
Achieving Target Equilibria in Network Routing Games
without Knowing the Latency Functions

Umang Bhaskar, Katrina Ligett, Leonard J. Schulman

Dept. of Computing and Mathematical Sciences
Caltech, Pasadena, CA 91125, USA.

Email: {umang, katrina, schulman}@caltech.edu

Chaitanya Swamy

Dept. of Combinatorics & Optimization
Univ. Waterloo, Waterloo, ON N2L 3G1, Canada.

Email: cswamy@math.uwaterloo.ca

Abstract—The analysis of network routing games typically
assumes, right at the onset, precise and detailed information
about the latency functions. Such information may, however,
be unavailable or difficult to obtain. Moreover, one is often
primarily interested in enforcing a desirable target flow as
the equilibrium by suitably influencing player behavior in the
routing game. We ask whether one can achieve target flows as
equilibria without knowing the underlying latency functions.

Our main result gives a crisp positive answer to this question.
We show that, under fairly general settings, one can efficiently
compute edge tolls that induce a given target multicommodity
flow in a nonatomic routing game using a polynomial number
of queries to an oracle that takes candidate tolls as input and
returns the resulting equilibrium flow. This result is obtained
via a novel application of the ellipsoid method, and applies
to arbitrary multicommodity settings and non-linear latency
functions. Our algorithm extends easily to many other settings,
such as (i) when certain edges cannot be tolled or there is
an upper bound on the total toll paid by a user, and (ii)
general nonatomic congestion games. We obtain tighter bounds
on the query complexity for series-parallel networks, and
single-commodity routing games with linear latency functions,
and complement these with a query-complexity lower bound
applicable even to single-commodity routing games on parallel-
link graphs with linear latency functions. We also explore
the use of Stackelberg routing to achieve target equilibria and
obtain strong positive results for series-parallel graphs.

Our results build upon various new techniques that we
develop pertaining to the computation of, and connections be-
tween, different notions of approximate equilibrium; properties
of multicommodity flows and tolls in series-parallel graphs; and
sensitivity of equilibrium flow with respect to tolls. Our results
demonstrate that one can indeed circumvent the potentially-
onerous task of modeling latency functions, and yet obtain
meaningful results for the underlying routing game.

Keywords-Network routing; tolls; ellipsoid method; approx-
imate equilibria; multicommodity flows; Stackelberg routing

I. INTRODUCTION

Network routing games model settings where self-

interested, uncoordinated users or agents route their traffic

in a network—prominent examples include communication

and transportation networks—and are extensively studied in

Transportation Science and Computer Science (e.g., [1]–[3]).

These games are typically described in terms of a directed

graph G = (V,E) modeling the network, a set of com-

modities specified by source-sink pairs and the volume of

traffic routed between them modeling the users, and latency

functions or delay functions (l∗e)e∈E on the edges, with l∗e(x)
modeling the delay on edge e when volume x of traffic is

routed on it. The outcome of users’ strategic behavior is

described by an equilibrium traffic pattern, wherein no user

may unilaterally deviate and reduce her total delay.

The analysis of network routing games typically takes

the above specification as input, and thus assumes, right at

the onset, precise, detailed information about the underlying

latency functions. However, such precise information may be

unavailable or hard to obtain, especially in large systems. In

fact, the task of capturing observed delays via suitable delay

functions is a topic of much research in itself in fields such

as queuing theory and transportation science. Recognizing

that the task of obtaining suitable latency functions is often

really a means to facilitating a mathematical analysis of the

underlying routing game, we ask whether one can sidestep

this potentially-demanding task and analyze the routing

game without knowing the underlying latency functions.

In routing games, there is often a central authority with

limited ability to influence agent behavior by, e.g., imposing

tolls on network edges. This ability can be used to alleviate

the detrimental effects of selfish agent behavior, which might

be expressed both in terms of the agents’ costs (i.e., price

of anarchy) and externalities not captured by these (e.g.,

pollution costs in a road network). Thus, a natural and

well-studied goal in network routing games is to induce a
desirable target traffic pattern as an equilibrium by suitably

influencing agents’ behavior. Such a target traffic pattern

may be obtained by, e.g., limiting the traffic on every edge

to a fraction of its capacity, or reducing the traffic near

hospitals and schools. It is evident that obtaining the latency

functions is only a means to the end goal of achieving the

target traffic pattern. Our work sheds light on the question:

can one achieve this end without the means?

A. Our contributions

We initiate a systematic study of network routing games

from the perspective of achieving target equilibria without

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.12

31

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.12

31

knowing the latency functions. We introduce a query model
for network routing games to study such questions, and

obtain bounds on the query complexity of various tasks.

The query model: We are explicitly given the underlying

network G = (V,E), the set of commodities specified by

the source-sink pairs and the demands to be routed between

them, and the target multicommodity flow f∗ that we seek to

achieve. We do not, however, know the underlying latency

functions (l∗e)e∈E . Instead, the only information that we

can glean about the latency functions is via queries to

a black box or oracle (e.g., simulation procedure) that

outputs the equilibrium flow under a specified stimulus to the

routing game. We investigate two methods for influencing

agent behavior that have been considered extensively in the

literature, which gives rise to two types of queries.

We primarily focus on the task of computing edge tolls
to induce f∗ (Section III). This yields the following query

model: each query is a vector of tolls on the edges, and

returns the equilibrium flow that results upon imposing these

tolls. The goal is to minimize the number of queries required

to compute tolls that yield f∗ as the equilibrium.

We also explore, in Section IV, the use of Stackelberg
routing to induce f∗. Here, we control an α fraction of

the total traffic volume. Each query is a Stackelberg routing

that specifies how this α-fraction is routed, and returns the

equilibrium flow under this Stackelberg routing. The goal is

to minimize the number of queries required to compute a

Stackelberg routing that induces f∗ as the equilibrium.

Our results and techniques: Our main result is a crisp

and rather sweeping positive result showing that one can
always obtain tolls that induce a given target flow f∗

with a polynomial number of queries (Section III-A). With

linear latency functions, our algorithm computes tolls that

enforce f∗ exactly (Theorem 4). With more general latency

functions, such as convex polynomial functions, equilibria

may be irrational, so it is not meaningful to assume that

a query returns the exact equilibrium. Instead, we assume

that each query returns a (suitably-defined) approximate

equilibrium and obtain tolls that enforce a flow that is

component-wise close to f∗ (Theorem 8).

The chief technical novelty underlying these results is

an unconventional application of the ellipsoid method. We

view the problem as one where we are searching for the

(parameters of the) true latency functions l∗ and tolls that

induce f∗. It is information-theoretically impossible, how-

ever, to identify l∗ (or even get close to it) in the query

model, since—as is the case even when G is a single

edge—there may be no way of distinguishing two sets of

latency functions. The key insight is that, notwithstanding

this difficulty, if the current candidate tolls τ do not enforce

f∗, then one can use the resulting equilibrium flow to

identify a hyperplane that separates our current candidate

(l, τ) from the true tuple (l∗, τ∗). This enables one to use the

machinery of the ellipsoid method to obtain tolls enforcing

f∗ in a polynomial number of queries.

