
The Complexity of Distributions

Emanuele Viola
College of Computer and Information Science, Northeastern University, Boston, MA 02115.

Email: viola@ccs.neu.edu

Abstract— Complexity theory typically studies the complexity
of computing a function h(x) : {0, 1}m → {0, 1}n of a given
input x. We advocate the study of the complexity of generating
the distribution h(x) for uniform x, given random bits. Our main
results are:

(1) Any function f : {0, 1}` → {0, 1}n such that (i) each
output bit fi depends on o(logn) input bits, and (ii) ` ≤
log2

(
n
αn

)
+ n0.99, has output distribution f(U) at statistical

distance ≥ 1 − 1/n0.49 from the uniform distribution over n-bit
strings of hamming weight αn.

We also prove lower bounds for generating (X, b(X)) for
boolean b, and in the case in which each bit fi is a small-depth
decision tree.

These lower bounds seem to be the first of their kind; the proofs
use anti-concentration results for the sum of random variables.

(2) Lower bounds for generating distributions imply succinct
data structures lower bounds. As a corollary of (1), we obtain the
first lower bound for the membership problem of representing a
set S ⊆ [n] of size αn, in the case where 1/α is a power of 2: If
queries “i ∈ S?” are answered by non-adaptively probing o(logn)
bits, then the representation uses ≥ log2

(
n
αn

)
+ Ω(log n) bits.

(3) Upper bounds complementing the bounds in (1) for various
settings of parameters.

(4) Uniform randomized AC0 circuits of poly(n) size and depth
d = O(1) with error ε can be simulated by uniform randomized
AC0 circuits of poly(n) size and depth d+ 1 with error ε+ o(1)
using ≤ (logn)O(log logn) random bits.

Previous derandomizations [Ajtai and Wigderson ’85; Nisan ’91]
increase the depth by a constant factor, or else have poor seed
length.

Keywords-distribution; lower bounds; data structure; pseudoran-
domness; k-wise independent distributions

1. INTRODUCTION

Complexity theory, with some notable exceptions, typi-
cally studies the complexity of computing a function h(x) :
{0, 1}m → {0, 1}n of a given input x. We advocate the
study of the complexity of generating the output distribution
h(x) for random x, given random bits. This question can
be studied for a variety of computational models. In this
work we focus on restricted models such as small bounded-
depth circuits with unbounded fan-in (AC0) or bounded fan-
in (NC0).

An interesting example of a function h for which com-
puting h(x) is harder than generating its output distribution
is h(x) := (x,parity(x)), where parity(x) :=

∑
i xi

mod 2. Whereas small AC0 circuits cannot compute parity
(cf. [21]), Babai [4] and Boppana and Lagarias [8] show a

Supported by NSF grant CCF-0845003.

function f whose output distribution equals that of (x,
∑
i xi

mod 2) for random x ∈ {0, 1}n, and each output bit fi
depends on just 2 input bits (so f ∈ NC0):

f(x1, x2, . . . , xn)
:= (x1, x1 + x2, x2 + x3, . . . , xn−1 + xn, xn). (1)

This construction is useful for proving average-case lower
bounds, see [4] and [5, Corollary 22].

Later, Impagliazzo and Naor [22] extend the construction
(1) to show that small AC0 circuits can even generate
(x, b(x)) for more complicated functions, such as inner
product b(x) = x1 · x2 + x3 · x4 + · · · + xn−1 · xn. They
use this to construct cryptographic pseudorandom generators
computable by poly-size AC0 circuits based on the hardness
of the subset-sum problem, and similar techniques are useful
in constructing depth-efficient generators based on other
assumptions [2], [35].

We mention that cryptography provides several candi-
date functions h for which computing h(x) is harder than
generating its output distribution (e.g., take h−1 to be a
one-way permutation). However, in this work we focus on
unconditional results.

The work by Mossel, Shpilka, and Trevisan [28] provides
another example of the power of NC0 circuits in generating
distributions: NC0 circuits can generate small-bias distribu-
tions with non-trivial stretch.

The surprising nature of the above constructions, and their
usefulness (for example for average-case lower bounds and
pseudorandom generators) raises the challenge of under-
standing the complexity of generating distributions, and in
particular proving lower bounds:

Challenge 1.1. Exhibit an explicit map b : {0, 1}n → {0, 1}
such that the distribution (X, b(X)) ∈ {0, 1}n+1 cannot be
generated by poly(n)-size AC0 circuits given random bits.

Current lower-bounding techniques appear unable to
tackle questions such as Challenge 1.1 (which, to our knowl-
edge, is open even for DNFs). As we have seen, standard
“hard functions” b such as parity and inner product have the
property that (X, b(X)) can be generated exactly by small
AC0 circuits. Along the way, in this work we point out
that the same holds for any symmetric b (e.g., majority,
mod 3) (up to an exponentially small error). In fact, weaker
models often suffice.

This suggests that our understanding of even these simple
models is incomplete, and that pursuing the above direction
may yield new proof techniques.

1.1. Our results

In this work we prove several “first-of-their-kind” lower
bounds for generating distributions. We also complement
these with upper bounds, and establish connections to other
areas such as succinct data structures, derandomization, and
switching networks.

Lower bounds.: We aim to bound from below the sta-
tistical (a.k.a. variation) distance ∆ between a distribution D
on n bits and the output distribution of a “simple” function
f : {0, 1}` → {0, 1}n over random input U ∈ {0, 1}`:

∆(f(U), D) := max
T⊆{0,1}n

∣∣∣Pr
U

[f(U) ∈ T]− Pr
D

[D ∈ T]
∣∣∣

=
1
2

∑
a

|Pr[f(U) = a]− Pr[D = a]|.

In addition to being a natural measure, small statistical
distance (as opposed to equality) is sufficient in typical
scenarios (e.g., pseudorandomness). Moreover, this work
shows that statistical distance lower bounds imply lower
bounds for succinct data structure problems, and uses this
implication to derive a new lower bound for a central data
structure problem (Corollary 1.7).

The next convenient definition generalizes NC0 (which
corresponds to d = O(1)).

Definition 1.2. A function f : {0, 1}` → {0, 1}n is d-local
if each output bit fi depends on ≤ d input bits.

Our first lower bound is for generating the uniform
distribution D=α over n-bit strings with αn ones (i.e.,
hamming weight αn). This distribution arises frequently.
For example, we will see that it is related to generating
(X, b(X)) for symmetric b, and to the membership problem
in data structures.

Theorem 1.3 (Lower bound for generating “= α” locally).
For any α ∈ (0, 1) and any δ < 1 there is ε > 0 such that
for all sufficiently large n for which αn is an integer:

Let f : {0, 1}` → {0, 1}n be an (ε log n)-local function
where ` ≤ log2

(
n
αn

)
+ nδ .

Let D=α be the uniform distribution over n-bit strings
with αn ones.

Then ∆(f(U), D=α) ≥ 1−O(1/nδ/2).

