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Abstract—We consider a monopolist seller with n het-
erogeneous items, facing a single buyer. The buyer has
a value for each item drawn independently according to
(non-identical) distributions, and his value for a set of
items is additive. The seller aims to maximize his revenue.
It is known that an optimal mechanism in this setting may
be quite complex, requiring randomization [19] and menus
of infinite size [15]. Hart and Nisan [17] have initiated a
study of two very simple pricing schemes for this setting:
item pricing, in which each item is priced at its monopoly
reserve; and bundle pricing, in which the entire set of
items is priced and sold as one bundle. Hart and Nisan [17]
have shown that neither scheme can guarantee more than
a vanishingly small fraction of the optimal revenue. In
sharp contrast, we show that for any distributions, the
better of item and bundle pricing is a constant-factor
approximation to the optimal revenue. We further discuss
extensions to multiple buyers and to valuations that are
correlated across items.

I. INTRODUCTION

A monopolist seller has a collection of n items to
sell. How should he sell the items to maximize revenue
given that the buyers are strategic? When there is only
a single item for sale, and a single buyer with value
drawn from a distribution F , Myerson [23] shows that
the optimal sale protocol is straightforward: the seller
should post a fixed take-it-or-leave-it price p chosen
to maximize p(1 − F (p)), the expected revenue. The
optimality of this simple auction format extends to the
case of multiple buyers, as well.1 Despite the simplicity
of the single-item case, extending this solution to handle
multiple items remains the primary open challenge in
mechanism design. While recent work in the computer
science literature has made progress on this front [2],
[3], [5], [6], [8], [9], [10], [13], [15], [17], [21], it is still
the case that very little is known about optimal multi-
item auctions, and what is known lacks the simplicity
of Myerson’s single-item auction.

Consider even the simplest multi-item scenario [17]:
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1This assumes regularity of the value distributions and that the

buyers’ values are drawn independently.

there is a single buyer2 with item values drawn indepen-
dently from distributions D1, . . . , Dn, and whose value
for a set of items is additive. Even when there are only
two items for sale, it is known that the revenue-optimal
mechanism may involve randomization [19], even to the
extent of offering the buyer a choice among infinitely
many lotteries [15], [18]. This is troubling not only
from the perspective of analyzing optimal mechanisms,
but also from the point of view of their usefulness.
For an auction to be useful in practice, it should be
simple to describe and transparent in its execution.
Indeed, Myerson’s single-item auction is exciting not
only for its optimality, but also its practicality.3 The
danger, then, is that revenue-optimal but complex mech-
anisms for multiple items may share the fate of other
mathematically optimal designs, such as the Vickrey-
Clarke-Groves mechanism, which are very rarely used
in practice [4]. It is therefore crucial to pair the study of
revenue optimization with an exploration of the power
of simple auctions. In other words, what is the relative
strength of simple versus complex mechanisms?

The above question was posed in general by Hartline
and Roughgarden [20], and by Hart and Nisan specif-
ically for the setting of a single additive buyer [17].
They proposed the following suggestion for a simple
multi-item auction: sell each item separately, posting
a fixed price on each one. The optimal price to set
on item i is then arg maxp p(1 − Di(p)), mirroring
the single-item scenario. At first glance, it appears that
perhaps this simple approach should be optimal: the
buyer’s value for each item is sampled independently,
and her value for item i doesn’t depend at all on what
other items she receives due to additivity. There is
absolutely no interaction between the items at all from
the buyer’s perspective, so why not sell the items sep-
arately? Somewhat counter-intuitively, it turns out that
this mechanism need not achieve the optimal revenue.
For example, suppose that there are n items, and that
the buyer’s value for each item is distributed uniformly
on [0, 1]. Then the optimal price to set on a single item
is arg maxp p(1−p) = 1/2, with a per-item revenue of

2Note that if the seller has unlimited copies of each item for sale,
then an auction for a single buyer directly extends to the case of
multiple buyers.

3This simplicity again assumes regularity and independence.
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1/4 and hence a total revenue of n/4. However, there
is a different and equally straightforward mechanism
that performs much better: offer only the set of all
items at a take-it-or-leave-it price of n( 1

2 − ε) for some
small ε > 0. As n grows large, the probability that
the sum of item values exceeds this price approaches
1, and hence the buyer is almost certain to buy. This
leads to a revenue slightly less than n/2, a significant
improvement over n/4. Hart and Nisan [17] show how
to modify this example to exhibit a gap of Ω(log(n))
by replacing the uniform distribution with an Equal-
Revenue distribution.4

What is going on in this example? The inherent
problem is that the buyer’s value for the set of all
items concentrates tightly around its expectation. This
is potentially helpful for revenue generation, but the
strategy of selling items separately cannot exploit this
property. On the other hand, the mechanism designed
to target such concentration (selling only the grand
bundle at a fixed price) does very poorly in settings
where concentration doesn’t occur; Hart and Nisan show
that this grand-bundle mechanism achieves only an
Ω(n) approximation to the optimal revenue in general.
We must conclude that neither of these two simple
mechanisms approximate the optimal revenue to within
a constant factor.