Our ellipsoid-method based algorithm is easily adapted to

handle various generalizations (Section III-B). For instance,

we can incorporate any linear constraints that tolls inducing

f∗ must satisfy, which one can separate over. This captures

constraints where we disallow tolls on certain edges, or place

an upper bound on the total toll paid by an agent. All our

machinery extends seamlessly to the more-general setting

of nonatomic congestion games. Finally, another notable

extension is to the setting of atomic routing games under

the assumption that the equilibrium is unique.

In Sections III-C and III-D, we devise algorithms with

substantially improved query complexity for (a) multicom-

modity routing games on series-parallel (sepa) networks, and

(b) single-commodity routing games on general networks,

both with linear latency functions. For (a), we exploit

the combinatorial structure of sepa graphs to design an

algorithm with near-linear query complexity. We show that

any toll-vector in a sepa graph can be converted into a

simpler canonical form, which can be equivalently viewed

in terms of certain labelings of the subgraphs of the sepa

graph obtained via parallel joins; leveraging this yields an

algorithm with near-linear query complexity. Our algorithm

works more generally whenever we have an oracle that

returns the (exact) equilibrium. For (b), we prove that

(roughly speaking) the equilibrium flow is a linear function

of tolls, and use linear algebra to infer the constants defining

this linear map in Õ(|E|2) queries.

Complementing these upper bounds, we prove an Ω(|E|)
lower bound (Theorem 25) on the query complexity of

computing tolls that induce a target flow, even for single-

commodity routing games on parallel-link graphs with linear

delays. This almost matches the query complexity of our

algorithm for sepa graphs.

En route to obtaining the above results, we prove various

results that provide new insights into network routing games.

For instance, we obtain results on: (a) the computation

of approximate equilibria and their properties (Lemmas 6

and 7); (b) structural properties of tolls and multicommodity

flows in sepa graphs (Section III-C); and (c) sensitivity of

equilibrium flow with respect to tolls (Theorem 18). We

believe that these results and the machinery we develop to

obtain them are likely to find various applications.

In Section IV, we investigate the use of Stackelberg

routing to induce a given target flow. Stackelberg routing

turns out to be significantly harder to leverage than edge

tolls in the query model. This is perhaps not surprising

given that designing effective Stackelberg routing strategies

is more difficult than computing suitable edge tolls, even

in the standard setting where latency functions are given

(e.g., [4], [5]). Nevertheless, we build upon the machinery

that we develop for sepa graphs to give a rather efficient

and general combinatorial algorithm that finds the desired

Stackelberg routing using at most |E| queries to an oracle

3232

returning equilibrium flows. This applies to any strictly

increasing latency functions, and in particular, to linear

latency functions. (Observe that this is even better than our

query-complexity bound for inducing flows via tolls on sepa

graphs.) Moreover, our algorithm determines the Stackelberg

routing of smallest volume that can induce f∗.
We obtain various lower bounds in Section V that allude to

the difficulty of computing a Stackelberg routing in general

networks that induces a target flow. One possible strategy for

finding such a Stackelberg routing is to use the queries to

infer an (approximately) “equivalent” set of delay functions

l, in the sense that any Stackelberg routing yields the same

(or almost the same) resulting equilibrium under the two sets

of delay functions. Then, since given the latency functions, it

is easy to compute a Stackelberg routing that induces a target

flow (see Lemma 2), one can find the desired Stackelberg

routing. Theorem 26 shows that such an approach cannot

work: in the query model, any algorithm that learns even

an approximately equivalent set of delay functions must

make an exponential number of queries. Theorem 27 proves

an orthogonal computational lower bound showing that

determining the equivalence of two given sets of latency

functions is an NP-hard problem. As in the case of tolls,

along the way, we uncover a new result about the hardness

of Stackelberg routing. We show that the problem of finding

a Stackelberg routing that minimizes the equilibrium delay is

APX-hard (Theorem 28). The query complexity of finding a

Stackelberg routing in general networks that induces a target

flow remains a very interesting open question.

Our results on tolls and Stackelberg routing demonstrate

that one can indeed circumvent the potentially-onerous task

of modeling latency functions, and yet obtain meaningful

results for the underlying routing game. Our array of upper-

and lower- bounds indicate the richness of the query model,

and suggest a promising direction for further research.

B. Related work

Network routing games with nonatomic players—where

each player controls an infinitesimal amount of traffic and

there is a continuum of players—were first formally studied

in the context of road traffic by Wardrop [6], and the

equilibrium notion in such games is known as Wardrop

equilibrium after him. Network routing games have since

been widely studied in the fields of Transportation Science,

Operations Research, and Computer Science; see, e.g., the

monographs [2], [3] and the references therein. We limit

ourselves to a survey of the results relevant to our work.

Equilibria are known to exist in network routing games,

even with atomic players with splittable flow [3]. Nonatomic

equilibria are known to be essentially unique, but this is not

the case for atomic splittable routing games [7]. Equilibria in

routing games are known to be inefficient, and considerable

research has focused on quantifying this inefficiency in terms

of the price of anarchy (PoA) [8] of the game, which

measures, for a given objective, the worst-case ratio between

the objective values of an equilibrium and the optimal

solution. Tight bounds are known on the PoA for nonatomic

routing games for the social welfare objective [9], [10].

Given the inefficiency of equilibria, researchers have

investigated ways of influencing player behavior to alle-

viate this inefficiency. The most common techniques of

influencing player behavior in routing games are imposing

tolls on edges, and Stackelberg routing. Tolls are a classical

means of congestion control, dating back to Pigou [11], and

various results demonstrate their effectiveness for network

routing games [1], [12]–[17]. Stackelberg routing is also

well-studied, and it is known that this is much less effective

in reducing the PoA. Whereas they can help in reducing

the PoA to a constant for certain network topologies such

as series-parallel graphs [16], this is not possible for general

graphs [5]. Furthermore, it is NP-hard to compute the Stack-

elberg routing that minimizes the total cost at equilibrium,

even for parallel-link graphs with linear delay functions [4].

All these results pertain to the setting where the latency

functions are explicitly given.

To our knowledge, our query model has not been studied

in the literature. It is useful to contrast our query model

with work in empirical game theory, which also studies

games when players’ costs are not explicitly given. There,

each query specifies a (pure or mixed) strategy-profile, and

returns the (expected) cost of each player under this strategy

profile. In contrast, in our query model, we observe the

equilibrium flow instead of individual player delays. This

is more natural in the setting of routing games: in the

absence of knowledge of the latency functions, one may

only be able to calculate player delays under a strategy

profile by routing players along the stipulated paths (and

then observing player delays); but this may be infeasible

since one cannot in fact impose routes on self-interested

players. Moreover, whereas our goal is to obtain a desirable

outcome as the equilibrium, the focus in empirical game

theory is to compute an (approximate) equilibrium. Generic

approaches to generate strategy-profiles for this purpose,

and examples where these have proved useful are discussed

by Wellman [18]. Various papers study the complexity of

computing an exact or approximate correlated equilibrium

in multi-player games using both pure- and mixed-strategy

queries [19]–[22]. Fearnley et al. [23] study the empirical-

game-theory model for bimatrix games, congestion games,

and graphical games, and obtain bounds on the number of

queries required for equilibrium computation.

II. PRELIMINARIES AND NOTATION

A nonatomic routing game (or simply a routing game) is

denoted by a tuple Γ = (G, l,K), where G = (V,E) is a

directed graph with m edges and n nodes, l = (le)e∈E is a

vector of latency or delay functions on the edges, and K =
{(si, ti, di)}i≤k is a set of k triples denoting sources, sinks,

3333

and demands for k commodities. The delay function le :
�+ �→ �+ gives the delay on edge e as a function of the total

flow on the edge. (Here, �+ is the set of nonnegative reals.)