For α = 1/2, Theorem 1.3 matches the 1-local identity
function f : {0, 1}n → {0, 1}n, f(u) := u, achieving
∆(U,D=1/2) ≤ 1 − O(1/

√
n) (a standard bound, see Fact

2.2). For α < 1/2, upper bounds are a bit more involved.
There are poly log(n)-local functions again achieving statis-
tical distance ≤ 1−O(1/

√
n). We refine this to also obtain

input length ` = log2

(
n
αn

)
+ n/poly log n (see [38]).

For generating (X, b(X)) for boolean b obviously no
lower bound larger than 1/2 holds. We establish 1/2− o(1)
for the function which checks if the hamming weight of X
modulo p is between 0 and (p− 1)/2. We call it “majority
modulo p,” majmod for short.

Theorem 1.4 (Lower bound for generating (X,majmod X)
locally). For any δ < 1 there is ε > 0 such that for all
sufficiently large n: Let p ∈ [0.25 log n, 0.5 log n] be a prime
number, and let majmod : {0, 1}n → {0, 1} be defined as

majmod(x) = 1⇔
∑
i≤n

xi mod p ∈ {0, 1, . . . , (p−1)/2}.

Let f : {0, 1}` → {0, 1}n+1 be an (ε log n)-local function
where ` ≤ n+ nδ .

Then ∆(f(U), (X,majmod X)) ≥ 1/2−O(1/ log n).

Theorem 1.4 is tight up to the O(.): it can be verified
that PrX [majmod(X) = 0] = 1/2 − Θ(1/ log n), hence
∆((X, 1), (X,majmod X)) ≤ 1/2 − O(1/ log n). More-
over, we show a poly log(n)-local function with statistical
distance ≤ 1/n (see [38]).

Theorems 1.3 and 1.4 may hold even when the input
length ` is unbounded, but it is not clear to us how to
prove such statistical bounds in those cases. However we
can prove weaker statistical bounds when the input length
` is unbounded, and these hold even against the stronger
model where each bit of the function f is a decision tree. We
call such a function forest, to distinguish it from a function
computable by a single decision tree.

Definition 1.5. A function f : {0, 1}` → {0, 1}n is a d-
forest if each bit fi is a decision tree of depth d.

A d-forest function is also 2d local, so the previous
theorems yield bounds for d = (log(ε log n))-forests. We
prove bounds for d = ε log n with a different argument.

Theorem 1.6 (Lower bound for generating “= 1/2” or
(X,majority X) by forest). Let f : {0, 1}∗ → {0, 1}n
be a d-forest function. Then:

(1) ∆(f(U), D=1/2) ≥ 2−O(d) − O(1/n), where D=1/2

is the uniform distribution over n-bit strings with n/2 ones.
(2) ∆(f(U), (X,majority X)) ≥ 2−O(d) −O(1/n).

A similar bound to (1) also holds for generating D=α; we
pick α = 1/2 for simplicity.

Theorem 1.6 complements the existence of d-forest func-
tions achieving statistical distance O(1/n) where d =
O(log n) for (1) and d = O(log2 n) for (2). (In fact,
d = O(log n) may hold for both, see [38].) We obtain such
functions by establishing a simple connection with results
on switching networks, especially by Czumaj et al. [13]:
we prove they imply forest upper bounds. These upper
bounds are not explicit; explicit upper bounds are known
for d = poly log n, see [38].

For AC0 circuits, there are constructions that are both
explicit and achieve exponentially small error. In particular,
building on results by Matias and Vishkin [27] and Hagerup
[20], we exhibit AC0 circuits of size poly(n) and depth
O(1) whose output distribution has statistical distance 1/2n

from the distribution (X,
∑
iXi) ∈ {0, 1}n × {0, 1, . . . , n}

for uniform X ∈ {0, 1}n.
The above lower bounds are obtained via new proof

techniques also using anti-concentration results for the sum
of random variables. We provide an overview of the proof
of Theorem 1.3 in §2.

Motivation: Succinct data structures lower bounds.:
Succinct data structures aim to compress data using a
number of bits close to the information-theoretic minimum
while at the same time supporting interesting queries. For a
number of problems, tight bounds are known, cf. [33], [37],
[34], [15]. But there remains a large gap for the notable
membership problem which asks to store a subset x of [n]
of size ` (think of x as an n-bit string of weight `) in⌈
log2

(
n
`

)⌉
+ r bits, where r is as small as possible, while

being able to answer the query “is i in x” by reading few bits
of the data structure [10], [31], [32], [33], [37]. In particular,
previous to this work there was no lower bound in the case
when ` := αn for 1/α = 2a a fixed power of two. Note
that the lower bound in [37] does not apply to that case;
intuitively, that is because the techniques there extend to the
problem of succinctly storing arrays over the alphabet [1/α],
but when 1/α = 2a no lower bound holds there: using a bits
per symbol yields redundancy r = 0.

Using different techniques, as a corollary to our lower
bound for generating the “= α” distribution (Theorem 1.3)
we obtain the first lower bound for the membership problem
in the case where the set-size is a power-of-two fraction of
the universe.

Corollary 1.7 (Lower bound for membership). For any α ∈
(0, 1) there is ε > 0 such that for all large enough n for
which αn is an integer:

Suppose one can store subsets x of [n] of size αn in m :=⌈
log2

(
n
αn

)⌉
+ r bits, while answering “is i in x” by non-

adaptively reading ≤ ε log n bits of the data structure. Then
r ≥ 0.49 log n.

Again, Corollary 1.7 is tight for α = 1/2 up to the
constant 0.49, since log2

(
n
n/2

)
= n − Θ(log n), and using

m = n bits the problem is trivial. For α < 1/2 it is not
clear what lower bound on r one should expect, as surprising
upper bounds hold for related problems [10], [32], [15]. In
particular, the recent work by Dodis, Pǎtraşcu, and Thorup
[15] yields r = 1 for storing arrays (non-adaptively reading
O(log n) bits). It remains to be seen whether their techniques
apply to the membership problem too.

We obtain Corollary 1.7 from Theorem 1.3 by establishing
the simple and general fact that lower bounds for generating

distributions somewhat close to a distribution D imply
succinct data structure lower bounds for storing support(D).
The following claim formalizes this for the membership
problem, where D = D=α is the uniform distribution over
n-bit strings with αn ones.

Claim 1.8. Suppose one can store subsets x of [n] of size
αn in m :=

⌈
log2

(
n
αn

)⌉
+ r bits, while answering “is i in

x” by non-adaptively reading q bits of the data structure.
Then there is a q-local function f : {0, 1}m → {0, 1}n such
that ∆(f(U), D=α) ≤ 1− 2−r−1.

Proof: The i-th output bit of f is the algorithm an-
swering “is i in x.” Feed f random bits. With probability(
n
αn

)
/2dlog2 (nαn)e+r ≥ 1/2r+1 the input is uniform over

encodings of subsets of [n] of size αn, in which case the
statistical distance is 0. If we distinguish in every other case,
the distance is at most 1− 1/2r+1.