Our main result is that the maximum of the revenue
generated by these two approaches — either selling all
items separately or selling only the grand bundle — is
a constant-factor approximation to the optimal revenue.
In other words, for any distribution of buyer values,
either selling items separately approximates the optimal
revenue to within a constant factor, or else bundling all
items together does. Since a good approximation to the
expected revenue of each approach can be computed
in polynomial time given an appropriate access to the
distribution (see Appendix G in the full version for
a discussion of this claim), our results furthermore
imply the first polytime constant-factor approximation
mechanism for the case of an additive buyer with
independently (and non-identically) distributed values,
even without the restriction of simplicity.5 Furthermore,
prior to our work, it was not even known if any de-

4The Equal-Revenue distribution has CDF F (x) = 0 for x ≤ 1,
and F (x) = 1− 1/x for x ≥ 1.

5When the distributions are identical, and furthermore satisfy the
Monotone Hazard Rate condition, [16] provides a PTAS. However,
other recent results based on linear programming formulations ([1],
[3], [2], [5], [8], [9], [10], [11]) all run in time polynomial in the
support of D. In many correlated settings, this is the right runtime
to shoot for, or the best one could hope for. But in our independent
setting, this runtime will be exponential in n when ideally we would
like to run in time polynomial in n. We show that if we have
meaningful access to the distributions in a way that allows us to
compute the optimal per-item reserves efficiently, then our mechanism
runs in polynomial time.

terministic mechanism could achieve a constant-factor
approximation to the optimal mechanism, even without
regard for simplicity or computational efficiency.

Main Result (Informal). In any market with a single
additive buyer and arbitrary independent item value
distributions, either selling every item separately or
selling all items together as a grand bundle generates
at least a constant fraction of the optimal revenue.

Our result nicely complements an active research area
aimed at characterizing distributions and valuations in
which simple mechanisms are precisely optimal [2],
[17], [24], [25]. In contrast to that literature, we show
that a maximum over simple mechanisms is approxi-
mately optimal, for arbitrary distributions and additive
valuations. Our result also echoes a similar line of
investigation for markets with unit-demand valuations
in which a buyer’s value for a set of items is his
maximum value for an item in the set. In this setting,
it is known [12], [13], [14] that selling items separately
achieves a constant approximation to the optimal rev-
enue. Our result illustrates that a similar approximation
can be achieved for additive buyers, provided that we
also consider selling all items together as a grand
bundle.

To obtain some intuition into our result, recall the
example above with n items and uniformly-distributed
values. This example illustrates that selling all items
separately may be a poor choice when the value for the
grand bundle concentrates around its expectation. What
we show is that, in fact, this is the only scenario in which
selling all items separately is a poor choice. We prove
that if the total value for all items does not concentrate,
then selling separately must generate a constant fraction
of optimal revenue.

Our argument makes use of a core-tail decomposition
technique introduced by Li and Yao [22] to study the
revenue of selling items separately. Roughly speaking,
the idea is to split the support of each item’s value dis-
tribution into a “tail” (those values that are sufficiently
large), and a “core” (the remainder). One then attributes
the revenue of the optimal mechanism to the revenue
extracted from values in the tail, plus the expected sum
of values in the core. To bound the optimal revenue,
it then suffices to bound each of these two quantities
separately. Li and Yao define the tail of a distribution
so that each value is in the tail with probability at
most 1/n; they use this to prove that selling all items
separately obtains a logarithmic approximation to the
optimal revenue (which is tight).

We apply a similar approach, but we define the
boundary between core and tail in a different way. We
aim to strike a balance between two opposing goals:
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we want the boundaries to be high enough that the
probability of being in the tail is low, which will imply
that the revenue from the tail is small relative to selling
items separately. At the same time, we want values
in the core to be small enough that, subject to their
sum being large, the sum must necessarily concentrate
around its expectation (which would imply that bundling
all items together achieves good revenue). To meet these
two goals, we design thresholds that are adapted to the
revenue contributions of different items, which makes
the core smaller (relative to non-adaptive thresholds)
when the value distributions are highly asymmetric.
This gives us the extra flexibility needed to derive a
constant-factor approximation.

We apply the same methodology to prove that when
there are many buyers (with valuations that are not
necessarily samples from identical distributions), selling
all items separately yields an O(log(n)) approximation
to the optimal mechanism. This bound is asymptotically
tight, as Hart and Nisan have presented a lower bound
that matches this for just a single buyer. Prior to
our work, no non-trivial bounds were known on the
revenue of selling separately to many buyers, or even on
the revenue on any class of mechanisms. Furthermore,
the observation that selling separately fails only under
concentration has implications in this setting as well: we
further show that unless the maximum attainable welfare
(of all buyers together) concentrates, that selling items
separately again obtains a constant-factor approxima-
tion. However, with many buyers the concentration of
welfare does not imply that selling the grand bundle to-
gether obtains a constant-factor approximation. Indeed,
unlike in the single-buyer case, one cannot improve the
approximation ratio by using bundling: we prove that
the Ω(log(n)) lower bound applies against the better of
selling separately and together as well. This realization
motivates our first open problem:

Open Problem 1. Is there a “simple,” approximately
optimal mechanism for many additive buyers with inde-
pendent values?

