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Abstract—In their seminal work on non-malleable cryp-
tography, Dolev, Dwork and Naor, showed how to con-
struct a non-malleable commitment with logarithmically-many
”rounds”/”slots”, the idea being that any adversary may
successfully maul in some slots but would fail in at least one.
Since then new ideas have been introduced, ultimately resulting
in constant-round protocols based on any one-way function.
Yet, in spite of this remarkable progress, each of the known
constructions of non-malleable commitments leaves something
to be desired.

In this paper we propose a new technique that allows us to
construct a non-malleable protocol with only a single “slot”,
and to improve in at least one aspect over each of the previously
proposed protocols. Two direct byproducts of our new ideas are
a four round non-malleable commitment and a four round non-
malleable zero-knowledge argument, the latter matching the
round complexity of the best known zero-knowledge argument
(without the non-malleability requirement). The protocols are
based on the existence of one-way functions and admit very ef-
ficient instantiations via standard homomorphic commitments
and sigma protocols.

Our analysis relies on algebraic reasoning, and makes use
of error correcting codes in order to ensure that committers’
tags differ in many coordinates. One way of viewing our
construction is as a method for combining many atomic sub-
protocols in a way that simultaneously amplifies soundness and
non-malleability, thus requiring much weaker guarantees to
begin with, and resulting in a protocol which is much trimmer
in complexity compared to the existing ones.
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I. INTRODUCTION

The notion of non-malleability is central in cryptographic

protocol design. Its objective is to protect against a man-in-

the-middle (MIM) attacker that has the power to intercept

messages and transform them in order to harm the security

in other instantiations of the protocol. Commitment is often

used as the paragon example for non-malleable primitives

because of its ability to almost “universally” secure higher-

level protocols against MIM attacks.

Commitments allow one party, called the committer, to

probabilistically map a message m into a string, Com(m; r),
which can be then sent to another party, called the receiver.

In the statistically binding variant, the string Com(m; r)
should be binding, in that it cannot be later “opened” into a

message m′ �= m. It should also be hiding, meaning that for

any pair of messages, m,m′, the distributions Com(m; r)
and Com(m′; r′) are computationally indistinguishable.

A commitment scheme is said to be non-malleable if

for every message m, no MIM adversary, intercepting a

commitment Com(m; r) and modifying it at will, is able

to efficiently generate a commitment Com(m̃; r̃) to a re-

lated message m̃. Interest in non-malleable commitments is

motivated both by the central role that they play in securing

protocols under composition (see for example [CLOS02],

[LPV09]) and by the unfortunate reality that many widely

used commitment schemes are actually highly malleable.

Indeed, man-in-the-middle (MIM) attacks occur quite nat-

urally when multiple concurrent executions of protocols are

allowed, and can be quite devastating.

Beyond protocol composition, non-malleable commit-

ments are known to be applicable in secure multi-

party computation [KOS03], [Wee10], [Goy11], authentica-

tion [NSS06], as well as a host of other non-malleable prim-

itives (e.g., coin flipping, zero-knowledge, etc.), and even

into applications as diverse as position based cryptography

[CGMO09].

A. Prior Work

Since their conceptualization by Dolev, Dwork and

Naor [DDN91], non-malleable commitments have been

studied extensively, and with increasing success in terms

of characterizing their round-efficiency and the underlying

assumptions required. By now, we know how to construct

constant-round non-malleable commitments based on any

one-way function, and moreover the constructions are fully

black-box. While this might give the impression that non-

malleable commitments are well understood, each of the cur-

rently known constructions leaves something to be desired.

The first construction, due to DDN is perhaps the sim-

plest and most efficient, mainly because it can in principle

be instantiated with highly efficient cryptographic “sub-

protocols”. This, however, comes at the cost of round-

complexity that is logarithmic in the maximum overall

number of possible committers. Subsequent works, due to

Barak [Bar02], Pass [Pas04], and, Pass and Rosen [PR05]

are constant-round, but rely on (highly inefficient) non-black
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box techniques. Wee [Wee10] (relying on [PW10]) gives a

constant-round black-box construction under the assumption

that sub-exponentially hard one-way functions exist. This

construction employs a generic (and costly) transformation

that is designed to handle general “non-synchronizing” MIM

adversaries.

Finally, recent works by Goyal [Goy11] and Lin and

Pass [LP11] attain non-malleable commitment with con-

stant round-complexity via the minimal assumption that

polynomial-time hard to invert one-way functions exist. The

Lin-Pass protocol makes highly non-black-box use of the

underlying one-way function (though not of the adversary),

along with a concept called signature chains; resulting in

significant overhead. Most relevant to the current work is the

work of Goyal [Goy11]. Goyal’s protocol, using a later result

of Goyal, Lee, Ostrovsky and Visconti [GLOV12], can be

made fully black-box, with its only shortcomings being high-

communication complexity and the use of the Wee transfor-

mation (or alternatively a similarly costly transformation due

to Goyal [Goy11]) for handling non-synchronizing adver-

saries. To construct non-malleable commitments, our work

follows the blueprint proposed by Goyal, and introduces new

proof techniques to significantly trim down its complexity,

making various parts of the protocol of Goyal [Goy11]

unnecessary.

The current state of affairs is such that in spite of all

the remarkable advances, the DDN construction and its

analysis remain the simplest and arguably most appealing

candidate for non-malleable commitments. This is both

due to its black-boxness and because it does not require

transformations for handling a non-synchronizing MIM (in

fact, the protocol is purposefully designed to introduce

asynchronicity in message scheduling, which can be then

exploited in the analysis).