We assume that le is continuous, and strictly increasing. For

each commodity i, the demand di specifies the volume of

flow that is routed from si to ti by self-interested agents,

each of whom controls an infinitesimal amount of flow and

selects an si-ti path as her strategy. The strategies selected

by the agents thus induce a multicommodity flow (f i)i≤k,

where each f i = (f i
e)e∈E is an si-ti flow of value di. That

is, the vector f i = (f i
e)e satisfies:

∑
(v,w)∈E

f i
vw −

∑
(u,v)∈E

f i
uv = 0 ∀v ∈ V \ {si, ti},

∑
(s,w)∈E

f i
sw −

∑
(u,s)∈E

f i
us = di , and f i ≥ 0 .

We call f = (f i)i≤k a feasible flow. We say that f is

acyclic if {e : f i
e > 0} is acyclic for every commodity i.

We overload notation and use f to also denote the total-flow

vector f =
∑

i≤k f
i. For a path P , we use fP > 0 to denote

fe > 0 for all e ∈ P . We sometimes refer to
⋃

i{si, ti} as

the terminals of the routing game or multicommodity flow.

Given an s-t flow f , we use |f | to denote the value of f .

Let Pi denote the collection of all si-ti paths. Given

a multicommodity flow (f i)i≤k induced by the agents’

strategies, the delay of an agent that selects an si-ti path

P is the total delay, lP (f) :=
∑

e∈P le(fe), incurred on the

edges of P . Each agent in a routing game seeks to minimize

her own delay. To analyze the resulting strategic behavior,

we focus on the concept of a Nash equilibrium, which is a

profile of agents’ strategies where no individual agent can

reduce her delay by changing her strategy, assuming other

agents do not change their strategies. In routing games, this

is formalized by the notion of Wardrop equilibrium.

Definition 1. A multicommodity flow f̂ is a Wardrop
equilibrium (or simply an equilibrium) of a routing game

Γ if it is feasible and for every commodity i, and all paths

P , Q ∈ Pi with f̂ i
P > 0, we have lP (f̂) ≤ lQ(f̂).

A Wardrop equilibrium can be computed by solving the

following convex program:

min Φ(f) :=
∑
e

∫ fe

0

le(x) dx s.t. f =

k∑
i=1

f i,

f i is an si-ti flow of value di ∀i = 1, . . . , k. (1)

Given a routing game Γ and a feasible flow f , define

Di(l, f) := minP∈Pi lP (f) for each commodity i, and call

an edge e a shortest-path edge for commodity i with respect

to f if e lies on some path P ∈ Pi such that lP (f) =
Di(l, f). Let Si(l, f) be the set of shortest-path edges for

commodity i with respect to f .

Tolls, Stackelberg routing, and our query model: We

investigate both the use of edge tolls and Stackelberg routing

to induce a given target flow. Tolls are additional costs

on the edges that are paid by every player that uses the

edge. A vector of tolls τ = (τe)e ∈ �
E
+ on the network

edges thus changes the delay function on each edge e to

lτe (x) := le(x) + τe, and so the delay of an agent who

chooses P is now lP (f) + τ(P), where τ(P) :=
∑

e∈P τe.

We use f(l, τ) to denote the equilibrium flow obtained with

delay functions l = (le)e and tolls τ = (τe)e. We say that τ
enforces a multicommodity flow f with latency functions l
if the total flow f(l, τ)e = fe on every edge e.

For Stackelberg routing, in keeping with much of the

literature, we focus on single-commodity routing games.

Given a single-commodity routing game Γ = (G, l, (s, t, d))
and a parameter α ∈ [0, 1], a central authority controls

at most an α-fraction of the total s-t flow-volume d and

routes this flow in any desired way, and then the remaining

traffic routes itself selfishly. That is, a Stackelberg routing

g is an s-t flow of value at most αd, which we call the

Stackelberg demand. The Stackelberg routing g modifies the

delay function on each edge e to l̃e(g;x) := le(x+ge). The

remaining (1−α)d volume of traffic routes itself according

to a Wardrop equilibrium, denoted by f(l, g), of the instance

(G, l̃, (1 − α)d). The total flow induced by a Stackelberg

routing g is thus g + f(l, g).

We shorten f(l, τ) to f(τ), and f(l, g) to f(g) when l is

clear from the context.

In our query model, we are given the graph G, the

commodity set K = {(si, ti, di)}i≤k, and a feasible target
multicommodity flow f∗. There is an underlying routing

game Γ = (G, l∗,K), to which we are given query access.

If our method of influencing equilibria is via tolls, then

the oracle takes a toll-vector τ as input and returns the

equilibrium flow f(l∗, τ) or a (suitably-defined) approximate

equilibrium. Our goal is to minimize the number of queries

required to compute tolls τ∗ such that f(l∗, τ∗) = f∗.
If our method of influencing equilibria is via Stackelberg

routing, then we are also given the parameter α ∈ [0, 1].
Each query takes a Stackelberg routing g with |g| ≤ αd as

input and returns the flow f(l∗, g). Our goal is to minimize

the number of queries required to compute a Stackelberg

routing g∗ of value at most αd such that f(l∗, g∗)+g∗ = f∗,
or determine that no such Stackelberg routing exists.

Properties of equilibria: The following facts about

Wardrop equilibria, network tolls, and Stackelberg routing

will be useful. Recall that the delay functions are nonnega-

tive, continuous, and strictly increasing.

• A feasible flow f is an equilibrium flow iff
∑

e(fe −
ge)le(fe) ≤ 0 for every feasible flow g; see, e.g., [2].

Thus, the total-flow vector (fe)e induced by an equilib-

rium flow is unique for strictly increasing delay functions.

• Every routing game admits an acyclic Wardrop equilib-

3434

rium f̂ . If the delay functions are polytime computable,

then one can solve (1) and compute: (i) f̂ in polytime

for linear delay functions; (ii) an acyclic flow f such that

Φ(f) ≤ Φ(f̂) + ε in time poly
(
input size, log(1ε)

)
. See,

e.g., [2], for details.

• Every minimal feasible flow f is enforceable via

tolls [13]–[15], where f is minimal if there is no feasible

flow g �= f such that ge ≤ fe for every edge e. Given

the edge delays
(
le(fe)

)
e
, these tolls can be computed by

solving an LP, and are rational provided the commodity

demands (di)i and the delays
(
le(fe)

)
e

are rational.

Lemma 2 (essentially from [24]). Let (G, l, (d, s, t), α) be
a Stackelberg routing instance, and f∗ be a feasible flow.
Then, f(g)+g = f∗ for a Stackelberg routing g iff ge ≤ f∗e
for every edge e, and ge = f∗e for all e �∈ S(l, f∗).

Standard delay functions and encoding length: Our re-

sults hold for a broad class of underlying delay functions,

that we now formally describe. Throughout, we use I denote

the input size of the given routing game. We assume that

we have an estimate U with logU = poly(I) such that the

target flow f∗, the parameters of the unknown true delay

functions (l∗e)e, and the quantities that we seek to compute—

tolls τ∗ or the Stackelberg routing g∗ inducing f∗—all have

encoding length O(logU). So we may assume that every

f∗e , τ∗e , g∗e value is a multiple of 1
U , and is at most U .