In attempt to make progress on this problem, we
turn to a subclass of deterministic mechanisms that we
call “partition mechanisms.” A partition mechanism first
partitions the items into disjoint bundles, then sells each
bundle separately. This natural class of mechanisms
clearly generalizes both selling separately and selling
together, so we study the performance of the optimal
mechanism in this class relative to that of others. On
this front, we show that unfortunately the revenue of the
optimal mechanism for many independent buyers can
still be an Ω(log n) factor larger than that of the optimal
partition mechanism, and further that revenue of the
optimal partition mechanism can be an Ω(log n) factor

larger than the better of selling separately and together.6

Following the initial submission of this paper, Yao
developed a lookahead reduction for the case of many
buyers [26]. He is then able to plug our single-buyer
results into his reduction, arguably resolving Question 1
in the affirmative. We refer the reader to [26] for further
details regarding the simplicity and approximation ratios
of his auctions.

Finally, we study the performance of selling sepa-
rately and together against partition mechanisms for
a single buyer whose values for the items may be
arbitrarily correlated. While neither class of mechanisms
can guarantee any finite factor of the optimal revenue
([7], [17]), the question remains as to whether simple
mechanisms can approximate more complex (though
still suboptimal) mechanisms in the presence of correla-
tion. To this end, we prove that selling items separately
obtains an O(log n)-approximation the optimal obtain-
able revenue by a partition mechanism, and that this
is tight. In fact, we show a gap of Ω(log n) between
the better of selling separately and together versus the
optimal partition mechanism. We include several tables
in Appendix A of the full version displaying the relative
power of the various classes of mechanisms studied in
this paper, noting here that as of our work, all upper
and lower bounds are (asymptotically) matching.

Our paper leaves several natural open problems for
future work. The first was already stated and concerns
extending our results to many buyers. A second prob-
lem concerns extending our results beyond additive
valuations. As for both unit-demand and additive val-
uations a constant-factor approximation mechanism is
now known, one could naturally ask if such a result
is also achievable for valuations that generalize both
unit-demand and additive. One potential instantiation is
a buyer with a k-demand valuation; i.e., additive, but
wants at most k items. A significantly more challenging
instantiation is the class of gross-substitute valuations.

Open Problem 2. Is there a “simple,” approximately
optimal mechanism for single buyer with a k-demand
valuation? With a gross-substitute valuation?

Finally, a third problem concerns extending our re-
sults to settings with mild (but not aribtrary) correlation.
This approach was fruitful in [14] for the “common
base-value” model.7

Open Problem 3. Is there a “simple,” approximately
optimal mechanism for a single additive buyer whose

6Clearly, no example can exhibit both gaps simultaneously as
selling separately achieves an O(logn)-approximation to the optimal
revenue.

7In the common base-value model, the buyer has n+1 distributions
D0, . . . , Dn, and samples vi from each Di. Her value for item i ∈
{1, . . . , n} is then v0 + vi, and v0 is called the “base-value.”
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value for n items is sampled from a common base-
value distribution? What about other models of limited
correlation?

II. PRELIMINARIES

The setting we consider is that of a single monopolist
seller with n heterogeneous and indivisible items for
sale to m additive, risk-neutral, quasi-linear consumers
(buyers). That is, each consumer j has a value vij for
item i. While our main results are for the setting of a
single buyer, we will define our setting more generally;
this will be useful when discussing extensions. If a ran-
domized outcome awards consumer j item i with proba-
bility πij and charges him a price qj in expectation, then
his utility for this outcome is

∑
i vijπij−qj . Each value

vij is sampled independently from a known distribution
Dij . We make no assumptions on Dij whatsoever. We
refer to D as the joint mn-dimensional distribution
over all consumers’ values for all items, Di as the m-
dimensional distribution over all consumers’ values for
item i. Furthermore, we denote by ~v a random sample
from D, ~vi a random sample from Di. We also denote
the maximum value for item i as v∗i = maxj{vij}.

We are interested in analyzing mechanisms at Bayes-
Nash equilibrium of buyer behavior, with an eye toward
maximizing revenue at equilibrium. By the revelation
principle, we can restrict attention to mechanisms that
are Bayesian Incentive Compatible (i.e., truthful).8 As
usual, we also impose the individual rationality con-
straint, saying that every buyer’s utility is non-negative
when truthful.

We use the following terminology to discuss the
revenue obtainable by various types of mechanisms,
where the first three are taken from [17].
• REV(D): The optimal revenue obtained by any

(possibly randomized) truthful mechanism when
the consumer profile is drawn from D.

• SREV(D): The optimal revenue obtained by auc-
tioning items separately when the consumer profile
is drawn from D. That is, the revenue obtained by
running Myerson’s optimal auction separately for
each item.

• BREV(D): The optimal revenue obtained by auc-
tioning the grand bundle when the consumer profile
is drawn from D. That is, the revenue obtained by
running Myerson’s optimal auction when treating
the grand bundle as a single item.

• PREV(D): The optimal revenue obtained by any
partition mechanism when the consumer profile
is drawn from D. That is, the maximal revenue
obtained by first partitioning the items into dis-
joint bundles, and then running Myerson’s optimal

8As it turns out, all of the mechanisms we describe will also satisfy
the stronger property of dominant strategy truthfulness.

auction separately for each bundle, treating each
bundle as a single item.

Given a distribution D over profiles, we will often
consider the welfare

∑
i v
∗
i of a consumer profile ~v

drawn from D. We will write VAL(D) for the expected
welfare, so that VAL(D) = E~v∼D [

∑
i v
∗
i ]. We will also

write var(D) = var~v∼D(
∑

i v
∗
i ) for the variance of the

welfare.
We will make use of some results from [17] that

provide useful bounds on REV(D). We include proofs
in Appendix B of the full version for completeness.
Lemma 1 is stated and proved directly in [17]. Lemma 2
is not directly stated nor proved, but is similar to an
implicit result from [17].