Similar considerations extend to adaptive bit-probes and
cell probes, corresponding to forest functions (in the latter
case, over the alphabet [n] instead of {0, 1}). While one
could prove lower bounds for data structures without using
this approach, Claim 1.8 and Corollary 1.7 appear to suggest
an uncharted direction. Finally, we note that none of the
upper bounds mentioned earlier is an obstacle to using
Claim 1.8, since those upper bounds use input length that is
larger than the information-theoretic minimum by a quantity
polynomial in the statistical distance gap, while for Claim
1.8 a logarithmic dependence suffices. Whether the lower
bounds for generating D=α can be improved in this case is
an interesting open problem.

Pseudorandom generators.: The ability to generate a
distribution efficiently has obvious applications in pseudo-
randomness which we now elaborate upon. The ultimate
goal of derandomization of algorithms is to remove, or
reduce, the amount of randomness used by a randomized
algorithm while incurring the least possible overhead in
other resources, such as time. Typically, this is achieved by
substituting the needed random bits with the output of a
pseudorandom generator. There are two types of generators.
Cryptographic generators [6], [39] (a.k.a. Blum-Micali-Yao)
use less resources than the algorithm to be derandomized.
In fact, computing these generators can even be done in
the restricted circuit class NC0 [2]. However, unconditional
instantiations of these generators are rare, and in particular
we are unaware of any unconditional cryptographic genera-
tor with large stretch, a key feature for derandomization.
By contrast, Nisan-Wigderson generators [30] use more
resources than the algorithm to be derandomized, and this
looser notion of efficiency allows for more unconditional
results [29], [30], [26], [36]. Moreover, all of these results
yield generators with large, superpolynomial stretch.

In particular, Nisan [29] shows a generator that fools
small AC0 circuits of depth d with exponential stretch, or
seed length logO(d) n. As mentioned above, this generator

uses more resources than the circuits to be derandomized.
Specifically, it computes the parity function on ≥ logd n bits,
which requires AC0 circuits that have either depth ≥ d or
superpolynomial size. Thus, if one insists on polynomial-size
circuits, the derandomized circuit, consisting of the circuit
computing the generator and the original circuit, has depth at
least twice that of the original circuit. This constant factor
blow-up in depth appears necessary for Nisan-Wigderson
constructions.

In this work we present a derandomization which only
blows up the depth by 1, and uses a number of random bits
close to Nisan’s (an improvement in the tools we use would
let us match the number of random bits in Nisan’s result).

Theorem 1.9 (Depth-efficient derandomization of AC0).
The following holds for every d. Let f : {0, 1}∗ → {0, 1}∗
be computable by uniform randomized AC0 circuits of
poly(n)-size and depth d with error ε. Then f is computable
by uniform randomized AC0 circuits of poly(n)-size and
depth d + 1 with error ε + o(1) using ≤ (log n)O(log logn)

random bits.

Theorem 1.9 is proved by exhibiting a generator whose
output looks random to small AC0 circuits, and yet each
of its output bits can be computed by a DNF, i.e., a
depth-2 circuit (of size nO(d)). Some evidence that such a
generator may exist comes from Example (1), which implies
a generator mapping n− 1 bits to n bits that can be shown
to look random to AC0 circuits, and yet each output bit just
depends on 2 inputs bits. However, the seed length of this
generator is very poor, and it is not clear how to improve
on it. Intuitively, one would like to be able to generate the
output distribution of Nisan’s generator [29] more efficiently
than shown in [29]. We were not able to do so, and we
raise this as another challenge. (Some recent progress on
this question appears in [25].)

For Theorem 1.9, we notice that the recent line of work
by Bazzi, Razborov, and Braverman [9] shows that any
distribution that is (k := logc n)-wise independent looks
random to small AC0 circuits of depth d, for a certain
constant c = c(d) ≥ d.

We show how such distributions can be generated by
DNFs. Although the constructions of k-wise independent
distributions in [11], [1], [19] all require iterated sums of k
bits, which for k := logc n is unfeasible in our setting, we
follow an approach of Mossel, Shpilka, and Trevisan [28]
and give an alternative construction using unique-neighbor
expanders. Specifically, we use the recent unique-neighbor
expanders by Guruswami, Umans, and Vadhan [18].

More related work and discussion.: A result (we al-
ready mentioned briefly) by Applebaum, Ishai, Kushilevitz
[2] shows, under standard assumptions, that there are pseu-
dorandom distributions computable by NC0 circuits. Their
result is obtained via a generic transformation that turns a
distribution D into another “padded” distribution D′ that

is computable in NC0 and at the same time maintains
interesting properties, such as pseudorandomness (but not
stretch). The techniques in [2] do not seem to apply to
distributions such as (x,

∑
i xi), and they destroy stretch,

which prevents them from obtaining Theorem 1.9 (regardless
of the stretch of the original generator, the techniques in [2]
always produce a generator with sublinear stretch).

Under an assumption on the hardness of decoding random
linear codes, the same authors show in [3] how to construct
generators computable in NC0 that have linear stretch. Their
construction requires generating in NC0 a uniform “noise
vector” e ∈ {0, 1}n. They consider two types of noise
vectors. The first type is when e has hamming weight exactly
pn (think p = 1/4), i.e. e comes from the distribution
D=pn. The results in this paper show that it is impossible to
generate such an e in NC0, regardless of the input length,
except with constant statistical distance, see a remark in
[38] related to Theorem 1.6. The second type of noise
vector is when e is obtained by setting each bit to 1
independently with probability p. This distribution can be
trivially generated in NC0 when p = 2−t, using tn bits
of randomness, which is much larger than the entropy of
the distribution. This loss in randomness is problematic for
pseudorandom generator constructions, but the authors of
[3] make up for it by applying an extractor. (They use
an extractor computable in NC0 that is implied by [28]).
Whether such a noise vector can be generated in NC0 using
randomness close to optimal is an interesting open question.

It is perhaps worthwhile to pause to make a philosophical
remark. While the above mentioned works [2], [3] show
that, under various assumptions, one can locally generate
distributions on n bits with small entropy that look random
to any polynomial-time test, by contrast our results show
that one cannot locally generate a distribution that is close
to being uniform over n-bit strings with n/2 ones, which
superficially seems a less demanding goal.

Dubrov and Ishai [16] also address the problem of gener-
ating distributions, but focus on the randomness complexity,
as opposed to our work which emphasizes the complexity
of the generation process.

Recently and after a preliminary version [38] of this work,
Lovett and the author [25] prove that small AC0 circuits
cannot generate the uniform distribution over any good error-
correcting codes. This result does not solve Challenge 1.1 –
it does not apply to distributions like (X, b(X)) – although
it does answer a question asked in a preliminary version of
this work [38].

Organization: In §2 we provide the intuition and the
proof of our lower bound for generating the “= α” distribu-
tion locally (Theorem 1.3). The lower bound for generating
(X,majmod X) locally (Theorem 1.4) is in §3. The proofs
of the other results are omitted due to space restrictions.