When considering non-linear delay functions, we assume

that the l∗es are convex polynomials of degree at most some

known constant r. Given the O(logU) encoding length, we

may assume that all coefficients lie in [0, U] and and are

multiples of 1
U . We also assume that each

dl∗e(x)
dx ≥ 1

U for

all x ≥ 0. We refer to such functions as standard degree-r
polynomials. Under these mild conditions, it is easy to show

that there is some constant K := K(r) = poly(U,
∑

i di)
such that every delay function l∗e satisfies

(x− y)
(
l∗e(x)− l∗e(y)

) ≤ ε2

K =⇒ |x− y| ≤ ε

∀x, y, ε ≥ 0 (2)

|l∗e(x)− l∗e(y)| ≤ K|x− y| ∀x, y ∈ [0,
∑

i di] (3)

l∗e(2x) ≤ Kl∗e(x) ∀x ≥ 0 (4)

Properties (2)–(4) are referred to as inverse-K-continuity,

K-Lipschitz and K-growth boundedness, respectively.

III. INDUCING TARGET FLOWS VIA TOLLS

Recall that here we seek to compute tolls that enforce

a given target flow f∗ given black-box access to a routing

game Γ ∗ = (G, l∗, (si, ti, di)i≤k), i.e., without knowing l∗.
Our main result is a crisp positive result showing that we

can always achieve this end with a polynomial number of

queries by leveraging the ellipsoid method in a novel fashion

(Section III-A). Our algorithm computes tolls that enforce:

(a) f∗ exactly, for standard linear latency functions (where

it is reasonable to assume that the black box returns the

exact equilibrium); and (b) a flow that is component-wise

close to f∗, for standard polynomial functions, where we

now assume that each query only returns an approximate

equilibrium (see Definition 5). We showcase the versatility

of our algorithm by showing that it is easily adapted to

handle various extensions (Section III-B).

In Sections III-C and III-D, we devise algorithms with

significantly improved query complexity for multicommod-

ity games on sepa networks, and single-commodity games

on general networks. both with linear latencies.

A. An ellipsoid-based algorithm for general routing games

The ellipsoid method for finding a feasible point starts by

containing the feasible region within a ball and generates a

sequence of ellipsoids of successively smaller volumes. In

each iteration, one examines the center of the current ellip-

soid. If this is infeasible, then one uses a violated inequality

to obtain a hyperplane, called a separating hyperplane, to

separate the current ellipsoid center from the feasible region.

One then generates a new ellipsoid by finding the minimum-

volume ellipsoid containing the half of the current ellipsoid

that includes the feasible region. We utilize the following

well-known theorem about the ellipsoid method.

Theorem 3 ([25]). Let X ⊆ �
n be a polytope described by

constraints having encoding length at most M . Suppose that
for each y ∈ �n, we can determine if y /∈ X and if so, return
a hyperplane of encoding length at most M separating y
from X . Then, we can use the ellipsoid method to find a
point x ∈ X or determine that X = ∅ in time poly(n,M).

Linear latencies: We first consider the case where each

l∗e(x) is a standard linear function a∗ex+ b∗e , and our oracle

returns the exact equilibrium flow induced by the input

(rational) tolls. Thus, for every e, a∗e ∈ (0, U), b∗e ∈ [0, U],
and a∗e, b

∗
e are multiples of 1

U . For a linear latency function

l(x) = ax+ b, we use l to also denote the tuple (a, b).

Theorem 4. Given a target acyclic multicommodity flow f∗

and query access to Γ ∗, we can compute tolls that enforce
f∗ or determine that no such tolls exist, in polytime using
a polynomial number of queries.

Proof: We utilize the ellipsoid method and Theorem 3. In

a somewhat atypical use of the ellipsoid method, we think

of using it to search for the point (a∗e, b
∗
e, τ

∗
e)e. As noted

earlier, we cannot, however, hope to find (a∗, b∗, τ∗). But

given the center (l̂ = (âe, b̂e)e, τ̂) of the current ellipsoid,

we show that if τ̂ does not induce f∗, then we can separate

(l̂, τ̂) from (a∗, b∗, τ∗). This implies that we terminate either
with (a∗, b∗, τ∗) or with tolls τ̂ that induce f∗.

We first check if â, b̂, τ̂ ≥ 0, and if not, use the violated

constraint as the separating hyperplane. Next, we use the

black box to obtain g = f(l∗, τ̂). If g = f∗, then we

are done. Otherwise, we obtain a separating hyperplane of

3535

encoding length poly(I) as follows. (Note that the encoding

length of (l̂, τ̂) is poly(I).) We consider two cases.

Case 1: f(l̂, τ̂) �= f∗. Note that we can determine this

without having to compute the equilibrium flow f(l̂, τ̂).
Since f∗ is acyclic, we can efficiently find a commodity i,
and si-ti paths P,Q such that f∗P > 0 and l̂P (f

∗)+ τ̂(P) >
l̂Q(f

∗) + τ̂(Q). But since f∗ = f(l∗, τ∗), we also have

l∗P (f
∗) + τ∗(P) ≤ l∗Q(f

∗) + τ∗(Q). Thus, the inequality

lP (f
∗) + τ(P) ≤ lQ(f

∗) + τ(Q)

where the parameters of l and τ are variables yields the

desired separating hyperplane.

Case 2: f(l̂, τ̂) = f∗. Since g �= f∗ and is acyclic, we can

again find efficiently i and paths P,Q ∈ Pi such that gP > 0
and l̂P (g) + τ̂(P) > l̂Q(g) + τ̂(Q). Since g = f(l∗, τ̂), we

also have l∗P (g) + τ̂(P) ≤ l∗Q(g) + τ̂(Q). So the inequality

lP (g) + τ̂(P) ≤ lQ(g) + τ̂(Q), where now only the les are

variables, yields the separating hyperplane. �
Polynomial latency functions and approximate equilibria:

We now consider the setting where the latency functions

(l∗e)e are standard degree-r polynomials, where r is a known

constant. We use l to also denote the tuple of coefficients of

the polynomial given by l. Since the Wardrop equilibrium

may now be irrational, it is unreasonable to assume that a

query returns the equilibrium flow. So we assume that our

black box returns an acyclic approximate equilibrium and

show that we can nevertheless compute tolls that induce

an equilibrium that is component-wise close to f∗. We

first define approximate equilibria. Recall that Di(l, f) =
minP∈Pi lP (f), and lτe (x) := le(x) + τe where τ = (τe)e.

Definition 5. We say that a feasible flow f is an an

ε-equilibrium of a routing game (G, l, (si, ti, di)i≤k) if∑
e fele(fe) ≤

∑
i di

(
Di(l, f) + ε

)
.

Notice that our approximate-equilibrium notion is implied

by the more-stringent (and oft-cited) condition requiring

that if fP > 0 for P ∈ Pi then lP (f) ≤ Di(l, f) + ε.
Importantly, our notion turns out to be weak enough that

one can argue that an acyclic ε-equilibrium can be com-

puted in time poly
(I, log(1ε)

)
for any ε > 0, which lends

credence to our assumption that the black box returns an
acyclic ε-equilibrium, and yet is strong enough that one can

leverage it within the framework of the ellipsoid method

(see Theorem 8). Unless otherwise stated, when we refer to

a routing game below, we assume that the latency functions

satisfy (2)–(4), with logK being polynomially bounded.