In the lemma below, we think of D and D′ as
being distributions over values for disjoint sets of items,
for the same set of m consumers. The distribution
D ×D′ then draws values for those two sets of items,
independently, from D and D′ respectively.

Lemma 1. ([17]) REV(D × D′) ≤ VAL(D) +
REV(D′).

Lemma 2. REV(D) ≤ nmSREV(D).

III. THE CORE DECOMPOSITION

We make use of an idea developed by Li and Yao [22]
called the “core” of a value distribution for a single con-
sumer. In order to obtain our stronger results for a single
consumer and also extend to many consumers, we define
the core differently but in the same spirit. The idea is to
separate each m-dimensional value distribution for each
item into the core and the tail, the tail being the part
where some consumer has an unusually high value for
the item. Then the core of the entire nm-dimensional
distribution is the product of all the cores, and the tail
is everything else.

A. Defining the Core and Prior Results

Below we formalize the notion of the core. We
introduce some notation that will be used throughout the
paper. By the “null” distribution, we mean a distribution
whose product with any other distribution is also a null
distribution, and that outputs ⊥ with probability 1.
• ri: The optimal revenue obtainable by selling just

item i (using Myerson’s optimal auction).
• r:

∑
i ri. The same as SRev(D) but cleaner to

write in formulas.
• ti: A profile of parameters, one per item, to de-

fine the separation between the core and tail of
distribution Di. We will think of ti as a multiplier
applied to ri. The core for item i will be supported
on the interval [0, tiri], and the tail for item i
will be supported on (tiri,∞). Different results
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throughout the paper will specify different choices
for ti.

• pi: Pr[v∗i > tiri], the probability that the highest
value on item i lies in the tail. Note that this may
be 0.

• DC
i : The core of Di, the conditional distribution

of ~vi conditioned on v∗i ≤ tiri. Note that this may
be the null distribution if pi = 1.

• DT
i : The tail of Di, the conditional distribution of

~vi conditioned on v∗i > tiri. Note that this may be
the null distribution if pi = 0.

• A: Throughout our notation, we will use A to
represent a subset of items. We often think of A
as the items whose values lie in the tail of their
respective distributions.

• DT
A: A is a subset of items, and DT

A is a product
distribution equal to ×i∈AD

T
i .

• DC
A: A is a subset of items, and DC

A is a product
distribution equal to ×i/∈AD

C
i .

• DA: DC
A × DT

A. Note that this product is taken
over the tail of items in A and the core of items
not in A. In other words, DA is the distribution D,
conditioned on v∗i > tiri if i ∈ A and conditioned
on v∗i ≤ tiri if i /∈ A.

• pA: Pr[~v ∈ support(DA)]. This is equal to
(
∏

i∈A pi)(
∏

i/∈A(1− pi)).
Before stating our core decomposition lemma, we

present some known results about the core. The lemmas
below were either stated explicitly in [22] or [17], or
use ideas from one of those papers. We put a citation
in the statement of such lemmas, but include all proofs
in Appendix C of the full version.

Lemma 3. ([22]) pi ≤ 1/ti for all i.

Lemma 4. ([22]) REV(DC
i ) ≤ ri and REV(DT

i ) ≤
ri/pi.

Lemma 5. ([17]) REV(D) ≤
∑

A pAREV(DA).

B. The Core Decomposition Lemma

In this section we state our Core Decomposition
Lemma, which relates the optimal revenue from a
distribution D to the revenue and welfare that can be
extracted from the tail and core of D. This result is
similar in spirit to the core lemma of [22].

Our first result, Lemma 6, is our main decomposition
lemma. The lemma states that the optimal revenue from
distribution D can be split into a contribution from
the core of D and a contribution from the tail of D.
One might hope for a bound of the form “the optimal
revenue from D is at most the optimal revenue from
the tail plus the optimal revenue from the core.” Indeed,
such a bound is attainable for a single buyer [22], but
is problematic for many buyers, see Section 4.4 and

Appendix 3 in [17] for a discussion. We will therefore
settle for a weaker bound: the optimal revenue from
the tail plus the expected welfare from the core. We
also note that the approach of Li and Yao eventually
upper bounds the optimal revenue of the core with the
expected welfare anyway.

Lemma 6 (Core Decomposition). REV(D) ≤
VAL(DC

∅ ) +
∑

A pAREV(DT
A)

Proof: By Lemma 1,

REV(DA) ≤ VAL(DC
A) + REV(DT

A)

for all A. Also, since VAL(DC
A) is the expected sum of

values for items not in A, we have

VAL(DC
A) ≤ VAL(DC

∅ ).

By Lemma 5,

REV(D) ≤
∑
A

pAREV(DA)

≤
∑
A

pA
(
VAL(DC

A) + REV(DT
A)
)

≤

(∑
A

pA

)
VAL(DC

∅ ) +
∑
A

pAREV(DT
A).

As
∑

A pA = 1 the desired result follows.