B. Our Results

In this work we introduce a new algebraic technique for

obtaining non-malleability, resulting in a simple and elegant

non-malleable commitment scheme. The scheme’s analysis

contains many fundamentally new ideas allowing us to

overcome substantial obstacles without sacrificing efficiency.

The protocol is constructed using any statistically binding

commitment scheme as a building block, and hence requires

the minimal assumption that one way functions exist.

Theorem 1. Assume the existence of a one-way functions.
Then there is a 4-round non-malleable commitment scheme.

Our protocol is appealing as in addition to requiring

only the minimal assumption that one-way functions exist,

it is much simpler and more efficient than all previous

schemes. A direct consequence of our protocol is a 4-

round non-malleable zero-knowledge argument based only

on a OWF, demonstrating that for zero-knowledge, non-

malleability does not necessarily come at the cost of extra

rounds of interaction or complexity assumptions.

Theorem 2. Suppose the existence of injective one-way
functions. Then there is a 4-round black-box non-malleable
zero-knowledge argument for every language in NP .

Beyond the above virtues, we believe that our new

techniques are actually the most significant contributions

of this work. In addition to our use of algebra, we make

novel combinatorial use of error correcting codes in order

to ensure that different committers’ tags differ in many

coordinates. Whereas prior work relied on “worst-case”

analysis of differences in committers’ tags, ours follows

from an “average-case” claim.

One way of viewing our construction is as a method

for combining n atomic sub-protocols in a way that si-

multaneously amplifies their soundness and non-malleability

properties, thus requiring much weaker soundness and non-

malleability to begin with. We hope that this paradigm

will become the norm for future work on in the area as,

despite requiring more careful and strenuous analysis, it

leads to pleasantly lightweight protocols. For example, this

technique alone allows for an immediate linear reduction

in communication complexity compared with its nearest

relative, Goyal’s protocol.

Another payoff of the algebraic techniques we employ

is that our protocol only has one “slot”. Nearly all of the

non-malleable commitment schemes in the literature use

multiple slots of interaction as a way to set up imbalances

between the two different protocol instantiations that the

MIM is involved in. The well known “two slot trick”

of [Pas04], [PR05], [Goy11], for example, is a way to turn

an arbitrary asymmetry between the instantiations into two:

one which is heavy on the right and one on the left. The

inability of the MIM to align the imbalances is crucial to the

proof of non-malleability. Running the two slots in parallel

introduces several technical problems, most notably “if the

two imbalances are side by side, won’t they just cancel each

other out?” Our analysis uses a computational version of

the “linear independence of polynomial evaluation” mantra

in order to argue that the MIM cannot combine the two

imbalances and must deal with each one separately.

We stress that the use of algebra and error correcting

codes does not yield such reward for free: the analysis

required becomes substantially more difficult. In the next

section we describe and briefly discuss our new protocol

and extractor. We then outline our techniques, keeping it

informal but pointing out several of the challenges faced

and new ideas required to overcome them.
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C. The New Protocol

Suppose that committer C wishes to commit to message

m, and let t1, . . . , tn ∈ Z be a sequence of tags that uniquely

correspond to C’s identity (see Section II-A for a discussion

of the tags). Let Com be a statistically binding commitment

scheme, and suppose that m ∈ Fq where q > maxi 2
ti . The

protocol proceeds as follows:

1) C chooses random r = (r1, . . . , rn) ∈ F
n
q and sends

Com(m) and {Com(ri)}ni=1 to R;

2) R a query vector α = (α1, . . . , αn), αi
R← [

2ti
] ⊂ Fq;

3) C sends response a = (a1, . . . , an), ai = riαi +m;

4) C proves in ZK that the values a (from step 3) are

consistent with m and r (from step 1).

The statistical binding property of the protocol follows

directly from the binding of Com. The hiding property fol-

lows from the hiding of Com, the zero-knowledge property

of the protocol used in step 4, and from the fact that for

every i the receiver R observes only a single pair of the

form (αi, ai), where ai = riαi +m.

Note the role of C’s tags in the protocol: ti determines

the size of the i−th coordinate’s challenge space. Histor-

ically, non-malleable commitment schemes have used the

tags as a way for the committer to encode its identity into

the protocol as a mechanism to prevent M (whose tag is

different from C’s tag) from mauling. In our protocol the

tags play the same role, albeit rather passively. For example,

though the size of the i−th challenge space depends on ti,
the size of the total challenge space depends only on the

sum
∑n

i=1 ti of the tags. In particular, our scheme leaves

open the possibility that the left and right challenge spaces

might have the same size (in fact this will be ensured by our

choice of tags). This raises a red flag, as previous works go

to great lengths to set up imbalances between the left and

right challenge spaces in order to force M to “give more

information than it gets”. Nevertheless, we are able to prove

that any mauling attack will fail.

At a very high level, our protocol can be seen as

an algebraic abstraction of Goyal’s protocol. However, the

fundamental difference we should emphasize from [Goy11]

is that he crucially relies on the challenge space in the left

interaction being much smaller than the challenge space in

the right. For us, the challenge spaces in the two interactions

are exactly the same size and so the techniques of [Goy11]

do not apply to our setting−at least at first. Our protocol

does have small imbalances between the challenge spaces of

individual coordinates, which is what we will eventually use

to prove non-malleability. However, proving that the coordi-

nates are sufficiently independent so that these imbalances

accrue to something usable is completely new to this work.