Lemma 6. Given a routing game with polytime-computable
latency functions, one can compute an acyclic ε-equilibrium
in time poly

(I, log(1ε)
)
.

Lemma 7. Let f̂ be a Wardrop equilibrium and g be an
ε-equilibrium of a routing game (G, l, (si, ti, di)i≤k). Then,
‖g − f̂‖∞ := maxe |ge − f̂e| ≤

√
Kε

∑
i di.

An ε-oracle for tolls is an oracle that given tolls

τ as input, returns an ε-equilibrium of the routing game

(G, l∗τ , (si, ti, di)i≤k) with encoding length poly
(I, log(1ε)

)
.

Theorem 8. Let f∗ be a target acyclic multicommod-
ity flow f∗ and δ > 0. Let ε = δ2

Kmk
∑

i di
. Then, in

time poly
(I, log(1δ)

)
and using poly

(I, log(1δ)
)
ε-oracle

queries, we can compute tolls τ such that ‖f(l∗, τ) −
f∗‖∞ ≤ 2δ or determine that no such tolls exist.

Proof: We again use the ellipsoid method. Let (l̂, τ̂) be the

center of the current ellipsoid. Assume that l̂, τ̂ ≥ 0 and

each function l̂e has slope at least 1
U ; otherwise, we can use

a violated constraint as the separating hyperplane. We use

the oracle with tolls τ̂ to obtain an acyclic ε-equilibrium g.

Then, ‖g−f(l∗, τ̂)‖∞ ≤
√
Kε

∑
i di =

δ√
mk

by Lemma 7.

We can efficiently determine if f(l̂, τ̂) �= f∗, and if so,

then as in Case 1 in the proof of Theorem 4, we can obtain

a separating hyperplane of encoding length poly
(I). So

assume otherwise. Now we check if g is an mkε-equilibrium

for the latency functions (l̂τ̂e)e. If so, then ‖g − f∗‖∞ ≤ δ
and so ‖f(l∗, τ̂)− f∗‖∞ ≤ 2δ and we are done. Otherwise,

we find a valid path-decomposition x = (xi,P)i,P∈Pi

of g having support of size at most mk. That is, we

have x ≥ 0,
∑

P∈Pi xi,P = di for every commodity i,∑
i

∑
P∈Pi:e∈P xi,P = ge for all e, and

∑
i |{P : xi,P >

0}| ≤ mk. We may assume that every non-zero xi,P
value has encoding length that is polynomial in I and the

size of g. Then
∑

i

∑
P∈Pi xi,P

(
l̂τ̂P (g)−Di(l̂τ̂ , g)

)
=∑

e ge l̂
τ̂
e (ge)−

∑
i diD

i(l̂τ̂ , g) > mkε
∑

i di where the last

inequality follows since g is not an mkε-equilibrium for

(l̂τ̂e)e. Since the support of x has size at most mk, this

implies that there is some commodity j and some path

R ∈ Pj such that xj,R
(
l̂τ̂R(g) − Dj(l̂τ̂ , g)

)
> ε

∑
i di.

Moreover, we can find such a j and path R ∈ Pj efficiently

by simply enumerating the paths in the support of x. Let

Q ∈ Pj be such that l̂τ̂Q(g) = Dj(l̂τ̂ , g).

Since g is an ε-equilibrium for (l∗τ̂e)e, considering the

path-decomposition of x, we have
∑

i

∑
P∈Pi xi,P

(
l∗τ̂P (g)−

Di(l∗τ̂ , g)
) ≤ ε

∑
i di. Each term in this sum is nonnegative,

so each term is at most ε
∑

i di. In particular, we have

xj,R
(
l∗τ̂R (g) − l∗τ̂Q (g)

) ≤ xj,R
(
l∗τ̂R (g) − Dj(l∗τ̂ , g)

) ≤
ε
∑

i di. So the inequality xj,R
(
lR(g) + τ̂(R) − lQ(g) −

τ̂(Q)
) ≤ ε

∑
i di, with les as the variables, is valid for

(l∗, τ∗) but is violated by (l̂, τ̂). This yields a separating

hyperplane of encoding length poly
(I, log(1ε)

)
. �

B. Extensions

Our ellipsoid-based algorithm easily extends to various

more-general settings including the following.

• Linear constraints on tolls. Here, we require that the

tolls τ∗ imposing the target flow f∗ should lie in some

polyhedron X , where X is specified via a separation

3636

oracle. This is rich enough to model: (i) a subset F of

edges cannot be tolled; and (ii) the total toll paid by any

player under the flow f∗ is at most a given budget B.

• General nonatomic congestion games. This is a gener-

alization of network routing games, where the graph is

replaced by an arbitrary set E of resources, and Pi ⊆ 2E

is the strategy-set associated with player-type i.
• Atomic splittable routing games. Here, each commodity i

represents a single player who controls di volume of flow

and her strategy is to choose an si-ti flow f i of value di.
The cost incurred by a player i under a strategy profile

f = (f i)i≤k is
∑

e f
i
ele(fe). Our results extend here if

we assume that for all valid choices of parameters of

the latency functions and tolls (as encountered during the

ellipsoid method), the underlying atomic splittable routing

game has a unique Nash equilibrium.

C. An improved algorithm for series-parallel networks

We give an algorithm for series-parallel networks with

Õ(m) query complexity. This significantly improves upon

the ellipsoid-based algorithm, and almost matches the linear

lower bound proved in Theorem 25.

Theorem 9. On two-terminal series-parallel graphs, one
can compute in polytime tolls that induce a given target
multicommodity flow f∗ using Õ(m) queries to an oracle
that returns the equilibrium flow. Thus, we obtain Õ(m)
query complexity for multicommodity routing games with
standard linear delay functions.

We first recall some relevant details about series-parallel

graphs. A two-terminal directed series-parallel graph, ab-

breviated series-parallel (sepa) graph, with terminals s and

t is defined inductively as follows. A basic sepa graph is a

directed edge (s, t). Given two sepa graphs G1 = (V1, E1)
and G2 = (V2, E2), with terminals s1, t1 and s2, t2
respectively, one can create a new sepa graph G = (V,E)
as follows. A series join of G1 and G2 yields the graph

obtained by identifying t1 and s2, with terminals s = s1
and t = t2. A parallel join of G1 and G2 yields the graph

obtained by identifying s1 and s2, and t1 and t2; its terminals

are s = s1 = s2 and t = t1 = t2.

For every series-parallel graph G = (V,E), the recursive

construction naturally yields a binary decomposition tree,

whose leafs are edges of G, and each internal node specifies

a series- or a parallel- join. Each node of the tree also repre-

sents a subgraph of the G (obtained by performing the joins

specified by the subtree rooted at that node), which is also

clearly a sepa graph. In the sequel, we fix a decomposition

tree corresponding to G, and by “subgraph of G” we mean

a subgraph corresponding to a node of this decomposition

tree. Given a subgraph H , we use sH , tH to denote its

two terminals, which we sometimes call source and sink of

H respectively, and P(H) to denote the set of all sH -tH
paths. Let H be the collection of subgraphs corresponding

to parallel-join nodes of the decomposition tree. (Note that

|H| ≤ m.) For each H ∈ H obtained via the parallel join of

H1 and H2, we identify one of these as the “left” subgraph

HL and the other as the “right” subgraph HR. Let P denote

the set of all s-t paths, where s = sG, t = tG.