IV. REVENUE BOUNDS FOR A SINGLE BUYER

In this section we focus on the case of a single buyer,
m = 1. We will work toward proving our main result,
which is that max{SREV(D),BREV(D)} is a constant-
factor approximation to REV(D) in this setting. Our
argument will make use of the core decomposition,
described in the previous section. We will begin with
a simpler result that illustrates our techniques: that
REV(D) is at most (lnn+ 3) times SREV(D). A loga-
rithmic approximation was already established in [22];
we obtain a slightly tighter bound, but the primary
purpose of presenting this result is as a warm-up to
introduce our techniques and those of [22]. We will then
show how this bound can be improved to a constant by
considering the maximum of SREV(D) and BREV(D).

A. Warm-up: (lnn+ 3)SREV ≥ REV

Theorem 1. For a single buyer, and any c > 0,
(2 + 1/c + ln c + lnn)SREV(D) ≥ REV(D). This is
minimized at c = 1, yielding (lnn + 3)SREV(D) ≥
REV(D).

The idea of the proof is to consider the core decom-
position of D, choosing ti = cn for each item i. By
the Core Decomposition Lemma (Lemma 6), Theorem
1 follows if we can bound the optimal revenue from the
tail and the expected welfare from the core, given this
choice of {ti}i.

2525



We begin with Proposition 1, which effectively shows
that for constant c, the revenue from the tail is at most
a constant times SREV(D). The intuition behind this
result is that each item i lies in the tail with probability
pi ≤ 1/ti = 1/cn, and hence a large fraction of the
time there will be at most a single item whose value
lies in the tail. In this case, the revenue from the values
in the tail is certainly no more than SREV(D), since
the optimal mechanism can do no better than setting
the optimal price for the single item present. To bound
the revenue contribution when many values lie in the
tail, the relatively weak bound in Lemma 2 will suffice.

Proposition 1. For a single buyer, and any c > 0,
if ti = cn for all i, then

∑
A pAREV(DT

A) ≤ (1 +
1/c)SREV(D).

Proof: By Lemma 2 and Lemma 4, REV(DT
A) ≤

|A|SREV(DT
A) ≤

∑
i∈A |A|ri/pi. Therefore, we may

rewrite the sum by first summing over item i, and then
sets A containing i, obtaining:∑

A

pAREV(DT
A) ≤

∑
i

∑
A3i
|A|pAri/pi.

We now wish to interpret the term
∑

A3i |A|pA/pi.
Observe that pA/pi is exactly the probability that the
set A of items are in the tail, conditioned on i being
in the tail, and |A| is just the size of A. Summing over
all A 3 i therefore yields the expected size of the set
of items in the tail, conditioned on i being on the tail.9

Clearly this expectation is just 1 +
∑

j 6=i pj , which is
at most 1 + 1/c by Lemma 3.

As we have just observed that
∑

A3i |A|pA/pi ≤
1 + 1/c, we have now shown that

∑
A pAREV(DT

A) ≤∑
i(1+1/c)ri, which is exactly (1+1/c)SREV(D).
Having established a bound on the revenue of the

tail, we turn to the welfare of the core. For this, we
use the definition of ri = SREV(Di) to directly bound
Pr[vi > x] for all x, and then take an expectation over
the range of the core.

Proposition 2. For a single buyer, and any c > 0, if
ti = cn for all i, then (1 + ln c + lnn)SREV(D) ≥
VAL(DC

∅ ).

Proof: Note that VAL(DC
∅ ) =

∑
i VAL(DC

i ) ≤∑
i

∫ cnri
0

Pr[vi > x]dx. The last inequality would
be equality if we replaced vi with a random variable
drawn from DC

i , but since vi stochastically dominates
such a random variable, we get an inequality instead.
As the optimal revenue of Di is ri, this means that

9This observation is due to Aviad Rubinstein, and we thank him for
allowing us to include it. An earlier version of this paper presented
a (lnn + 5)-approximation in Theorem 1 and a 7.5-approximation
in Theorem 2. This observation improved those factors to (lnn+3)
and 6, respectively.

Pr[vi > x] ≤ min{1, ri/x}. So we have

VAL(DC
i ) ≤

∫ ri

0

dx+

∫ cnri

ri

ri/xdx

≤ ri + ri(ln(cnri)− ln(ri))

≤ ri(1 + lnn+ ln c)

Summing this guarantee over all i yields the proposition.

Combining Propositions 1 and 2 with Lemma 6 yields
Theorem 1.

B. Main Result: 6 ·max{SREV,BREV} ≥ REV

In this section we prove our main result, showing
that the best of selling items separately and bundling all
of them together is a constant-factor approximation to
the optimal mechanism. The proof will follow a similar
skeleton to that of Section IV-A, by proving propositions
similar to Propositions 1 and 2. The notable difference is
that we will need to be more careful in defining the core,
which makes proving the equivalent of Proposition 1
more technical.

When all Di are identical, the approach in Sec-
tion IV-A (setting each ti = cn) can be leveraged to
yield the bound O(1) ·BREV ≥ REV ([22]), but fails in
the case that a small number k of items contributes the
majority of the optimal revenue. To see the problem,
note that the definition of the core depends on the
number of items n, but this can be made arbitrarily
large by adding extra items of negligible value. The
effect is that the core is potentially larger than necessary
when value distributions are asymmetric. What we need
instead is for ti to depend on the value distribution Di.
We let ti scale inverse proportionally to ri, so that high-
revenue items are more likely to occur in the tail. This
allows us to capture scenarios in which revenue comes
primarily from one heavy item (by analyzing the tail), as
well as instances driven by the combined contribution of
many light items (by analyzing the core). Indeed, note
that if we set ti = cr/ri, then the boundary between
core and tail becomes tiri = cr = cSREV(D) for each
item. This turns out to be precisely the threshold that
we need to attain constant-factor approximation bounds
for both the core and the tail, simultaneously.