2. INTUITION AND PROOF OF LOWER BOUND FOR
GENERATING “= α” LOCALLY

In this section we prove our lower bound for generating
the “= α” distribution, restated next.

Theorem 1.3 (Lower bound for generating “= α” locally).
(Restated.) For any α ∈ (0, 1) and any δ < 1 there is ε > 0
such that for all sufficiently large n for which αn is an
integer:

Let f : {0, 1}` → {0, 1}n be an (ε log n)-local function
where ` ≤ log2

(
n
αn

)
+ nδ .

Let D=α be the uniform distribution over n-bit strings
with αn ones.

Then ∆(f(U), D=α) ≥ 1−O(1/nδ/2).

2.1. Intuition for the proof of Theorem 1.3.

We now explain the ideas behind the proof of Theorem
1.3. For simplicity, we consider the case ` = n and α = 1/2,
that is, we want to prove that any (ε log n)-local function f :
{0, 1}n → {0, 1}n has output distribution f(U) for uniform
U ∈ {0, 1}n at statistical distance ≥ 1 − 1/nΩ(1) from the
distribution D=1/2 uniform over n-bit strings with n/2 ones.
For simplicity, we denote the latter by D = D=1/2.

We start with two warm-up scenarios:
Low-entropy scenario.: Suppose that f is the constant

function f(u) := 0n/21n/2. In this case, the simple test

TF := support(f) = {0n/21n/2}

gives PrU [f(U) ∈ TF] = 1 and Pr[D ∈ TF] = 1/
(
n
n/2

)
�

1/n, proving the theorem.
We call this the “low-entropy” scenario because f(U) has

low entropy.
Anti-concentration scenario.: Suppose that f(u) := u.

In this case we consider the test

TS := support(D) = {z :
∑
i

zi 6= n/2}.

Note Pr[D ∈ TS] = 0 by definition, while PrU [f(U) ∈
TS] = Pr[

∑
i Ui 6= n/2] =

(
n
n/2

)
/2n ≥ 1− O(1/

√
n) by a

standard bound (Fact 2.2). (Taking TS to be the complement
of the support of D, rather than the support itself, is useful
when pasting tests together.)

We call this the “anti-concentration” scenario because the
bound Pr[

∑
i Ui 6= n/2] ≥ 1 − O(1/

√
n) is an instance

of the general anti-concentration phenomenon that the sum
of independent, non-constant, uniform random variables is
unlikely to equal any fixed value. Specifically, the bound is
a special case (Si = Ui ∈ {0, 1}) of the following anti-
concentration inequality by Littlewood and Offord (later we
use the general case).

Fact 2.1 (Littlewood-Offord anti-concentration [23], [17]).
Let S1, S2, . . . , St be t independent random variables, where
Si is uniform over {ai, bi} for ai 6= bi. Then for any integer
c, Pr[

∑
i Si = c] ≤ O(1/

√
t).

Having described the two scenarios, we observe that
each of them, taken by itself, is not sufficient. This is
because the output distribution of the low-entropy function
f(u) = 0n/21n/2 has the same probability of passing
the anti-concentration test TS as the distribution D, and
similarly in the other case.

We would like to use a similar approach for a generic f .
The first step is to partition the input bits u of f as u = (x, y)
and rewrite (up to a permutation)

f(u) = f(x, y) = h(y)◦g1(x1, y)◦g2(x2, y)◦· · ·◦gs(xs, y),

where each function gi depends on only the single bit xi of
x (but arbitrarily on y), and has small range: gi(xi, y) ∈
{0, 1}O(d) = {0, 1}O(ε logn). A greedy approach allows
for such a decomposition with |x| = s ≥ Ω(n/d2) =
n/poly log n. Specifically, by an averaging argument a con-
stant fraction of the input bits are adjacent to ≤ O(d) output
bits. We iteratively collect such a bit xi and move in y the
≤ O(d2) other input bits adjacent to any of the input bits
xi is adjacent to.

To reduce to the previous scenarios, fix y. Two things can
happen: either ≥

√
n of the functions gi are fixed, i.e., do not

depend on xi anymore, or at least s −
√
n = n/poly log n

take two different values over the choice of xi. We think of
the first case as the low-entropy scenario. Indeed, for this
y the output distribution of f(x, y) has small support, and
we can hardwire it in the test. Here we use that the input
length n of f is close to the information-theoretic minimum
necessary to generate D, which is n−Θ(log n), and hence
removing

√
n bits of entropy yields a tiny support where D

is unlikely to land.
In the second case, intuitively, we would like to use anti-

concentration, since we have independent random variables
g1(x1, y), g2(x2, y), . . . , gs(xs, y). Specifically, we let Si :=∑
k(gi(xi, y))k denote the sum of the bits of gi, and would

like to apply the Littlewood-Offord inequality to argue that
f(U) is likely to pass the anti-concentration test TS , which
checks if the hamming weight of f is 6= n/2. However,
the following problem arises. It may be the case that, for
example,

gi(0, y) = 01, and gi(1, y) = 10,

corresponding to the constant variable Si ≡ 1. In this case,
the value of gi is not fixed, hence this is not a low-entropy
scenario, but on the other hand it does not contribute to anti-
concentration, since Si ≡ 1. In fact, precisely such functions
gi arise when running this argument on the function that
generates the uniform distribution over n-bit strings with an
even number of ones, which can be done with locality 2 via
the construction (1) in §1.

We solve this problem as follows. We add to our test
the check T0 that ≤ 2

√
n of the blocks of output bits

corresponding to gi are all 0. Since the blocks are small

(recall gi ∈ {0, 1}O(ε logn)), the distribution D will have
≥ n0.99 such blocks with high probability, and so will almost
never pass T0.

Consider however what happens with f(x, y), for a fixed
y. If ≤ 2

√
n functions gi(xi, y) can output all zeros (for

some xi ∈ {0, 1}), then f(x, y) ∈ T0 for every x, and we are
again done. Otherwise, since ≤

√
n functions gi are fixed,

we have 2
√
n−
√
n =
√
n functions gi(xi, y) that take two

different values over xi ∈ {0, 1}, and one of the two is all
zero. That means that the other value is not all zero, and
hence has a sum of bits ai > 0. We are now in the position
to apply the Littlewood-Offord anti-concentration inequality,
since we have ≥

√
n independent variables Si, each uniform

over {0, ai} for ai 6= 0. The inequality guarantees that
f(x, y) ∈ TS with probability ≥ 1 − 1/nΩ(1), and this
concludes the overview of the proof of Theorem 1.3.

We now proceed with the formal proof. We use several
times the following standard approximation of the binomial
by the binary entropy function H(x) = x log2(1/x) + (1−
x) log2(1/(1− x)):

Fact 2.2 (Lemma 17.5.1 in [12]). For 0 < p < 1, q = 1−p,
and n such that np is an integer,

1√
8npq

≤
(
n

pn

)
· 2−H(p)n ≤ 1

√
πnpq

.