Proof outline: We first give some intuition for the proof

of Theorem 9. It is useful to consider the simplest case of

a graph with two parallel edges. Observe that any target

flow can be obtained by varying the difference in tolls on

these two edges. Further, the correct difference in tolls can

be obtained by a binary search. Our key insight is that

this intuition can be extended to series-parallel graphs via a

suitable transformation of tolls. We show that tolls required

to obtain a target flow can actually be described by the

difference in tolls for each pair of parallel subgraphs, and

then use binary search to obtain the correct differences that

yield the target flow.

Formally, we show that any edge tolls in a sepa graph

can in fact be transformed into certain canonical tolls that

are defined in terms of subgraphs (Claim 11). Further,

formalizing the intuition that what is relevant is only the

difference in tolls on parallel subgraphs, we show that

canonical tolls are in fact equivalent to labels on subgraphs

H ∈ H (Lemma 12), where the label on subgraph H ∈ H
stores the difference in the canonical tolls of subgraphs HL

and HR whose parallel-join yields H .

Thus, our problem reduces to finding the correct labels on

subgraphs H ∈ H, which we do via binary search. For this,

we establish certain structural properties of multicommodity

flows in sepa graphs (Lemma 14). We leverage these to argue

that if the canonical edge-tolls obtained from our current

labels do not enforce the target flow, then we can find a

subgraph H ∈ H and deduce whether its label should be

increased or decreased. The query complexity is thus at most

|H| times a logarithmic term depending on the accuracy

required and the parameters of the routing game.

The presence of multiple commodities complicates things,

since in the particular decomposition tree that we fix for G,

all edges in a subgraph may be shortest-path edges for one

commodity but not for another. Thus creates problems with

the binary search since Claim 15 may not hold. We handle

this by first arguing that there always exist tolls enforcing

f∗ such that every s-t path, and hence every si-ti path is a

shortest-path under edge costs (l∗τ
∗

e (f∗e))e (Claim 10). All

omitted proofs appear in the full version.

We believe that our structural insights into tolls and multi-

commodity flows on sepa graphs are of independent interest.

In fact, our results on sepa graphs play an important role

in our algorithm for inducing target flows via Stackelberg

routing in Section IV.

Claim 10. For Γ ∗ = (G, l∗, (si, ti, di)i≤k) and tar-
get flow f∗ there exist tolls τ∗ ∈ �

E
+ such that:

(i) minP∈P τ∗(P) = 0; (ii) l∗P (f
∗) + τ∗(P) = l∗Q(f

∗) +

3737

τ∗(Q) for every i and paths P,Q ∈ Pi; (iii) f(l∗, τ∗) = f∗.

Claim 11. For any tolls τ ∈ �
E
+ on the edges of G, there

exist α ∈ �
E
+ such that: (i) τ(P) = α(P) for all P ∈ P ,

and (ii) for every subgraph H and every edge e = (sH , v) ∈
E(H), αe ≥ minP∈P(H) α(P).

We call tolls α ∈ �E
+ that satisfy property (ii) of Claim 11

canonical tolls. Thus, any edge tolls can be modified to

obtain canonical edge tolls α. These in turn can be mapped

to a labeling (L,Δ), where Δ = (ΔH)H∈H ∈ �
H
+ , by

setting L = minP∈P α(P), and ΔH = minP∈P(HL) α(P)−
minP∈P(HR) α(P) for all H ∈ H. Lemma 12 shows that

this mapping is in fact invertible. Given the labeling (L,Δ)
we can obtain canonical edge tolls α as follows.

M1. Initialize αe = 0 for all e.
M2. We consider subgraphs in H starting from the leaves and

moving up to the root. When considering H ∈ H, we set
αe = αe +max{0,ΔH} for all e = (sH , v) ∈ E(HL), and
αe = αe +max{0,−ΔH} for all e = (sH , v) ∈ E(HR).

M3. Finally, we set αe = αe + L for all e = (s, v) ∈ E.

Lemma 12. Let (L,Δ) be the labeling obtained from some
canonical tolls α ∈ �

E
+, and β be the tolls obtained from

(L,Δ) by the above procedure. Then α = β.

Definition 13. Given multicommodity flows f and f̃ , we

call a pair H1, H2 of subgraphs, (f, f̃)-discriminating if: (i)

the parallel-join of H1 and H2 is a subgraph in H; and (ii)

fe > f̃e for all e ∈ E(H1), and fe ≤ f̃e for all e ∈ E(H2).

Lemma 14. Let f and f̃ be two feasible multicommodity
flows for (G, (si, ti, di)i≤k). If f �= f̃ , then there exists an
(f, f̃)-discriminating pair of subgraphs.

Claim 15. Let f̂ = f(l∗, τ). If there is a subgraph H with
f̂e > f∗e ∀e ∈ E(H) then for some i, every sH -tH path is
part of a shortest si-ti path under edge costs (l∗τe (f̂e))e.

We now describe the algorithm leading to Theorem 9.

Let τ∗ be tolls given by part (b) of Claim 10 and (0,Δ∗)
be the labeling obtained from τ∗. We may assume that

τ∗e ∈ [0, U ′] and is a multiple of 1
U ′ for all e, where

U ′ = m poly(U,
∑

i di). E.g., with standard linear latencies,

since every f∗e , a
∗
e, b

∗
e ∈ [0, U] and is a multiple of 1

U , we

can take U ′ = max{U2,mK
∑

i di}.
T1. Initialize, LH = −mU ′, UH = mU ′, ΔH = 0 for all H ∈

H. Let L = 0. Let M = m log(8mU ′2).
T2. For r = 1, . . . ,M , we do the following. Map (L,Δ) to

canonical tolls α as described in steps M1–M3. Query the
oracle to obtain f̂ = f(l∗, α). If f̂ = f∗, then exit the loop.

Otherwise, find an (f̂ , f∗)-discriminating pair of subgraphs
H1, H2 (which exists by Lemma 14). Let H be the parallel
join of H1, H2. If H1 = HL, update LH ← ΔH , else update
UH ← ΔH . If |UH − LH | < 1

U′ , set ΔH to be the multiple

of 1
U′ in [LH , UH]; else update ΔH = (LH + UH)/2.

T3. Return tolls α.

Proof Sketch of Theorem 9: We show that the binary search

performed by the algorithm is valid; that is, we maintain

the invariant that Δ∗H ∈ [LH , UH] for all H ∈ H. Under the

assumptions on τ∗, one can show that Δ∗H ∈ [−mU ′,mU ′]
and is a multiple of 1

U ′ , for all H ∈ H, so this holds at

the beginning. For the H1, H2 pair chosen in an iteration

of step T2, we utilize Claim 15 to show that we must have

αH1
− αH2

< α∗H1
− α∗H2

. Hence, our update for H at

the end of the iteration preserves the invariant. Thus, since

|H| ≤ m, the binary search takes at most M iterations. �
Observe that the above algorithm in fact works whenever

we have a “sign oracle” that given input tolls τ and a flow

f∗, returns the sign of f(l∗, τ)e − f∗e for all edges e.

