(0) = 1. Hence, it suffices to prove h′ ≥ 0 on

[0, 1]. Equivalently, for 0 ≤ r ≤ 1,

ψ′
(
r · e−r/e)

ψ′
(
e−r/e

) ≥ 1

e− r
Set y = e−r/e. Clearly e−1/e ≤ y ≤ 1. We will show a

stronger statement

ψ′ (ry)
ψ′ (y)

≥ 1

e− r
for all y in the range. Similarly to the argument in

the first step in the proof of Lemma 5.2, ln (ψ′ (ex))
is convex in x, which implies the LHS is decreasing

in y, so it suffices to prove the inequality for y = 1.

Substituting the expression for ψ′ and again writing b
for ln a, we need to verify

(e− r) · (1− (1− r)b) ≥ eb(1−r),

for 0 ≤ r ≤ 1. At r = 0, we need to check e ≥ eb/(1−
b) = a/(1 − ln a), which is satisfied with equality, by

the assumption. Clearly, RHS decreases in r. By a direct

calculation, the derivative of LHS is positive, that is LHS

is increasing, completing the proof.

C. Proof of Lemma 4.3

For the first claim, we need a technical lemma.

Lemma 5.5: Let x = (x1, . . . , xn) be a stochastic vector.

Let y = x1. Then

n∏
k=1

(1− xk)1−xk ≥ (1− y)1−y
e1−y

Proof: We need to show
∏n
k=2 (1− xk)1−xk ≥ ey−1, that

is
∑n
k=2 (1− xk) ln (1− xk) ≥ y − 1, for nonnegative

x2, . . . , xn summing to a := 1− y.

Let x∗ be minimizer of f (x2, . . . , xn) =∑n
k=2 (1− xk) ln (1− xk) on this domain. Let S be

the support of x∗. The first order regularity conditions state

the existence of a constant λ such that

ln (1− (x∗)k) = λ

for all k ∈ S. This means that (x∗)k are constant on S.

Let s = |S|. Then f (x∗) = (s − a) ln
(
s−a
s

)
. It remains to

argue

(s− a) ln
(
s− a
s

)
≥ −a,

for all integer s ≥ 1. In fact, the function g(s) = (s −
a) ln

(
s−a
s

)
of the real variable s is non-increasing on [1,∞),

since g′(s) = ln (1− a/s) + a/s ≤ 0. And it is easy to see

that g(s) tends to −a as s→∞.

This means that

x1∏n
k=1 (1− xk)1−xk

≤ ye1−y

(1− y)1−y
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The following lemma concludes the proof of the first claim of

Lemma 4.3.

Lemma 5.6: The function f(y) = ye1−y

(1−y)1−y on [0, 1] is

upperbounded by e1/e.
Proof: The maximum ye1−y on [0, 1] is 1 and the minimum

of (1− y)1−y on [0, 1] is e−1/e.

We move to the second claim of Lemma 4.3, repeating its

claim for convenience. Let ψ be the function in Lemma 4.2.

Then for any stochastic vector x = (x1, . . . , xn) holds

n∑
j=1

ψ

(
xj

2 ·∏n
k=1 (1− xk)1−xk

)
≤ 1

The proof contains two steps, given in the following lemmas.

Lemma 5.7: Let a stochastic vector x = (x1, . . . , xn) be

given, and let y = maxi xi be its maximal coordinate. Then,

for any convex increasing function ψ taking [0, 1] to itself, and

for any constant C ≥ e1/e it holds that

n∑
j=1

ψ

(
xj

C ·∏n
k=1 (1− xk)1−xk

)
≤

1

y
· ψ

(
ye1−y

C · (1− y)1−y
)

(17)

Lemma 5.8: Let ψ be the function in Lemma 4.2. Then

1

y
· ψ

(
ye1−y

2 · (1− y)1−y
)
≤ 1

for 0 < y ≤ 1.

The proofs of the lemmas are not hard, but somewhat technical

and are omitted from this extended abstract. We refer to the

full version of the paper [14].
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