2.2. Proof of Theorem 1.3

We begin by bounding some parameters in a way that is
convenient for the proof. First, we assume without loss of
generality that α ≤ 1/2 (otherwise, complement the output
of f). Next, we bound ` = Θ(H(α)n). For this, first note
that if ` ≤ log

(
n
αn

)
− log n then the size of the range of

f is at most a 1/n fraction of the support of D=1/2, and
the result follows. Hence ` ≥ log

(
n
αn

)
− log n. Fact 2.2

gives | log2

(
n
αn

)
−H(α)n| ≤ O(log n), for n large. Hence,

` = Θ(H(α)n).
Now consider the bipartite graph with the n output nodes

on one side and the ` input nodes on the other, where each
output node is connected to the d input nodes it is a function
of. Without loss of generality, each input node has degree
at least 1 (otherwise, run this proof with ` the number of
input bits actually used by f).

Claim 2.3. There is a set I of s := |I| ≥ Ω(H(α)2n/d2)
input bits such that (i) each input bit in I has degree at most
b = O(d/H(α)), and (ii) each output bit is adjacent to at
most one input bit in I .

Proof: The average degree of an input node is dn/`.
By a Markov argument, at least `/2 input nodes have degree
≤ 2dn/` = O(d/H(α)). Let K be the set of these nodes.
We obtain I ⊆ K greedily as follows: Put a v ∈ K in I ,
then remove from K any other input node adjacent to one
of the outputs that v is adjacent to. Repeat until K = ∅.

Since each output node has degree d, for each node put
in I we remove ≤ (d − 1) · O(d/H(α)) = O(d2/H(α))
others. So we collect at least (`/2)/(1 + O(d2/H(α))) =
Ω(H(α)2n/d2).

Let I by the set given by Claim 2.3, and without loss of
generality let I = [s] = {1, 2, . . . , s}. For an input node
ui ∈ [s], let Bi be the set of output bits adjacent to ui. Note
1 ≤ |Bi| ≤ O(d/H(α)) (the first inequality holds because
input nodes have degree ≥ 1).

By dividing an input u ∈ {0, 1}` in (x, y) where x are the
first s input bits and y are the other `−s, and by permuting
output bits, we rewrite f as

f(x, y) = h(y) ◦ g1(x1, y) ◦ g2(x2, y) ◦ · · · ◦ gs(xs, y),

where gi has range {0, 1}|Bi|.

Definition 2.4. We say that a function gi is y-fixed if
gi(0, y) = gi(1, y), i.e., after fixing y it does not depend
on xi anymore.

For a string z ∈ {0, 1}n, we denote by zBi the projection
of z on the bits of Bi, so that f(x, y)B2 = g2(x2, y), for
example.

Definition of the statistical test.: The statistical test T ⊆
{0, 1}n which will witness the claimed statistical distance
is the union of three tests:

TF :={z : ∃(x, y) : f(x, y) = z

and ≥ 2nδ functions gi(xi, y) are y-fixed, i ∈ [s]},
T0 :={z : zBi = 0|Bi| for ≤ 3nδ indices i ∈ [s]},

TS :={z :
∑
i

zi 6= αn};

T :=TF
⋃
T0

⋃
TS .

We now prove that the output of f is likely to pass the
test, while a uniform string of weight αn is not.

Claim 2.5. Pru[f(u) ∈ T] ≥ 1−O(1/nδ/2).

We recall the Littlewood-Offord anti-concentration in-
equality.

Fact 2.1 (Littlewood-Offord anti-concentration [23], [17]).
(Restated.) Let S1, S2, . . . , St be t independent random
variables, where Si is uniform over {ai, bi} for ai 6= bi.
Then for any integer c, Pr[

∑
i Si = c] ≤ O(1/

√
t).

To prove this fact, reduce to the case ai ≤ 0, bi > 0.
Then generate

∑
Si by first permuting variables, and then

setting exactly the first S of them to the smallest values of
their domains, where S is binomially distributed. Since for
every permutation there is at most one value of S yielding
sum c, and each value has probability ≤ O(1/

√
t), the result

follows.
Proof of Claim 2.5: Write again an input u to f as

u = (x, y). We prove that for every y we have Prx[f(x, y) ∈

T] ≥ 1−O(1/nδ/2), which implies the claimed bound. Fix
any y.

If ≥ 2nδ functions gi(xi, y) are y-fixed, then
Prx[f(x, y) ∈ TF] = 1.

Also, if there are ≤ 3nδ indices i ∈ [s] such that
gi(xi, y) = 0|Bi| for some xi, then clearly for any x the
string f(x, y) satisfies f(x, y)Bi = gi(xi, y) = 0|Bi| for
≤ 3nδ indices i. In this case, Prx[f(x, y) ∈ T0] = 1.

Therefore, assume both that there are ≤ 2nδ functions
gi(xi, y) that are y-fixed, and that there are ≥ 3nδ indices
i such that gi(xi, y) = 0|Bi| for some xi. Consequently,
there is a set J ⊆ [s] of ≥ 3nδ − 2nδ = nδ indices i
such that gi(xi, y) is not y-fixed and gi(xi, y) = 0|Bi| for
some xi ∈ {0, 1}. The key idea is that for the other value
of xi ∈ {0, 1} the value of gi(xi, y) must have hamming
weight bigger than 0, and therefore it contributes to anti-
concentration.

Specifically, fix all bits in x except those in J , and denote
the latter by xJ . We show that for any such fixing, the
probability over the choice of the bits xJ that the output
falls in TS , i.e. PrxJ [

∑
k≤n f(x, y)k 6= αn], is at least

1 − O(1/nδ/2). To see this, note that, for i ∈ J , the sum
Si of the bits in gi(xi, y) (i.e., Si :=

∑
k≤|Bi| gi(xi, y)k)

is 0 with probability 1/2 over xi and strictly bigger than 0
with probability 1/2 (since 0|Bi| is the only input with sum
0); moreover, the variables Si are independent. Writing the
sum of the bits in f(x, y) as a+

∑
i∈J Si for some integer

a which does not depend on xJ , we have

Pr
xJ∈{0,1}|J|

[f(x, y) 6= αn] = Pr
xJ∈{0,1}|J|

[
∑
i∈J

Si 6= αn− a]

≥ 1−O(1/nδ/2),

where the last inequality is by Fact 2.1.

Claim 2.6. Let D = D=α be the uniform distribution over
n-bit strings of hamming weight αn. Then PrD[D ∈ T] ≤
1/n.

The proof gives the stronger bound PrD[D ∈ T] ≤
1/2n

γ

, for a γ > 0 depending on δ.
Proof of Claim 2.6: By a union bound,

Pr
D

[D ∈ T] ≤ Pr
D

[D ∈ TF] + Pr
D

[D ∈ T0] + Pr
D

[D ∈ TS].