Theorem 2. For a single buyer, REV(D) ≤
6 max{SREV(D),BREV(D)}.

As in Theorem 1, our approach will be to apply
the Core Decomposition Lemma (Lemma 6) with an
appropriate choice of values ti, then bound separately
the revenue from the tail and the welfare from the core.

Proposition 3. For a single buyer, when ti = r/ri for
each i,

∑
A pAREV(DT

A) ≤ 2SREV(D).
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Proof: We begin similarly to the proof of Propo-
sition 1, using Lemma 2 and Lemma 4 to write
REV(DT

A) ≤ |A|SREV(DT
A) ≤

∑
i∈A |A|ri/pi. Again,

summing this over all A yields:

∑
A

pAREV(DT
A) ≤

∑
i

∑
A3i
|A|pAri/pi.

Just like in Proposition 1,
∑

A3i |A|pA/pi is ex-
actly the expected number of items in the tail, con-
ditioned on i being in the tail. It’s again clear that
this sum is exactly 1 +

∑
j 6=i pj . By Lemma 3, this

is at most 1 +
∑

j 6=i 1/tj . By our choice of ti, the
second term is upper bounded by 1, as tj = r/rj
and

∑
j rj = r. Therefore,

∑
A3i |A|pA/pi ≤ 2, and∑

A pAREV(DT
A) ≤ 2SREV(D).

We now turn to bounding the welfare from the core.
We will use the small range of the core to derive an up-
per bound on the variance of its welfare. This will allow
us to conclude that the welfare is highly concentrated
whenever it is sufficiently large relative to SREV(D).
Thus, if the welfare is “small” compared to SREV(D),
then selling separately extracts most of the welfare
(within the core); otherwise the welfare concentrates
and so bundling extracts most of the welfare (within
the core). The following lemma of [22] will be helpful
for this approach; its proof appears in Appendix D of
the full version.

Lemma 7. ([22]) Let F be a one-dimensional distribu-
tion with optimal revenue at most c supported on [0, tc].
Then var(F ) ≤ (2t− 1)c2.

Corollary 1. For a single buyer, and any choice of ti,
var(DC

i ) ≤ 2tir
2
i .

Proof: REV(DC
i ) ≤ ri, and the distribution

DC
i is supported on [0, tiri]. Therefore, plugging into

Lemma 7 (and relaxing) yields the desired bound.

Proposition 4. For a single buyer, when all ti = r/ri,
max{SREV(D),BREV(D)} ≥ 1

4VAL(DC
∅ ).

Proof: There are two cases to consider. If
VAL(DC

∅ ) ≤ 4r, then we have that SREV(D) = r ≥
1
4VAL(DC

∅ ) as required.
On the other hand, if VAL(DC

∅ ) ≥ 4r, then Corol-
lary 1 tells us that var(DC

i ) ≤ 2tir
2
i . Summing over all

i and recalling that ti = r/ri we get

var(DC
∅ ) =

∑
i

var(DC
i ) ≤ 2

∑
i

tir
2
i = 2r2.

So var(DC
∅ ) ≤ 2r2 and VAL(DC

∅ ) ≥ 4r. By Cheby-

shev’s inequality, we get

Pr

[∑
i

vi ≤
2

5
· VAL(DC

∅ )

]
≤ 2r2(

1− 2
5

)2 · VAL(DC
∅ )2

≤ 25r2

72r2
=

25

72
.

Since BREV(D) is at least the revenue obtained by set-
ting price 2

5 ·VAL(DC
∅ ) on the grand bundle, this implies

BREV(D) ≥ ( 2
5 ·VAL(DC

∅ )) · 4772 = 47
180 ·VAL(DC

∅ ). As
47
180 >

1
4 , BREV(D) > 1

4VAL(DC
∅ ) as required.

Combining Propositions 3 and 4 with Lemma 6
yields Theorem 2. To our knowledge, the best known
lower bound on max{SREV,BREV} vs. REV is 1.05,
provided by an example in [15]. The example has two
items with D1 = U{1, 2} and D2 = U{1, 3}, with
REV = 2.625, SREV = 2.5, and BREV = 2.25. It is an
interesting open question to close the gap between 1.05
and 6, either by tightening our analysis or providing
better lower bounds.

V. REVENUE BOUNDS FOR MULTIPLE BUYERS

Here we extend our results to multiple buyers with
valuations sampled independently (but not necessarily
identically). We will refer to this as the independent
setting, as the buyers’ valuations are independent and
furthermore each buyer’s item values are also drawn
independently. We first show in Theorem 3 that for the
independent setting, selling items separately achieves a
logarithmic (in n) approximation to the optimal rev-
enue. We next show in Theorem 5 that like in the
single buyer case, the only case in which selling items
separately fails to achieve a good approximation, is
the case that welfare is highly concentrated. Unfor-
tunately, such concentration is no longer sufficient to
achieve a constant approximation by selling all items
together. This is so because even though the welfare
is concentrated, the partition that provides such welfare
can change dramatically between realizations. Indeed,
in Proposition 8 we show not only that BREV(D)
fails to provide a constant approximation to the optimal
mechanism, but even PREV(D) fails, and this is so even
when item values are sampled i.i.d. for all items and
buyers. Finally, in Proposition 9 we show that in the
independent setting, PREV(D) cannot be approximated
well by max{SREV(D),BREV(D)}.