D. Proving Non-Malleability

Consider a MIM adversary M that is playing the role of

the receiver in a protocol using tags t1, . . . , tn while playing

the role of the committer in a protocol using tags t̃1, . . . , t̃n.

We refer to the former as the “left” interaction and to the

latter as the “right” interaction. We let m and m̃ denote

the messages committed to in the left and right interactions

respectively. One nice feature of our protocol is that it is

automatically secure against a non-synchronizing adversary,

simply because there are so few rounds, there is no way

for the MIM to benefit by changing the message order:

any scheduling but the synchronous one can be dealt with

trivially. So the only scheduling our proof actually needs to

handle is a synchronizing one.

Our proof of non-malleability involves demonstrating

the existence of an extractor, E, who is able to rewind

M and extract m̃ without needing to rewind C in the

left instantiation. Our extractor is modeled after Goyal’s

extractor which: (1) rewinds M to where α̃ was sent and

asks a new query β̃ instead, and (2) responds to M’s left

query randomly (it cannot do better without rewinding C as

it does not know m), hoping that M answers correctly on

the right.

In Goyal’s protocol there is no way for E to know

whether M answered correctly or not, and so it must have

a verification message after the query response phase so E
can compare M’s answer with the main thread to verify

correctness. We sidestep this necessity in the following way.

We rewind to the beginning of step 2 twice and ask two

new query vectors β̃ and γ̃, we answer randomly on the

left obtaining
{
(α̃, ã), (β̃, b̃), (γ̃, c̃)

}
, where (α̃, ã) is from

the main thread. Comparing both (β̃i, bi) and (γ̃i, ci) with

(α̃i, ai) will result in candidate values m̃i and m̃′i, but with

no verification message it is not clear how E should verify

which one (if either) is correct. We accomplish this with

the following “collinearity test”. If m̃i = m̃′i then E checks

whether the points
{
(α̃i, ãi), (β̃i, b̃i), (γ̃i, c̃i)

}
are collinear.

If so, E deems that m̃i was the correct value. This requires

proving that M cannot answer “incorrectly but collinearly”.

Tags in Error Corrected Form.: Just as in many of the

existing NMC schemes, our protocol consists of n “atomic

subprotocols”, one for each tag. Previous schemes use the

so called “DDN trick” [DDN91] in order to turn C’s k−bit

identity into a list of n (= k) tags t1, . . . , tn, satisfying the

properties: (1) each ti is of length log n+1; and (2) if {ti}i
and {t̃j}j are the tags resulting from two distinct identities

then there exists some i such that ti is completely distinct

from {t̃j}j , meaning that ti �= t̃j for all j.

Previous schemes’ security proofs require the extractor to

be able to use any completely distinct left subprotocol (i.e.,

one whose tag is completely distinct from {t̃j}j) to extract
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M’s commitment m̃ with high probability. This ensures that

extraction is possible even in the worst case when there is

a single such subprotocol. It also introduces a good deal of

redundancy into the protocol.

While one would generally expect most pairs of distinct

identities to result in pairs of tags such that property (2)

holds for many i, all the DDN trick can guarantee in the

worst case is that it holds for a single i (since M is allowed

to choose his identity adversarily, this worst case situation

might very well be realized). If however, one first applies

an error correcting code to C’s identity obtaining, say, a

codeword in F
n for suitably chosen finite field F with

|F| = poly(n), then applying the DDN trick to this codeword

would yield tags such that (1) ti is of length O(log n);
and (2) ti is completely distinct from {t̃j}j for a constant

fraction of the i ∈ {1, . . . , n}.
Our “completely distinct on average” property requires

only that extraction is possible from a completely distinct left

subprotocol with constant probability, since there now are

guaranteed to be many extraction opportunities. This allows

us to remove much of the artificial redundancy resulting in

an incredibly trim protocol.
Non-malleability against a copying M: To get a sense

of why we might expect our scheme to be non-malleable,

let us examine the situation against an M who attempts

to maul C’s commitment by simply copying its messages

from the left interaction to the right. Let m be the message

committed to on the left and let {ti}ni=1 and {t̃i}ni=1 be the

corresponding tags.

After the first message, M will have copied C’s commit-

ments over to the right interaction, successfully committing

to the coefficients of the linear polynomials f̃i(x) = rix+m,

i = 1, . . . , n. The hiding of Com ensures it does not know

the polynomials themselves, and so when it receives the

right query vector α̃, its only hope of coming up with the

correct valuations f̃i(α̃i) is to copy R’s challenge to the

left interaction and copy C’s response back. However, it is

unlikely that this will be possible. Indeed, M can only copy

α̃i over to the left when α̃i ∈
[
2ti

]
. If t̃i > ti then the

i−th challenge space on the right is at least twice as big as

the i−th challenge space on the left, which means that the

probability α̃i can be copied is at most 1/2. We will use a

code which ensures that t̃i > ti for a constant fraction of the

i, making the probability that M can copy every coordinate

of R’s query vector α̃ negligible. So M will not be able to

successfully answer R’s query and complete the proof when

performing the “copying” attack.
Non-malleability against general M: Establishing se-

curity against a general man-in-the-middle adversary is

significantly more challenging, and this is where the bulk

of the new ideas are required. Our proof of non-malleability

will require us to delve into the full range of possibilities

for M’s behavior. In each case, we will show that one of

three things happen:

1) M does not correctly answer its queries with good

enough probability;

2) E succeeds in extracting m̃ with sufficient probability;

3) an M with such behavior can be used to break the

hiding of Com.