We separately show that each term is at most 1/(3n).
First, PrD[D ∈ TS] = 0 by definition of D.
Also, PrD[D ∈ TF] = |TF |/

(
n
αn

)
. Note each string in

TF can be described by a string of |y| + |x| − 2nδ bits,
where the first |y| are interpreted as a value for y, and the
remaining |x|−2nδ are interpreted as values for the variables
xi corresponding to functions gi(xi, y) that are not y-fixed.
Hence,

|TF | ≤ 2|y|+|x|−2nδ = 2`−2nδ ≤ 2log (nαn)−nδ ,

and
Pr
D

[D ∈ TF] ≤ 2−n
δ

≤ 1/(3n),

for large enough n.
Finally, we bound PrD[D ∈ T0]. There are several ways

of doing this; the following is self-contained. For i ∈ [s],
let Ni be the event DBi 6= 0|Bi|, over the choice of D. Let
t := 3nδ be as in the definition of T0. We have:

Pr
D

[D ∈ T0] ≤Pr[∃J ⊆ [s], |J | = s− t,

such that Ni holds for all i ∈ J]

≤
(
s

t

)
max

J⊆[s],|J|=s−t
Pr[Ni for all i ∈ J]

≤
(
s

t

)
max

J⊆[s],|J|=n/ log2 n
Pr[Ni for all i ∈ J],

(2)

where in the last inequality we use that s − t =
Ω(H(α)2n/d2) − 3nδ ≥ n/ log2 n for δ < 1, sufficiently
small ε, and sufficiently large n, using that d ≤ ε log n. Let

m := n/ log2 n.

We now bound maxJ⊆[s],|J|=m Pr[Ni for all i ∈ J].
Without loss of generality, let the maximum be achieved
for J = {1, 2, . . . ,m}. Write

Pr[Ni for all i ≤ m] =
Pr[N1] · Pr[N2|N1] · · · · · Pr[Nm|Nm−1 ∧ . . . ∧N1]. (3)

We proceed by bounding Pr[Nk|Nk−1 ∧ . . . ∧ N1] for any
k ≤ m. Recall that each set Bi has size ≤ b = O(d/H(α)).
So the event Nk−1∧ . . .∧N1 depends on ≤ (k−1)b bits. If
we condition on any value of (k − 1)b bits, the probability
that Nk is not true, i.e. that DBk = 0|Bk|, is at least

b−1∏
j=0

(1− α)n− (k − 1)b− j
n− (k − 1)b− j

≥
(

(1− α)n− kb
n

)b
≥ 1/3b ≥ 1/nO(ε/H(α)),

using our initial assumption α ≤ 1/2, and that k ≤ m =
n/ log2 n and b = O(d/H(α)) = O(ε log n/H(α)), so kb =
o(n). Hence, Pr[Nk|Nk−1 ∧ . . .∧N1] ≤ 1− 1/nO(ε/H(α)).

Plugging this bound in Equation (3), we obtain

Pr[Ni for all i ≤ m] ≤
(

1− 1/nO(ε/H(α))
)m

≤ e−n
1−O(ε/H(α))/ log2 n ≤ e−n

(1+δ)/2
,

for sufficiently small ε and large n (recall δ < 1).
Plugging this bound back in Equation (2) we get

Pr
D

[D ∈ T0] ≤ (es/t)te−n
(1+δ)/2

≤ n3nδe−n
(1+δ)/2

≤ 1/(3n),

for large enough n.

To conclude the proof of the theorem, note that the
combination of the two claims gives ∆(f(U), D) ≥ 1 −
O(1/nδ/2)− 1/n = 1−O(1/nδ/2).

This proof actually shows that for any τ > 0 and δ < 1,
we can pick the same ε for any α ∈ (τ, 1− τ).

3. LOWER BOUND FOR GENERATING (X,majmod X)
LOCALLY

In this section we prove our lower bound for generating
(X,majmod X), restated next.

Theorem 1.4 (Lower bound for generating (X,majmod X)
locally). (Restated.) For any δ < 1 there is ε > 0 such that
for all sufficiently large n: Let p ∈ [0.25 logn, 0.5 logn] be
a prime number, and let majmod : {0, 1}n → {0, 1} be
defined as

majmod(x) = 1⇔
∑
i≤n

xi mod p ∈ {0, 1, . . . , (p−1)/2}.

Let f : {0, 1}` → {0, 1}n+1 be an (ε log n)-local function
where ` ≤ n+ nδ .

Then ∆(f(U), (X,majmod X)) ≥ 1/2−O(1/ log n).

Intuition for the proof of Theorem 1.4.: The proof
follows closely that of the lower bound for generating the
“= αn” distribution (Theorem 1.3). The main difference is
that we use anti-concentration modulo p to argue that the
number of ones in the input is uniform modulo p, and thus
the output is correct with probability about 1/2.

The problem in the proof of Theorem 1.3 that unfixed
functions gi can take two values with the same hamming
weight translates here in the problem that gi can take two
values with the same weight modulo p. Locality is used to
guarantee that the output length of gi is smaller than p, and
so if one of the two values of gi is all zero the other one
must be different modulo p.

3.1. Proof of Theorem 1.4

The beginning of the proof is like that of Theorem 1.3:
we write (up to a permutation of the input and output bits):

f(x, y) = h(y) ◦ g1(x1, y) ◦ g2(x2, y) ◦ · · · ◦ gs(xs, y),

where gi has range {0, 1}|Bi| (Bi denotes the output bits of
gi, so that f(x, y)Bi = gi(xi, y)) for 1 ≤ |Bi| ≤ O(d), and
s ≥ Ω(n/d2).

For notational simplicity, we assume that the last bit of f
does not get permuted; so fn+1 is still the bit corresponding
to majmod.

Definition of the statistical test.: Let

TF :={z ∈ {0, 1}n+1 : ∃(x, y) : f(x, y) = z

and ≥ 2nδ functions gi(xi, y) are y-fixed, i ∈ [s]},
T0 :={z : zBi = 0|Bi| for ≤ 3nδ indices i ∈ [s]},
TS :={(z′, b) ∈ {0, 1}n × {0, 1} :(∑

i

z′i mod p ∈ {0, 1, . . . , (p− 1)/2}

)
xor (b = 1)} (that is, TS = “wrong answer”);

T :=TF
⋃
T0

⋃
TS .

We now prove that the output of f passes the test
with probability 1/2−O(1/ log n), while (X,majmod(X))
passes the test with probability 1/n.

Claim 3.1. Pru[f(u) ∈ T] ≥ 1/2−O(1/ log n).

The proof uses the following well-known fact, which can
be thought of as an anti-concentration result for the sum of
random variables modulo p.

Fact 3.2. Let a1, a2, . . . , at be t integers not zero modulo p.
The statistical distance between the distribution

∑
i≤t aixi

mod p for uniform x ∈ {0, 1}t and the uniform distribution
over {0, 1, . . . , p− 1} is at most

√
pe−t/p

2
.