D. Single-commodity, linear-delay routing games

We devise an algorithm with nearly quadratic query

complexity here. We show that flows are linear functions

of tolls and infer this linear map using Õ(m2) queries.

Theorem 16. For a single-commodity routing game Γ with
standard linear delay functions, tolls that enforce f∗ can be
obtained in at most Õ(m2) queries.

We assume that f∗ > 0; otherwise, we can impose very

large tolls on any edge with f∗e = 0, effectively deleting

such edges. Let le(x) = aex + be. Define lmax(x) :=
maxe∈E(aex+ be), and κ(x) = x2/Kd (where d is the s-t
flow volume). Define the support of a flow f to be the set of

edges with strictly positive flow. We will use negative tolls

in our proof; however, by Claim 17, this is just a notational

convenience. Similar arguments were used in [26] to show

boundedness of tolls. Note that f∗ is acyclic.

Claim 17. For a single-commodity routing game and tolls
τ , there exist tolls τ ′ ≥ 0 so that f(τ) = f(τ ′) and τ ′e′ ≤
τe′ +

∑
e:τe<0 |τe| for all e′. If the graph is acyclic, τ ′ can

be obtained without knowledge of the delay functions.

Proof outline: We show that if the support of the equi-

librium flow remains fixed, the equilibrium flow is a linear

function of the tolls. Thus if we can obtain tolls τ so that

the support of f(τ) is the same as f∗, we can solve a

linear system of equations to obtain tolls that enforce f∗.
Our algorithm consists of the following two steps.

Step 1: Enforcing the correct support. We first obtain

tolls τ so that fe(τ) > 0 ⇔ f∗e > 0. Since f∗ > 0
by assumption, one direction of the implication is already

satisfied. The other direction is roughly by binary search,

described in Lemma 19: we pick an edge r that does not yet

have flow, and decrease the toll on r until it has positive flow

at equilibrium. However, increasing the flow on edge r may

decrease flow on the other edges. To maintain monotonicity

of the support of the equilibrium flow, we use results about

the sensitivity of equilibrium flow. In fact, this step has

quadratic query complexity, while the second step is linear.

Step 2: Obtaining the target flow f∗. We use Lemma 21

which establishes the linearity of equilibrium flow as a

3838

function of tolls, if the support of the equilibrium flow does

not change. We obtain the coefficients of this linear map

by querying the oracle with a small toll on each edge. The

query complexity of this step is thus linear.

We begin by showing the monotonicity and sensitivity of

equilibrium flow as a function of tolls. Using these properties

we argue that we can iteratively obtain positive flow on every

edge (Lemma 20), and thus implement Step 1. We note that

while some results in [27], [28] are similar to Theorem 18

and Lemma 21, they need to be modified suitably for our

results. Let �e ∈ �
E be the vector with value 1 in coordinate

e, and 0 elsewhere. Throughout, Γ is a single-commodity

routing game with standard linear latencies.

Theorem 18. For routing game Γ and any edge r,
(i) ‖f(0)− f(�rκ(ε))‖∞ ≤ ε, (ii) f(τ) is continuous,
(iii) fr(�rδ) ≤ fr(0) for all δ > 0, and
(iv) |fr(−�rδ)−fr(0)| ≥ ‖f(−�rδ)−f(0)‖∞ for all δ > 0.

Lemma 19. Let Γ be a routing game. Fix 0 < δ ≤ d.
For tolls τ , let S := {e : fe(τ) ≥ δ}. Let r be an
edge not in S. Using log (−N/κ(δ/3)) queries, where
N := minP∈P τ(P)−minP∈P:r∈P τ(P)−mlmax(d) < 0,
we can compute α ∈ [N, 0] so that for τ ′ = τ + α�r, we
have fe(τ ′) ≥ δ/3 for all e ∈ S ∪ {r}.
Lemma 20. Using O(m2 log(3mKlmax(d)) queries, we can
compute tolls τ so that fe(τ) ≥ d/3m for all e.

Proof Sketch: We repeatedly use Lemma 19. In iteration i,
with current tolls τ , if Si = {e : fe(τ) ≥ d/3i} �= E, then

we use Lemma 19 to ensure that Si+1 � Si. We argue that

the N needed to do this is at least −m2i−1lmax(d). This

yields the stated query complexity. �

Lemma 21. Let Γ be a routing game, tolls τ (1) be such
that f(τ (1)) > 0. There exists a matrix β = (βe,e′)e,e′∈E so
that for any tolls τ ,

(i) f(τ + τ (1)) > 0 =⇒ f(τ + τ (1)) = f(τ (1)) + βτ ;
(ii) f(τ (1)) + βτ > 0 =⇒ f(τ + τ (1)) = f(τ (1)) + βτ .

Proof of Theorem 16: We first use Lemma 20 to obtain

tolls τ (1) such that fe(τ
(1)) ≥ d/3m for all e. Next, we use

Lemma 21 (i) to obtain the matrix β. We use m queries, each

applying an additional toll τ (relative to τ (1)) of κ(d/3m+1)
on a distinct edge (which ensures that f(τ (1) + τ) > 0
by Theorem 18 (i)). Finally, we solve the system f∗ =
f(τ (1)) + βτ (2) for τ (2), and return the tolls τ (1) + τ (2).
Correctness follows immediately from Lemma 21: the sys-

tem solved is feasible since f∗ = f(τ∗) > 0, and so

f∗ = f(τ (1))+β(τ∗−τ (1)); since f(τ (1))+βτ (2) = f∗ > 0,

we have f(τ (1) + τ (2)) = f∗. �

IV. INDUCING TARGET FLOWS VIA STACKELBERG

ROUTING ON SERIES-PARALLEL GRAPHS

We are now given a single-commodity routing game

Γ ∗ = (G, l∗, (s, t, d)) on a sepa graph G, α ∈ [0, 1] and

a target flow f∗, and we seek an s-t flow g of value of

at most αd so that g + f(l∗, g) = f∗, if one exists. We

abbreviate f(l∗, g) to f(g). We devise an algorithm that

computes a Stackelberg routing inducing f∗ using at most

m queries. The flow g we compute is in fact of minimum

value among all Stackelberg flows that induce f∗. (So either

g is the desired Stackelberg flow, or none exists if |g| > αd.)

Our algorithm works for arbitrary increasing delay functions

provided, as in Section III-C, we have an oracle that returns

the correct sign of ((f(g) + g
)
e
− f∗)e given a Stackelberg

routing g. In particular, the algorithm works for increasing

linear latency functions.

As before, we fix a decomposition tree for G, and a

subgraph refers to a subgraph corresponding to a node of

this tree. For a flow f and subgraph H , let fH denote

(fe)e∈E(H). Similar to Definition 13, we define the notion

of a good pair of subgraphs.

Definition 22. Given s-t flows f , f̃ , we call a pair of

subgraphs H1, H2 (f, f̃)-good if: (i) the parallel-join of H1,

H2 is a subgraph; (ii) fe ≥ f̃e ∀e ∈ E(H1), fe ≤ f̃e ∀e ∈
E(H2); and (iii) |fH1

| > |f̃H1
|, |fH2

| < |f̃H2
|.

Lemma 23. Let g be any Stackelberg routing. If f(g)+g �=
f∗, there exists an (f(g) + g, f∗)-good pair of subgraphs.