A. An Upper Bound: (lnn+ 6)SREV ≥ REV

We first show that selling items separately achieves a
logarithmic (in n) approximation to the optimal revenue.

Theorem 3. For arbitrarily many buyers, in the inde-
pendent setting, (2 + 2e1/4 + ln 4 + lnn)SREV(D) ≥
REV(D). (Note that 2 + 2e1/4 + ln 4 < 6.)
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Our proof will proceed via amplification. We will
begin with the (awful) bound on SREV vs. REV from
Lemma 2, then show in Theorem 4 how to amplify
any such bound into an improved bound. We will then
iterate this amplification process over and over, until we
reach the desired logarithmic approximation (which will
be a fixed point of the amplification process). To prove
the amplification theorem, we use an approach similar
to the single-buyer analysis from Section IV-A. That is,
we will apply the Core Decomposition Lemma (Lemma
6), then bound the revenue of the tail and the welfare
of the core with respect to SREV(D).

Theorem 4 (Amplification). For arbitrarily many buy-
ers in the independent setting, assume that for some
a > 1 it holds that anSREV(D) ≥ REV(D). Then, for
any c ≥ 1, (2+2e1/ca/c+ln c+ln a+lnn)SREV(D) ≥
REV(D) as well. Setting c = 1 yields (2+2e1/a+ln a+
lnn)SREV(D) ≥ REV(D).

To prove Theorem 4, we will apply the Core Decom-
position Lemma (Lemma 6), using ti = c · a · n for
each i. Theorem 4 will then follow from bounds on the
revenue from the tail and the expected welfare from the
core, which we establish in the following propositions.
The proof of Proposition 5 appears in Appendix E of
the full version, and is similar to that of Proposition 1.

Proposition 5. For arbitrarily many buyers in the
independent setting, if ti = c · a · n for all i and
anSREV(D) ≥ REV(D), then

∑
A pAREV(DT

A) ≤
(1 + 2e1/ca/c)SREV(D).

The following bound on the welfare from the core
follows in a manner similar to Proposition 2. We defer
its proof to Appendix E of the full version.

Proposition 6. For arbitrarily many buyers in the
independent setting, if ti = c · a · n for all i, then
(1 + ln c+ ln a+ lnn)SREV(D) ≥ VAL(DC

∅ ).

Theorem 4 then follows from Propositions 5 and 6,
together with Lemma 6. We now show how to prove
Theorem 3 using Theorem 4.

Proof (of Theorem 3): By Lemma 2, we may apply
Theorem 4 starting with a = m. This yields a bound
of the form a′nSREV(D) ≥ REV(D) for some new a′.
We can then apply Theorem 4 again, taking a to be
this new value a′. We can iteratively apply Theorem 4
over and over until we either reach a fixed point (with
respect to the value of a) or reach a = 1. One can
verify that, for all n ≥ 2, no a ≥ 4 is a fixed point and
that the function f(a) = (2 + 2e1/a + ln a + lnn)/n
is continuous. Therefore, we can always iterate until
a ≤ 4 and then apply Theorem 4 with a = 4, yielding
the desired bound.

B. A Concentration Result

We next present a characterization of when SREV(D)
is a constant-factor approximation to REV(D) for the
independent setting with multiple buyers. We will show
(in Theorem 5, below) that this occurs unless the
welfare of D is sufficiently well concentrated around
its expectation.

We begin with a corollary of Theorem 3, which will
be useful for our analysis.

Corollary 2. For arbitrarily many buyers in the inde-
pendent setting, 4nSREV(D) ≥ REV(D).

Proof: This is a direct application of Theorem 3
and noting that 6 + lnn ≤ 4n for all n ≥ 2.

We next prove an alternative bound on the revenue
from the tail of the distribution D, using a familiar
choice of ti. The proof, which closely follows that of
Proposition 3, appears in Appendix E of the full version.

Proposition 7. For arbitrarily many buyers in the
independent setting, if we choose ti = 4r/ri for all
i, then

∑
A pAREV(DT

A) ≤ 5e1/4SREV(D).

We are now ready to establish the claimed bound
between SREV and REV, subject to the welfare of D
not being too concentrated around its expectation.

Definition 1. We say that a one-dimensional distribu-
tion F is d-concentrated if there exists a value C such
that Prx∼F [|x− C| ≤ C/2] ≥ d.

Theorem 5. For arbitrarily many buyers in the in-
dependent setting, and any c ≥ 4

√
2, either (c +

5e1/4)SREV(D) ≥ REV(D) or the welfare of D (the
random variable with expectation VAL(D)) is (3/4 −
24
c2 )-concentrated.

Proof: Let all ti = 4r/ri. Then combining Propo-
sition 7 and Lemma 6 yields

5e1/4SREV(D) + VAL(DC
∅ ) ≥ REV(D).

There are two cases to consider. Maybe cSREV(D) ≥
VAL(DC

∅ ). In this case, we have (c+5e1/4)SREV(D) ≥
REV(D).