Proof using various results: By [7, Claim 33], the
statistical distance is at most
√
pmax
a6=0
|Ex∈{0,1}t [e(a

∑
i≤t

aixi)]− EUp [e(aUp)]|,

where e(x) := e2π
√
−1x/p and Up is the uniform distribution

over {0, 1, . . . , p− 1}. Fix any a 6= 0. By [24, Lemma 12]
|Ex∈{0,1}t [e(a

∑
i≤t aixi)] ≤ e−t/p

2
; also, EUp [e(aUp)] =

0.
Proof of Claim 3.1: Write again an input u to f as

u = (x, y). We prove that for every y we have Prx[f(x, y) ∈
T] ≥ 1/2−O(1/ log n), which implies the claimed bound.
Fix any y.

If ≥ 2nδ functions gi(xi, y) are y-fixed, then
Prx[f(x, y) ∈ TF] = 1.

Also, if there are ≤ 3nδ indices i ∈ [s] such that
gi(xi, y) = 0|Bi| for some xi, then clearly for any x the
string f(x, y) satisfies f(x, y)Bi = gi(xi, y) = 0|Bi| for
≤ 3nδ indices i. In this case, Prx[f(x, y) ∈ T0] = 1.

Therefore, assume both that there are ≤ 2nδ functions
gi(xi, y) that are y-fixed, and that there are ≥ 3nδ indices
i such that gi(xi, y) = 0|Bi| for some xi. Consequently,
there is a set J ⊆ [s] of ≥ 3nδ − 2nδ = nδ indices i
such that gi(xi, y) is not y-fixed and gi(xi, y) = 0|Bi| for
some xi ∈ {0, 1}. The key idea is that for the other value of
xi ∈ {0, 1} the value of gi(xi, y) must have hamming weight
different from 0 modulo p, and therefore it contributes to
anti-concentration.

Specifically, note that gs is the only function that may
affect the output bit fn+1, corresponding to majmod. If
present, remove s from J . Fix all bits in x except those in
J , and denote the latter by xJ . We show that for any such
fixing, the probability over the choice of the bits xJ that
the output falls in TS is ≥ 1/2 − O(1/ log n). To see this,
note that, for i ∈ J , the sum Si of the bits in gi(xi, y) (i.e.,
Si :=

∑
k≤|Bi| gi(xi, y)k) is 0 with probability 1/2 over xi,

and ai 6= 0 mod p with probability 1/2. This is because
the maximum sum is

|Bi| = O(d) = O(ε log n) < p

for sufficiently small ε. Moreover, the variables Si are
independent. Writing the sum of the first n bits of f(x, y)
as a+

∑
i∈J Si for some integer a which does not depend

on xJ , we have by Fact 3.2 that, over the choice of xJ , the
statistical distance between the sum of the first n bits of f
and the uniform distribution Up over {0, 1, . . . , p− 1} is at
most √

pe−(nδ−1)/p2 ≤ 1/n,

since p = O(log n). Because the last bit b := fn+1(x, y) is
fixed (independent from xJ), and

Pr
Up

[Up ∈ {0, 1, . . . , (p− 1)/2}] = 1/2− 1/(2p)

= 1/2−Θ(1/ log n), (4)

we have

Pr
xJ

[f(x, y) ∈ TS] ≥ 1/2−O(1/ log n)− 1/n

≥ 1/2−O(1/ log n). (5)

Claim 3.3. Let D = (X,majmod(X)) for uniform X ∈
{0, 1}n. Then PrD[D ∈ T] ≤ 1/n.

The proof gives a stronger, exponential bound.
Proof of Claim 3.3: By a union bound,

Pr
D

[D ∈ T] ≤ Pr
D

[D ∈ TF] + Pr
D

[D ∈ T0] + Pr
D

[D ∈ TS].

We separately show that each term is at most 1/(3n).
First, PrD[D ∈ TS] = 0 by definition of D.
Also, PrD[D ∈ TF] = |TF |/2n. Note each string in

TF can be described by a string of |y| + |x| − 2nδ bits,
where the first |y| are interpreted as a value for y, and the
remaining |x|−2nδ are interpreted as values for the variables
xi corresponding to functions gi(xi, y) that are not y-fixed.
Hence,

|TF | ≤ 2|y|+|x|−2nδ = 2`−2nδ ≤ 2n−n
δ

,

and
Pr
D

[D ∈ TF] ≤ 2−n
δ

≤ 1/(3n),

for large enough n.

Finally, we bound PrD[D ∈ T0]. For any i ∈ [s],

Pr
X∈{0,1}n

[XBi] = 0|Bi| = 1/2|Bi| = 1/2O(d) = 1/nO(ε).

Moreover, these events are independent for different i.
Hence, recalling that s = Ω(n/d2) ≥ n/ log2 n, we have:

Pr
D

[D ∈ T0] ≤
(
s

3nδ

)
(1− 1/nO(ε))s−3nδ

≤ n3nδe−n
1−O(ε)/ log2 n ≤ 1/(3n)

for a sufficiently small ε and large enough n.
To conclude the proof of the theorem, note that the combi-

nation of the two claims gives ∆(f(U), (X,majmod X)) ≥
1/2−O(1/ log n)− 1/n = 1/2−O(1/ log n).

4. LOWER BOUNDS FOR GENERATING BY DECISION
TREES

In this section we prove Theorem 1.6, (1). We make use of
the following lemma (the Pailey-Zygmund inequality could
be used instead, see [38]).

Lemma 4.1 ([14]). There is a constant k such that for
large enough n and any k-wise independent distribution
X ∈ {0, 1}n, with probability ≥ 0.49 the variable X has
strictly less than n/2 ones.

Proof of Theorem 1.6, (1): Let k be the constant from
Lemma 4.1. Suppose the distribution X := f(U) is k-wise
independent. Then by Lemma 4.1 Pr[

∑
iXi < n/2] ≥ 0.49.

The statistical test which checks if the output bits sum to
n/2 proves the claim in this case.

Otherwise, there are k output bits of f that are not
uniformly distributed over {0, 1}k. We claim that, for any
y, the probability k output bits evaluate to y equals A/2kd

for an integer A. To see this, note that the k output bits can
be computed with a decision tree of depth dk (e.g., use the
decision tree for the first bit, then use the decision tree for
the second, and so on). Since the probability of outputting a
value y in a decision tree is the sum over all leaves labeled
with y of the probabilities of reaching that leaf, and each leaf
has probability a/2kd for some integer a, the result follows.

Therefore, if these k bits are not uniform, there there must
be an output value that has probability at least 1/2k+1/2kd.

But over D=1/2, this output combination of the k bits has
probability at most

1
2
· n/2
n− 1

· · · · · n/2
n− (k − 1)

≤ 1
2k

+ O(1/n).

So, checking if these k bits equal y we get statistical distance
≥ 1/2O(d) −O(1/n).

Acknowledgments.: I am very grateful to Rajmohan
Rajaraman and Ravi Sundaram for extensive collaboration
on this project. I also thank Artur Czumaj and Shachar
Lovett for useful discussions, and the anonymous referees
for helpful feedback.

REFERENCES

[1] N. Alon, L. Babai, and A. Itai, “A fast and simple randomized
algorithm for the maximal independent set problem,” Journal
of Algorithms, vol. 7, pp. 567–583, 1986.