The core of our result can be seen as a reduction from

a PPT M who correctly answers its queries with non-

negligible probability and yet causes E to fail, to a machine

A who breaks the hiding of Com. The following is a very

high level outline of our proof.

We define USEFUL to be the set of transcripts which do

not lead to situation 1 above; that is, transcripts for which

M has a good chance of completing the protocol given the

prefix. This is important in order for E to have any chance

of successfully extracting m̃. Indeed, if M just aborts in

every rewind, E will have no chance. From this standpoint,

USEFUL is the set of transcripts which give E “something to

work with.” We prove that most transcripts are in USEFUL
in Claim 3.

We then define EXT, the set of “extractable” transcripts,

on which E will succeed with high probability. These are

the transcripts which lead to situation 2. Intuitively, EXT
is the set of transcripts such that M has good probability

of correctly answering a query in a rewind despite the fact

that E provides random answers to M’s queries. We prove

that indeed, if a transcript is in EXT then E succeeds in

extracting m̃.

Finally, we define TRB, the set of “troublesome” tran-

scripts which are both useful and not extractable. Transcripts

in TRB are problematic as on the one hand, usefulness

ensures that the prefix is such that if M receives correct

responses to its queries on the left, it gives correct responses

to the queries on the right. At the same time however,

transcripts in TRB are not extractable and so the prefix is

also such that if M receives random responses to its queries

on the left it answers the right queries incorrectly. Certainly,

the hiding of Com ensures that M cannot know whether it

receives correct or random responses to its queries on the

left. So this difference in behavior suggests that we may

be able to use M to violate the hiding of Com, leading to

situation 3 above.

Our main claim in this part of our proof is Claim 8,

which says that if the left challenge α has a superpoly-

nomial number of preimage right challenges α̃ then either

E succeeds in extracting m̃, or M can be used to break

hiding. Such a claim has been at core of the analysis of some

previous NMC schemes. In fact, as many previous schemes

(such as [Goy11], for example) use multiple slots in order

to ensure that some slot has a right challenge space that is
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much bigger than the left, such a claim often encompasses

nearly the entire analysis. In our case, we have some work

still left as there is only a single slot and the right and left

challenge spaces have the same size. Nevertheless, we are

able to prove, using a series of combinatorial arguments, that

any mauling attack will wind up with M’s left query having

exponentially many preimage right queries.

To see these techniques in action, define the set S =
{i ∈ [n] : t̃i ≤ ti}, and consider an M who simply copies

the right challenges α̃i for i ∈ S over to the left but who

makes sure to produce a legal query in the coordinates not

in S on the left. As
[
2t̃i

] ⊂ [
2ti

]
for all i ∈ S, copying α̃i

when i ∈ S is fine. If we think of M as a map sending right

challenge α̃ to left challenge α, then for any α̃S = (α̃i)i∈S ,

M sends α̃′ such that α̃′S = α̃S to α′ such that α′S = α̃S .

In other words, M maps the set of right query vectors whose

S−coordinates are fixed to α̃S to the set of left query vectors

whose S−coordinates are also fixed to α̃S . However, the

sizes of these subsets of right and left challenges are∏
i/∈S

2t̃i and
∏
i/∈S

2ti ,

respectively, and
∏

i/∈S 2t̃i = 2Ω(n)
∏

i/∈S 2ti (we are using

that our tags are in error-corrected form, which ensures that∣∣[n] \ S∣∣ = Ω(n)). So we see that M, when restricted

to the right challenges with S−coordinates fixed to α̃S ,

is exponentially many to one on average, and so α has

exponentially many preimages with high probability.

4−Round Non-Malleability: The protocol described

above is explained sequentially, and as written, consists

of 8 rounds: two for Naor’s commitment, two for the

query/response phase, and four for the ZK argument. How-

ever, it can be parallelized down to four rounds using the

Feige-Shamir four round ZK argument system [FS90]. This

requires running the entire ZK argument in parallel with

the commit, query and response messages. We make use

of the fact that the statement to be proven can be chosen

during the last round of the protocol, and that Feige-Shamir

is actually an argument of knowledge, both of which have

been used often in the literature. Armed with a 4-round NMC

scheme, 4-round ZK is obtained essentially by running a 4-

round ZK argument protocol (we again use Feige-Shamir)

in parallel with a non-malleable commitment to the witness

w. We point out, however, that by using Feige-Shamir we

are assuming the existence of injective one-way functions.

Many-Many Non-Malleability: Many-many or concur-

rent non-malleability considers a setting where the MIM can

run polynomially many protocols on the left and right (in-

terleaved arbitrarily). It can be demonstrated to hold for our

protocol using known techniques. First, one can show that

our protocol is one-many non-malleable following [Goy11].

The key point is that the extractor we construct during our

proof of non-malleability is able to extract m̃ from the

right interaction with high probability, without rewinding the

left execution. Therefore, by the union bound, our extractor

will succeed in extracting from all of the right interactions

with high probability. Next, we use the transformation

of [LPV08], that one-many non-malleability implies many-

many non-malleability. Their proof uses a hybrid argument

to say that one-many non-malleability ensures that non-

malleability is retained when adding polynomially many left

executions, one by one.