On the other hand, maybe VAL(DC
∅ ) ≥ cSREV(D).

In this case, Corollary 1 tells us that var(DC
i ) ≤ 2tir

2
i .

Summing over all i and recalling that ti = 4r/ri, we
get

var(DC
∅ ) ≤ 2

∑
i

tir
2
i = 2

∑
i

(4r)ri = 8r2.

So var(DC
∅ ) ≤ 8r2 and VAL(DC

∅ ) ≥ cr. By Cheby-
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shev’s inequality, we get

Pr

[∣∣∣∣∣∑
i

v∗i − VAL(DC
∅ )

∣∣∣∣∣ ≥ VAL(DC
∅ )/2

]

≤ 8r2

VAL(DC
∅ )2/4

≤ 32r2

c2r2
=

32

c2

meaning that the welfare of DC
∅ is (1− 32

c2 )-concentrated.
The last step is observing that ~v is sampled in the
support of DC

∅ with probability exactly
∏

i(1− pi). As∑
i pi ≤ 1/4 and each pi ≤ 1/4, this is minimized

when exactly one pi is 1/4 and the rest are 0, yielding∏
i(1− pi) = 3/4. So with probability at least 3/4 ~v is

in the support of DC
∅ . When this happens, the welfare is

(1− 32
c2 ) concentrated. So the welfare of D is (3/4− 24

c2 )-
concentrated.

C. A Lower Bound: PREV ≤ REV/Ω(log n) even for
i.i.d. Item Values

We next show that there is a setting with many buyers
with item valuations that are sampled i.i.d from the
same distribution, for which PREV(D) (and thus also
max{SREV(D),BREV(D)}) provides a poor approxi-
mation to REV(D).

Proposition 8. There exists a setting with n items and
many buyers, with item valuations that are sampled
i.i.d from the same distribution, for which PREV(D) ≤
REV(D)/Ω(log n).

Proof: Consider a setting with n items and
√
n

buyers with the following value distributions. For every
item i and buyer j, the distribution Di,j such that the
value is 0 with probability 1 − 1/

√
n, and with the

remaining probability it is sampled from a distribution
F with CDF F (x) = 1 − x−1 for x ∈ [1, n1/8] and
F (x) = 1 for x > n1/8 (an Equal-Revenue distribution
with all mass above n1/8 moved to an atom at n1/8). To
prove the claim we show in Lemma 12 in Appendix E
of the full version that REV(D) ∈ Ω(n log n) while
PREV(D) ∈ O(n) (actually, since SREV ∈ Ω(n) it
holds that PREV(D) ∈ Θ(n)).

D. A Lower Bound: max{SREV,BREV} ≤
PREV/Ω(log n)

We next show that there is a setting with many buyers
with item valuations that are sampled independently (but
not identically), for which max{SREV(D),BREV(D)}
provides a poor approximation to PREV(D).

Proposition 9. There exists a independent set-
ting with n items and many buyers for which
max{SREV(D),BREV(D)} ≤ PREV(D)/Ω(log n).

Proof: Fix n such that
√
n is an integer. Consider

a setting with
√
n buyers, and a partition the items to

√
n disjoint sets of size

√
n. Buyer k has value 0 for

every item that is not in the k-th set of items, and for
item in that set his value is sampled independently from
an Equal-Revenue distribution.

Clearly, SREV(D) = n. BREV(D) is the same as the
revenue that BREV(D) can get in a setting with

√
n

buyers and only
√
n items for which each item value is

sampled i.i.d. from an Equal-Revenue distribution. That
revenue is O(

√
n log

√
n). We conclude that

max{SREV(D),BREV(D)} ∈ O(n). PREV(D) on the
other hand, can bundle each of the sets of size

√
n

separately and sell it to the interested buyer, getting a
total revenue of

√
n · Ω(

√
n log

√
n) = Ω(n log n).

VI. ONE BUYER WITH CORRELATED VALUES

In this section, we study the relationship between
SREV(D), Max{SREV(D), BREV(D)}, and PREV(D)
for a single buyer with correlated values. The prior
work of [17], [7] already shows that there is no hope
of obtaining a finite bound between any of these
quantities and REV(D) because they are all determin-
istic, even when there are only two items. But it
is still important to understand the relationship be-
tween these mechanisms of varying complexity even
if their revenue cannot compare to that of the op-
timal mechanism. We show in Theorem 6 that for
any distribution D for a single buyer, possibly even
correlated, SREV(D) is a O(log n) approximation to
BREV(D), and thus also to Max{SREV(D), BREV(D)}
and PREV(D).10 We then show in Proposition 10
that this bound is tight, Max{SREV(D), BREV(D)}
≤ PREV(D)/Ω(log n). In other words, SREV(D) pro-
vides a logarithmic approximation to PREV(D), but tak-
ing max{SREV(D),BREV(D)} can’t guarantee any-
thing better. The proof of Theorem 6 and Proposition 10
appear in Appendix F of the full version.

Theorem 6. For any n-dimensional value distribution
D for a single buyer (possibly correlated across items),
BREV(D) ≤ 5 ln(n)SREV(D). Therefore, PREV(D) ≤
5 ln(n)SREV(D) as well.

Proposition 10. There exists a (correlated) distri-
bution D of the valuation of a single buyer over
n items for which max{SREV(D),BREV(D)} ≤
PREV(D)/Ω(log n).
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