[2] B. Applebaum, Y. Ishai, and E. Kushilevitz, “Cryptography in
NC0,” SIAM J. Comput., vol. 36, no. 4, pp. 845–888, 2006.

[3] ——, “On pseudorandom generators with linear stretch in
nc0,” Computational Complexity, vol. 17, no. 1, pp. 38–69,
2008.

[4] L. Babai, “Random oracles separate PSPACE from the
polynomial-time hierarchy,” Inform. Process. Lett., vol. 26,
no. 1, pp. 51–53, 1987.

[5] R. Beigel, “The polynomial method in circuit complexity,”
in 8th Annual Structure in Complexity Theory Conference.
IEEE, 1993, pp. 82–95.

[6] M. Blum and S. Micali, “How to generate cryptographically
strong sequences of pseudo-random bits,” SIAM J. on Com-
puting, vol. 13, no. 4, pp. 850–864, Nov. 1984.

[7] A. Bogdanov and E. Viola, “Pseudorandom bits for poly-
nomials,” SIAM Journal on Computing, vol. 39, no. 6, pp.
2464–2486, 2010.

[8] R. Boppana and J. Lagarias, “One-way functions and circuit
complexity,” Inform. and Comput., vol. 74, no. 3, pp. 226–
240, 1987.

[9] M. Braverman, “Poly-logarithmic independence fools AC0

circuits,” in 24th Conference on Computational Complexity
(CCC). IEEE, 2009.

[10] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and V. Srini-
vasan, “Are bitvectors optimal?” SIAM J. Comput., vol. 31,
no. 6, pp. 1723–1744, 2002.

[11] B. Chor and O. Goldreich, “On the power of two-point based
sampling,” Journal of Complexity, vol. 5, no. 1, pp. 96–106,
1989.

[12] T. Cover and J. Thomas, Elements of Information Theory
(Wiley Series in Telecommunications and Signal Processing).
Wiley-Interscience, 2006.

[13] A. Czumaj, P. Kanarek, M. Kutylowski, and K. Lorys, “De-
layed path coupling and generating random permutations via
distributed stochastic processes,” in Symposium on Discrete
Algorithms (SODA), 1999, pp. 271–280.

[14] I. Diakonikolas, P. Gopalan, R. Jaiswal, R. A. Servedio, and
E. Viola, “Bounded independence fools halfspaces,” in 50th
Symposium on Foundations of Computer Science (FOCS),
2009.

[15] Y. Dodis, M. Pǎtraşcu, and M. Thorup, “Changing base
without losing space,” in Proc. 42nd ACM Symposium on
Theory of Computing (STOC), 2010.

[16] B. Dubrov and Y. Ishai, “On the randomness complexity
of efficient sampling,” in 38th Annual ACM Symposium on
Theory of Computing (STOC), 2006, pp. 711–720.

[17] P. Erdős, “On a lemma of Littlewood and offord,” Bull. Amer.
Math. Soc., vol. 51, pp. 898–902, 1945.

[18] V. Guruswami, C. Umans, and S. P. Vadhan, “Unbalanced
expanders and randomness extractors from parvaresh–vardy
codes,” J. ACM, vol. 56, no. 4, 2009.

[19] D. Gutfreund and E. Viola, “Fooling parity tests with parity
gates,” in 8th International Workshop on Randomization and
Computation (RANDOM). Springer, 2004, pp. 381–392.

[20] T. Hagerup, “Fast parallel generation of random permuta-

tions,” in 18th Colloquium on Automata, Languages and
Programming (ICALP), 1991, pp. 405–416.

[21] J. Håstad, Computational limitations of small-depth circuits.
MIT Press, 1987.

[22] R. Impagliazzo and M. Naor, “Efficient cryptographic
schemes provably as secure as subset sum,” Journal of
Cryptology, vol. 9, no. 4, pp. 199–216, Fall 1996. [Online].
Available: citeseer.nj.nec.com/impagliazzo96efficient.html

[23] J. Littlewood and A. Offord, “On the number of real roots of
a random algebraic equation,” III. Rec. Math. [Mat. Sbornik]
N.S., vol. 12, pp. 277–286, 1943.

[24] S. Lovett, O. Reingold, L. Trevisan, and S. P. Vadhan,
“Pseudorandom bit generators that fool modular sums,” in
APPROX-RANDOM, 2009, pp. 615–630.

[25] S. Lovett and E. Viola, “Bounded-depth circuits cannot sam-
ple good codes,” 2010, manuscript.

[26] M. Luby, B. Veličković, and A. Wigderson, “Deterministic
approximate counting of depth-2 circuits,” in 2nd Israeli
Symposium on Theoretical Computer Science (ISTCS), 1993,
pp. 18–24.

[27] Y. Matias and U. Vishkin, “Converting high probability into
nearly-constant time-with applications to parallel hashing,”
in 23rd ACM Symposium on Theory of Computing (STOC),
1991, pp. 307–316.

[28] E. Mossel, A. Shpilka, and L. Trevisan, “On epsilon-biased
generators in NC0,” Random Struct. Algorithms, vol. 29,
no. 1, pp. 56–81, 2006.

[29] N. Nisan, “Pseudorandom bits for constant depth circuits,”
Combinatorica, vol. 11, no. 1, pp. 63–70, 1991.

[30] N. Nisan and A. Wigderson, “Hardness vs randomness,” J.
Computer & Systems Sciences, vol. 49, no. 2, pp. 149–167,
1994.

[31] R. Pagh, “Low redundancy in static dictionaries with constant
query time,” SIAM J. Comput., vol. 31, no. 2, pp. 353–363,
2001.

[32] ——, “On the cell probe complexity of membership and
perfect hashing,” in 33rd Annual Symposium on Theory of
Computing (STOC). ACM, 2001, pp. 425–432.

[33] M. Pǎtraşcu, “Succincter,” in 49th Symposium on Foundations
of Computer Science (FOCS). IEEE, 2008.

[34] M. Pǎtraşcu and E. Viola, “Cell-probe lower bounds for
succinct partial sums,” in 21th Symposium on Discrete Al-
gorithms (SODA), 2010.

[35] E. Viola, “On constructing parallel pseudorandom generators
from one-way functions,” in 20th Annual Conference on
Computational Complexity (CCC). IEEE, 2005, pp. 183–
197.

[36] ——, “Pseudorandom bits for constant-depth circuits with
few arbitrary symmetric gates,” SIAM Journal on Computing,
vol. 36, no. 5, pp. 1387–1403, 2007. [Online]. Available:
http://link.aip.org/link/?SMJ/36/1387/1

[37] ——, “Bit-probe lower bounds for succinct data structures,”
in 41th Annual Symposium on the Theory of Computing
(STOC). ACM, 2009.

[38] ——, “The complexity of distributions,” in 51th Symposium
on Foundations of Computer Science (FOCS), 2010, prelim-
inary version titled “Are all distributions easy?” (2009).

[39] A. Yao, “Theory and applications of trapdoor functions,” in
23rd Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 1982, pp. 80–91.