II. PRELIMINARIES

Let λ be the security parameter. For lack of space,

we defer the definition of commitments and non-malleable

commitments to the full version.

A. Tags in Error Corrected Form

Let id ∈ {0, 1}k be C’s identity and let y ∈ F
n/2 be the

image of id under an error correcting code with constant

distance, for a suitable finite field F. Constant distance

implies that if id, ĩd ∈ {0, 1}k are distinct identities then

y and ỹ differ on a constant fraction of their coordinates.

Now, set

ti =

{
2i|F|+ yi, i ≤ n/2
(2n+ 1)|F| − tn−i, i > n/2

Note that 2i|F| ≤ ti < (2i+1)|F| for all i. The following is

a list of useful properties that the tags satisfy. Let {ti}i and

{t̃i}i be the tags resulting from distinct identities id �= ĩd.

1) t1 < t2 < · · · < tn;

2) t1 = ω(log λ) and ti+1− ti = ω(log λ) for all i ∈ [n];
moreover ti+1 − t̃i = ω(log λ).

3) if i �= j then ti �= t̃j ; moreover ti < t̃i holds for a

constant fraction of i ∈ [n] (as does ti > t̃i).

Properties 1 and 2 follow immediately as long as |F| =
ω(log λ). Property 3 follows from 1) the distance of the error

correcting code as ti = t̃i iff yi = ỹi which must not be the

case for a constant fraction of the i ∈ [n]; along with 2)

if ti �= t̃i then either ti < t̃i or else tn−i < t̃n−i. This is

reminiscent of the two slot trick of [Pas04], [PR05].

III. THE PROTOCOL

In this section, we describe our protocol given tags

t1, . . . , tn in error corrected form as described in Sec-

tion II-A. We use Naor’s two round, statistically binding bit

commitment scheme [Nao91] as a building block. We use

boldface to denote vectors; in particular a challenge vector

α = (α1, . . . , αn) and a response vector a = (a1, . . . , an).
We write Com for the entire first commitment message,

so Com =
(
Com(m),Com(r1), . . . ,Com(rn)

)
. Our non-

malleable commitment scheme 〈C,R〉 between a committer

C trying to commit to m and a receiver R appears in

Figure 1. The decommitment phase is done by having the

committer C send m and the randomness it used during the

protocol.

4545



Public Parameters: Tags t1, . . . , tn; prime q > 2ti ∀i.
Commiter’s Private Input: Message m ∈ Fq .

Commit Phase:
0) R→ C Initialization message: Send the first

message σ of the Naor commitment scheme.

1) C→ R Commit message: Sample random

r1, . . . , rn ∈ Fq and s, s1, . . . , sn.

• Define linear functions f1, . . . , fn by

fi(x) = rix+m.

• Send commitments Com =
(
Comσ(m; s),

Comσ(r1; s1), . . . ,Comσ(rn; sn)
)
.

2) R→ C Query:
• Send random challenge vector

α = (α1, . . . , αn), αi ∈ [2ti ] ⊂ Fq .

3) C→ R Response:
• Send a = (a1, . . . , an), ai = fi(αi).

4) C←→ R Consistency proof: Parties engage in

a zero-knowledge argument protocol where C
proves to R that

∃ (
(m, s), (r1, s1), . . . , (rn, sn)

)
such that:

• Com =
(
Comσ(m; s),

Comσ(r1; s1), . . . ,Comσ(rn; sn)
)
; and

• ai = riαi +m ∀ i = 1, . . . , n.

Figure 1: The non-malleable commitment scheme 〈C,R〉.

Proposition 1. 〈C,R〉 is a statistically binding commitment
scheme.

Theorem 3 (Main theorem). 〈C,R〉 is non-malleable.

IV. PROOF SKETCH OF NON-MALLEABILITY

In this section we prove Theorem 3. Just as with previous

schemes, proving non-malleability amounts to constructing

an extractor E who, given M’s view after interacting with

C on the left and R on the right, is able to extract M’s

commitment m̃ on the right without rewinding C on the

left. The idea is that if E can extract m̃ without rewinding

on the left then m̃ cannot depend in a meaningful way

on m (the commitment on the left), as this would violate

hiding. Our extractor is shown in Figure 2. The following

theorem is sufficient for Theorem 3 (since it ensures that M
breaks non-malleability AND E extracts with non-negligible

probability).

Theorem 4. Suppose M breaks the non-malleability of
〈C,R〉 with probability at least 2p for non-negligible p =
p(λ). We have PrT∈ACC(E(T) �= m̃) ≤ p.

Notation: We let T denote the transcript of interaction

that E gets as input. Specifically,

T =
(
Com, ˜Com,α, α̃, a, ã, π, π̃

)
,

but as E is not interested in the proofs (π, π̃), and M is

deterministic (and so ˜Com, α, ã are uniquely determined by

Com, α̃, and a) we will often just write T =
(
Com, α̃, a

)
.

Definition 1 (Accepting Transcript). We say that T ∈ ACC
if both π and π̃ are accepting proofs.

The extractor E gets T ∈ ACC as input so the proba-

bilities which arise in our analysis often are conditioned on

the event T ∈ ACC. We denote this with the convenient

shorthand PrT∈ACC
(· · · ) instead of PrT

(· · · ∣∣T ∈ ACC
)
.