Theorem 24. We can compute a Stackelberg flow of mini-
mum value that induces f∗ in at most m queries.

Proof Sketch: The algorithm is quite simple. We keep track

of the set S̄, initialized to ∅, of edges not on any shortest

s-t path under edge costs (l∗e(f
∗
e))e. By Lemma 2, S̄ must

be saturated by any Stackelberg routing that induces f∗. So

we find the flow g ≤ f∗ of minimum value that saturates

S̄. If f(g) + g �= f∗, we find an (f(g) + g, f∗)-good pair

of subgraphs H1, H2. We argue that H2 cannot contain any

shortest s-t path edges, so we update S̄ and repeat. �

V. LOWER BOUNDS

We obtain various lower bounds on the complexity of

problems motivated by our query model. We begin with a

lower bound on the query-complexity of computing tolls.

Theorem 25. Any deterministic algorithm that computes
tolls to enforce f∗ requires Ω(m) queries, even for a single
commodity on parallel links with linear delay functions.

A natural question that arises from our query model is

whether one can infer the latency functions. While this is

impossible even for a single edge, perhaps one can infer an

“equivalent” set of latency functions. We show lower bounds

on the query- and computational- complexity of this problem

3939

for Stackelberg routing. As a by-product, we obtain that the

problem of finding a Stackelberg flow g that minimizes the

equilibrium delay is APX-hard. We formalize equivalence

as follows: given a graph G, demand d to be routed from

s to t, and α ∈ [0, 1], two sets of latency functions {l1e}e,

{l2e}e are ε-equivalent if ‖f(l1, g)−f(l2, g)‖∞ ≤ ε for every

Stackelberg routing g with |g| ≤ αd.

Theorem 26. Any deterministic algorithm that determines ε-
equivalence for ε ≤ 1/16 has exponential query complexity.

Theorem 27. It is NP-complete to decide if two (explicitly
given) delay functions are ε-equivalent, for any ε < 1

2 .

Theorem 28. The problem of minimizing D(f(g)) over all
Stackelberg flows g is

(
4
3−ε

)
-inapproximable, for any ε > 0.

ACKNOWLEDGMENTS

We thank Éva Tardos for useful discussions. UB was

supported by a Linde/SISL postdoctoral fellowship and NSF

grants CNS-0846025, CCF-1101470 and EPAS-1307794.

KL was supported by the Charles Lee Powell Foundation

and a Microsoft Faculty Fellowship. LJS was supported

by NSF grants 1038578 and 1319745, and was partly at

the Simons Institute at UC Berkeley. CS was supported by

NSERC grant 32760-06, an NSERC Discovery Accelerator

Supplement Award, and an Ontario Early Researcher Award.

REFERENCES

[1] M. Beckman, C. McGuire, and C. B. Winsten, “Studies in
the economics of transportation,” Tech. Rep., 1956.

[2] T. Roughgarden, Selfish Routing and the Price of Anarchy.
MIT Press, 2005.

[3] ——, “Routing games,” in Algorithmic Game Theory,
N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Eds.
Cambridge University Press, 2007.

[4] ——, “Stackelberg scheduling strategies,” SIAM J. Comput.,
vol. 33, no. 2, pp. 332–350, 2004.

[5] V. Bonifaci, T. Harks, and G. Schäfer, “Stackelberg routing
in arbitrary networks,” MOR, vol. 35, pp. 330–346, 2010.

[6] J. G. Wardrop, “Some theoretical aspects of road traffic
research,” in ICE Proceedings: Engineering Divisions, vol. 1,
no. 3. Thomas Telford, 1952, pp. 325–362.

[7] U. Bhaskar, L. Fleischer, D. Hoy, and C. Huang, “Equilibria
of atomic flow games are not unique,” in SODA, 2009, pp.
748–757.

[8] E. Koutsoupias and C. Papadimitriou, “Worst-case equilibria,”
in Proceedings of 16th STACS, 1999, pp. 404–413.

[9] T. Roughgarden, “The price of anarchy is independent of the
network topology,” JCSS, vol. 67, pp. 341–364, 2003.

[10] T. Roughgarden and É. Tardos, “How bad is selfish routing?”
J. ACM, vol. 49, no. 2, pp. 236–259, 2002.

[11] A. C. Pigou, The Economics of Welfare. Macmillan, 1920.

[12] R. Cole, Y. Dodis, and T. Roughgarden, “Pricing network
edges for heterogeneous selfish users,” in STOC, 2003, pp.
521–530.

[13] L. Fleischer, K. Jain, and M. Mahdian, “Tolls for heteroge-
neous selfish users in multicommodity networks and general-
ized congestion games,” in FOCS, 2004, pp. 277–285.

[14] G. Karakostas and S. G. Kolliopoulos, “Edge pricing of
multicommodity networks for heterogeneous users,” in FOCS,
2004, pp. 268–276.

[15] H. Yang and H.-J. Huang, “The multi-class, multi-criteria
traffic network equilibrium and systems optimum problem,”
Trans. Res. B: Methodological, vol. 38, pp. 1–15, 2004.

[16] C. Swamy, “The effectiveness of Stackelberg strategies and
tolls for network congestion games,” ACM Transactions on
Algorithms, vol. 8, no. 4, p. 36, 2012.

[17] H. Yang and X. Zhang, “Existence of anonymous link tolls
for system optimum on networks with mixed equilibrium
behaviors,” Trans. Res. B, vol. 42, pp. 99–112, 2008.

[18] M. P. Wellman, “Methods for empirical game-theoretic anal-
ysis,” in Proc., National Conf. on AI, vol. 21, 2006, p. 1552.

[19] C. Papadimitriou and T. Roughgarden, “Computing correlated
equilibria in multi-player games,” JACM, vol. 55, p. 14, 2008.

[20] A. Jiang and K. Leyton-Brown, “Polynomial-time computa-
tion of exact correlated equilibria in compact games,” Games
and Economic Behavior, 2013, to appear.

[21] Y. Babichenko, S. Barman, and R. Peretz, “Simple approxi-
mate equilibria in large games,” in EC, 2014, pp. 753–770.

[22] S. Hart and N. Nisan, “The query complexity of correlated
equilibria,” 2013, CS arXiv.

[23] J. Fearnley, M. Gairing, P. W. Goldberg, and R. Savani,
“Learning equilibria of games via payoff queries,” in ACM
Conference on Electronic Commerce, 2013, pp. 397–414.

[24] A. Kaporis and P. Spirakis, “The price of optimum in Stack-
elberg games on arbitrary single commodity networks and
latency functions,” TCS, vol. 410, pp. 745–755, 2009.

[25] M. Grötschel, L. Lovász, and L. Schrijver, “Geometric al-
gorithms and combinatorial optimization,” Algorithms and
Combinatorics, vol. 2, pp. 1–362, 1993.

[26] L. K. Fleischer, “Linear tolls suffice: New bounds and algo-
rithms for tolls in single source networks,” Theor. Comput.
Sci., vol. 348, no. 2-3, pp. 217–225, 2005.

[27] S. Dafermos and A. Nagurney, “Sensitivity analysis for
the asymmetric network equilibrium problem,” Mathematical
programming, vol. 28, no. 2, pp. 174–184, 1984.

[28] R. Cole, Y. Dodis, and T. Roughgarden, “How much can taxes
help selfish routing?” JCSS, pp. 444–467, 2006.

4040