For fixed Com, M can be thought of as a deterministic

map, mapping right query vectors to left ones. We write

α = M(α̃) to be consistent with this point of view. We

assume that the transcript E gets as input is consistent with

exactly one right commitment m̃. As 〈C,R〉 is statistically

binding, this happens with overwhelming probability.

A. The Extractor E

The high level description of our extractor (described

formally in Figure 2) is quite simple. Intuitively, our protocol

begins by C committing to n, threshold 2, Shamir secret

sharings [Sha79] of m; R then asks for one random share

from each sharing, which C gives. All E does is rewind M
to the beginning of the right session’s query phase ask for

a new random share. Since E gets one share as part of its

input, this will allow E to reconstruct m̃.

The problem with this approach is that E does not know

the value C has committed to on the left and so it does not

know how to answer M’s query on the left correctly. The

best E can do is give a random response on the left and hope

that M will give a correct response on the right anyway. On

the one hand, the hiding of Com dictates that M cannot

distinguish a correct response from a random one. On the

other hand, M doesn’t actually need to know whether the

response on the left is correct or not in order to perform a

successful mauling attack. Imagine, for example, the MIM

who mauls R’s challenge to the left execution and mauls C’s

response back. Such an M will prevent E from extracting

m̃ because M only correctly answers E’s query if given a

correct response to its own left query, which E cannot give.

Of course we will prove that no M with such behavior can

exist, but this proof is highly non-trivial.

Another question which our extractor raises is “how can

E tell a correct response from an incorrect one?” As we

have described it, the hiding of Com ensures that it cannot.

However, a small modification to the E described above fixes

this. Instead of asking for one new share, E rewinds twice
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to the beginning of the right query phase and asks for two

different new shares.

The key observation is that if M answers both queries

correctly then the three shares it holds (the two it received

plus the one it got as input) are collinear, whereas if M
answers at least one incorrectly they are overwhelmingly

likely to NOT be collinear. This is the first appearance

of a tangeable payoff of the algebraicity of our protocol.

For example, the protocol of [Goy11] (which is similar to

ours, but strictly combinatorial in nature) does not have

this algebraic verification technique at its disposal and must

introduce use extra rounds into the protocol to ensure its

extractor can reconstruct m̃.

Claim 1. The probability that E answers a pair of queries
(β̃, γ̃) “incorrectly but collinearly” is negligible.

This claim ensures that if E fails, it is because M never

answered a pair of queries correctly on the right.

Tags: Let {ti}i and {t̃i}i be in error corrected form.

Input: T =
(
Com, α̃, a

) ∈ ACC, and a large value

N = poly(λ). E is given oracle access to M.

Extraction procedure: For j ∈ [N ]:

1) Rewind M to the beginning of step 2 of the

protocol:

• generate a random right challenge vector β̃j .

• Feed M with β̃j and receive challenge βj .

2) Feed bj = (b1,j , . . . , bn,j) to M where bi,j is

random unless βi,j = αi,j in which case

bi,j = ai. Receive b̃j .

3) For each i ∈ [n] use
{
(α̃i, ãi), (β̃i,j , b̃i,j)

}
to

interpolate a line and recover candidate m̃i,j .

4) Repeat steps 1-3. Let γ̃j be new right challenge

vector, c̃j the response and (m̃′1,j , . . . , m̃
′
n,j) the

recovered candidates.

5) If for some i ∈ [n], m̃i,j = m̃′i,j and{
(α̃i, ãi), (β̃i,j , b̃i,j), (γ̃i,j , c̃i,j)

}
are collinear

output m̃i,j and halt.

Output: Output FAIL.

Figure 2: The Extractor E.

B. Extractable, Useful and Troublesome Transcripts

Our extractor E is parametrized by a large polynomial

N = N(λ), which is the number of times E rewinds.

Specifically, setting N = ω(λn10p−18) suffices for our

proof. We remark that there is no reason to suspect that N

must be such a large polynomial; it arises from our analysis,

which is not concerned with minimizing N .

Definition 2 (Extractable Transcripts). Fix non-negligible
ε∗ =

(
λ/N

)1/2
. We define EXT as the T ∈ ACC such that

for some i ∈ [n], the probability that M answers β̃i correctly
on the right given that his left queries are answered by E is
at least ε∗.

Claim 2. PrT
(
E(T) = FAIL

∣∣T ∈ EXT
)
= negl(λ), where

the probability is over T and the randomness of E.

Definition 3 (Useful Transcripts). Fix non-negligible δ < 1
3

and (temporarily) define

W =
{
Com : PrT

(
T ∈ ACC

∣∣Com
) ≤ δp2

}
.

Set USEFUL :=
{
T ∈ ACC : Com /∈W

}
.

Claim 3. PrT∈ACC
(
T /∈ USEFUL

) ≤ δp.

Transcripts in EXT are those for which M is likely to

correctly answer a right query even given incorrect responses

to its own left queries. On the other hand, USEFUL can be

thought of as the transcripts for which M answers the right

queries correctly if given correct answers to its left queries.

This leads us to the following definition.

Definition 4 (Troublesome Transcripts). We define TRB =
USEFUL \ EXT.

Transcripts in TRB are troublesome as essentially, they are

transcripts for which M answers the right queries correctly

iff his left queries are answered correctly. However, the

hiding of Com ensures that M cannot know whether it

receives correct or random responses to its queries on the

left. So this difference in behavior suggests that we may be

able to use M to break the hiding of Com. However, it is not

so easy. Keep in mind, M does not have to know whether it

is giving a correct or incorrect answer on the right in order

to successfully maul. Indeed, almost all mauling attacks one

could imagine have the property that M answers correctly

on the right if and only if it gets correct answers on the left.

The following lemma comprises the heart of our analysis.

Lemma 1. If Com is computationally hiding then there
exists a constant δ′ < 1

3 such that

PrT∈ACC
(
T ∈ TRB

) ≤ δ′p.

Lemma 1 combined with Claims 1 through 3 give us

PrT∈ACC
(
E(T) �= m̃

) ≤ PrT∈ACC
(
T /∈ USEFUL

)
+ PrT∈ACC

(
T ∈ TRB

)
+ PrT

(
E(T) = FAIL

∣∣T ∈ EXT
)

+ PrT∈ACC
(
inc. but coll.

)
≤ δp+ δ′p+ negl(λ) < p,

proving Theorem 4.
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C. Proof Overview of Lemma 1

We complete our discussion of the proof of Theorem 3

with a high level overview of the proof of Lemma 1.

We leave out the formal proofs of the necessary claims

because of space. An interested reader should consult the

full version. We will, however, in this discussion state the

claims, numbered as in the full version to make the transition

as easy as possible (this is why we skip over Claim 4).

We prove Lemma 1 by defining the notion of “query

dependence”, and then considering the possible different

ways in which M’s left queries α can depend on right

queries α̃. Intuitively, αi′ being dependent on α̃i is the

result of M performing a mauling attack. Suppose that M
mauls Com(fi′) in order to obtain Com(f̃i). Then M does

not know f̃i and so cannot hope to answer α̃i except by

mauling C’s answer to αi′ . Therefore, if M is rewound to

the beginning of step 2 and asked a different query vector β̃
such that β̃i = α̃i, M will have to ask β such that βi′ = αi′

if it wants to answer successfully. This is the idea of query

dependence: if α̃i is asked on the right, then αi′ must be

asked on the left.

Recall that in the introduction we considered a copying

MIM who attempts to maul C’s commitment by simply

copying and pasting messages between the left and right

sessions. Such an attack is a very simple example of a

mauling attack in which each αi is dependent on α̃i. We saw

this attack is foiled by the large number of left tags which

differ from all right tags, preventing the right query α̃ from

being a legal left query except with negligible probability. In

fact, we prove in Claim 7 that all mauling attacks in which

each αi depends on α̃i will fail whp.

This encourages us to investigate what else can happen.

We arrive at three possibilities.

• UNBAL: There exist i′ > i such that αi′ depends on

α̃i.

• 1−2: There exist (i1, i2, i
′) such that αi′ depends on

both α̃i1 and α̃i2 .

• IND: There exists i such that each αi′ does not depend

on α̃i.

In the actual proof we formalize the above possibilities

using precise conditional probability statements. We keep it

informal here, however, in order to convey as much intuition

as possible.

Note that if none of the above three events occur then αi

depends on α̃i for all i which is what we hope happens. We

complete the proof by showing that each of the three events

cannot happen except with very small probability. However,

this is easier said than done. Consider, for example, the

mauling attack which results in 1−2. Intuitively, if αi′

is dependent on both α̃i1 and α̃i2 then M is using C’s

response fi′(αi′) on the left to produce both f̃i1(α̃i1) and

f̃i2(α̃i2) on the right. On the one hand it is extremely

unlikely that a single polynomial evaluation on the left

contains enough information to allow M to correctly give

two random evaluations on the right. On the other hand, this

intuition alone isn’t enough to say that 1−2 can’t occur as

the argument is information theoretic in nature. Indeed, any

statment one wishes to make about M’s behavior in the query

phase must have a computational proof as an unbounded M
can query however it wants to and then simply break the

hiding of the commitments in the first message to learn the

f̃i and answer correctly.

The key claim which allows us to capitalize on our

information theoretic intuition is Claim 8 which states that if

the left query α has a superpolynomial number of preimage

right queries α̃ then either E succeeds in extracting m̃ or M
can be used to break the hiding of 〈C,R〉. The intuition

is that if there are superpolynomially many α̃ such that

M(α̃) = α, the chances that M can use C’s response by

itself to answer α̃ are negligible. It follows that either M
must be content to not answer most of the α̃ such that

M(α̃) = α (the probability of which can be bounded using a

straightforward conditional probability argument) or M must

know some “extra information” about the f̃i which allows

him to provide a correct response to α̃. But this means

that either M will use this extra information to correctly

answer α̃ even when given a random answer to α on the

left (in which case E succeeds in extracting m̃), or M
is choosing to utilize this extra information only when C
answers correctly on the left. However, the hiding of the

commitment in the first message ensures that M cannot know
whether he receives correct responses on the left or not, and

this difference in behavior will allow us to use M to break

hiding.

Armed with Claim 8, we can now make definitive

statements about UNBAL and 1−2. For example, if UNBAL
occurs then αi′ is dependent on α̃i for some i′ > i, and

so if R asks a new right challenge with the same i−th

query, M will fix αi′ on the left. However, as i′ > i, αi′

is drawn from a much larger challenge space than α̃i, and

so M is “wasting challenge space”. Specifically, the residual

right challenge space with the i−th query fixed to α̃i is

superpolynomially larger than the residual left challenge

space with αi′ fixed, and so with high probability, we

will find ourselves in a situation where the left query has

superpolynomially many right query preimages. By Claim 8,

this must not happen except with negligible probability. In

this spirit, we prove Claims 5 through 7 which show that if

either UNBAL or 1−2 or “not (UNBAL or 1−2 or IND)”

occur, then the left query will have superpolynomially many

right query preimages. The proofs of Claims 6 and 7 are

more involved than that of Claim 5, but they are still purely
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combinatorial.

Finally, we prove in Claim 9 that IND cannot happen

using another reduction to hiding. It uses the same frame-

work as Claim 8 and has similar underlying intuition. Here

the main point is that if IND occurs then there exists a

right query α̃i on which no αi′ on the left is dependent.

Intuitively this means that M does not need any of the left

challenges in order to correctly return f̃i(α̃i), implying that

he knows some information about the polynomial f̃i. As in

the intuition for Claim 8 this means either that extraction is

successful, or that M is breaking hiding.

D. Statements of Claims

Let σ = σ(λ) be a non-negligible quantity defined

for convenience (explicitly we set σ = ε′(δ′)2p4/257n3,

because of calculations in the full version).

Claim 5. If PrT∈ACC
(
T ∈ TRB ∩ UNBAL

) ≥ δ′p
4 , then

PrT∈ACC
(
T ∈ TRB ∩ SUPER−POLY) ≥ σ.

Claim 6. If PrT∈ACC
(
T ∈ TRB ∩ 1−2) ≥ δ′p

4 , then

PrT∈ACC
(
T ∈ TRB ∩ SUPER−POLY) ≥ σ.

Claim 7. If PrT∈ACC
(
T ∈ TRB\(UNBAL∪1−2∪ IND)) ≥

δ′p
4 , then

PrT∈ACC
(
T ∈ TRB ∩ SUPER−POLY) ≥ σ.

Claim 8. If PrT∈ACC
(
T ∈ TRB ∩ SUPER−POLY) ≥ σ

then there exists a PPT algorithm A who breaks the hiding
of 〈C,R〉.
Claim 9. If PrT∈ACC

(
T ∈ TRB ∩ IND

) ≥ δ′p
4 then there

exists a PPT algorithm A who breaks the hiding of 〈C,R〉.
Claims 5 through 9 combine to give that if Com is compu-

tationally hiding, then

PrT∈ACC
(
T ∈ TRB

) ≤ PrT∈ACC
(
T ∈ TRB ∩ UNBAL

)
+ PrT∈ACC

(
T ∈ TRB ∩ 1−2)

+ PrT∈ACC
(
T ∈ TRB ∩ IND

)
+ PrT∈ACC

(
T ∈ TRB \ (UNBAL ∪

∪1−2 ∪ IND)
)

≤ δ′p
4

+
δ′p
4

+
δ′p
4

+
δ′p
4

= δ′p,

completing the proof of Lemma 1, Theorem 4 and Theo-

rem 3.

V. NON-MALLEABILITY IN 4-ROUNDS

In this section we show how to squeeze our non-malleable

protocol 〈C,R〉 into 4 rounds. In the new protocol, the

zero-knowledge messages are lifted up and sent together

with the commit, challenge and response messages. We

use a version of the 4−round zero-knowledge argument

of knowledge protocol of Feige and Shamir [FS90] which

can be constructed from a OWF. Such a protocol has been

used before (see [?], for example). Recall briefly that in the

Feige-Shamir protocol, V sets a trapdoor using a 3-round

witness-hiding argument of knowledge, π1 and then P uses

a 3-round witness-indistinguishable argument of knowledge,

π2 to prove either the original statement or knowledge of

V’s trapdoor. Our 4-round commitment scheme 〈C,R〉OPT

appears in Figure 3.

Public Parameters: Tags t1, . . . , tn, and prime

q > 2ti ∀i.
Commiter’s Private Input: Message m ∈ Fq to be

committed to.

1) R→ C: Sample random x1 ∈ L1 and x′1 ∈ L′1
together with witnesses w1 and w′1, and send the

first message of π1 proving that

x1 ∈ L1

∨
x′1 ∈ L′1, along with the first message

σ of Naor’s commitment scheme.

2) C→ R: Send the challenge message of π1 along

with the first message of π2 and the commitment

message Com from Step 1 of 〈C,R〉 The

statement of π2 will be determined in step 4.

3) R→ C: Send the last message of π1 along with

the second message of π2 and the challenge

vector α = (α1, . . . , αn) as done in Step 2 of

〈C,R〉.
4) C→ R: Send the evaluation vector a where

ai = riαi +m as in Step 3 of 〈C,R〉 along with

the last message of π2 proving the statement:

• EITHER: ∃ (
(m; s), (r1; s1), . . . , (rn; sn)

)
such that Com and a are correct

• OR: x1 ∈ L1

∨
x′1 ∈ L′1.

Figure 3: : 4-round NMC scheme 〈C,R〉OPT.

Proposition 2. Assume the existence of OWFs. Then
〈C,R〉OPT is a 4−round statistically binding, non-malleable
commitment scheme.

Using our new commitment scheme 〈C,R〉OPT, we obtain

a simple 4−round non-malleable zero knowledge argument

〈P,V〉 for any language L ∈ NP . A detailed description of

〈P,V〉 appears in the full version. The basic idea is to run

a 4−round ZK in parallel with 〈C,R〉OPT which P uses to

commit non-malleably to his witness.

Proposition 3. Assume the existence of OWFs. Then 〈P,V〉
is a 4−round non-malleable zero knowledge argument of
knowledge for any L ∈ NP .
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