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Abstract—The main question in the on-line chain partitioning
problem is to determine whether there exists an algorithm that
partitions on-line posets of width at most w into polynomial
number of chains – see Trotter’s chapter Partially ordered sets in
the Handbook of Combinatorics. So far the best known on-line
algorithm of Kierstead used at most (5w

− 1)/4 chains; on the
other hand Szemerédi proved that any on-line algorithm requires
at least

`

w+1
2

´

chains. These results were obtained in the early
eighties and since then no progress in the general case has been
done.

We provide an on-line algorithm that partitions orders of
width w into at most w16 log w chains. This yields the first sub-
exponential upper bound for on-line chain partitioning problem.

I. INTRODUCTION

We define the on-line chain partitioning problem in terms

of the game between two players: Spoiler and Algorithm. The

game is played in rounds. In each single round of the game

Spoiler introduces a new point x to a poset and establishes

comparabilities of x with points presented so far; the relation

between x and older points, now established, can not be

changed in the future. The Algorithm’s task is to maintain

a chain partition of the growing order: when Spoiler presents

the new point x Algorithm responds either by incorporating

x to an existing chain or by creating a new chain for x itself.

The objectives of Algorithm and Spoiler are opposed: Spoiler

builds a poset so as to force Algorithm to use as many chains

as possible; Algorithm tries to stay with the fewest number of

chains.

The value val(w) of the game on orders of width w is the

least integer n such that Algorithm has a strategy to partition

any growing order of width w into at most n chains. It may

be verified val(w) is also the largest n for which Spoiler has a

strategy to force any algorithm to use n chains on an order of

width w. Note that Dilworth’s Theorem asserts each order of

width w may be partitioned, in the off-line way, into w chains.

Therefore the value of the parameter val(w) estimates how

good on-line solutions may be obtained by on-line algorithms

in comparison to the best off-line solution. The game presented

on Fig. 1 shows that the luck of knowledge on future points

results on-line solutions are not optimal.

The first question we should ask is whether the value val(w)
is bounded? Kierstead [Kie81] was the first one who answered

this question in the affirmative way. He showed a strategy for

Algorithm that uses exponentially many chains.

Theorem 1.1: val(w) ≤ (5w − 1) /4.
A good outline of the proof of the theorem one may find in

Trotter’s chapter [Tro95] in the Handbook of Combinatorics.

There are also known some lower bounds on val(w).
Kierstead [Kie81] proved that val(w) ≥ 4w − 3, Szemerédi

(published in [Kie86]) showed val(w) ≥
(

w+1
2

)
. Very recently,

the quadratic lower bound was improved by a constant by

Bosek at al. [BKK+10]. The current record is

Theorem 1.2: val(w) ≥ (2 − o(1))
(
w+1

2

)
.

The main question in the on-line chain partitioning problem

is whether val(w) is bounded by a polynomial of w? In this

paper we present a strategy that uses w16 log w many chains.

This yields the first sub-exponential upper bound on val(w).
Theorem 1.3: val(w) ≤ w16 log w.

The exact value of val(w) is settled only for w ≤ 2. Obviously
val(1) = 1. Felsner [Fel97] proved that any order of width 2
may be partitioned on-line into 5 chains. This, together with

Kierstead’s lower bound 4w − 3 yields val(2) = 5. The value

of val(3) is not known. Again, the best known lower bound

val(3) ≥ 9 follows by Kiesrtead’s bound. Recently, Bosek

[Bos08] proved that val(3) ≤ 16.
As the main problem has been proved to be resistant for

improvements, many of its restricted versions were considered.

In particular, there are many results concerning on-line chain

partition games in which Spoiler is limited to introduce a poset

from a given class P . The following classes of posets were

investigated: interval orders and their generalizations (t+t)-
free orders, semi-orders, d-dimensional orders. In these cases

the corresponding versions in which Spoiler introduces a poset

by revealing its representation (intervals, unit intervals, linear

extensions of d-dimensional posets) were also considered.

For more details we refer the reader to the recent survey

[BKK+10].

Nevertheless, here we bring up two results we shall essen-

tially use in the proof of the main theorem. In [Fel97] Felsner

introduced a variant of the chain partition game in which the

Spoiler’s power is limited by the condition the new point

introduced is maximal in the order consisting of all points

presented so far. A poset built this way is called up-growing.

In [Fel97] Felsner settled the precise value of this game.
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Fig. 1. Spoiler forces 3 chains on an order of width 2. The white element is the new element of a round. 1, 2, 3 are chains. In the third round Algorithm
has three choices for x: The case x = 3 is an immediate win for Spoiler, the other two cases are symmetric and lead to Spoiler’s win in round 4.

Theorem 1.4: The value of the chain partition game for up-

growing orders of width w is
(
w+1

2

)
.

In the chain partition game, among all strategies for Algorithm,

probably First-Fit is one of the simplest. First-Fit identifies

chains with natural numbers and assigns the incoming point

the lowest possible number. Kierstead [Kie86] showed that

Spoiler may build an up-growing order of width 2 on which

First-Fit uses arbitrarily many chains. Nevertheless, Bosek,

Krawczyk and Szczypka [BKS10] showed that First-Fit works

surprisingly well in partitioning posets into chains provided

they exclude two incomparable chains of height t.
Theorem 1.5: First-Fit partitions (t+t)-free orders of width

w into at most 3tw2 chains.

II. THE GENERAL IDEA FOR THE MAIN THEOREM

The proof of Theorem 1.3 is split into two parts. First

we reduce the general chain partition problem to a family of

instances of a more structured problem that we call a regular

game. The second part contains a description and an analysis

of the algorithm for the regular game.

A regular game of width w is played between two players:

Spoiler and Algorithm. The description of the game is based

on the notion of a regular board. After each round of the game

a regular board is determined by a pair (A,≤) which satisfies:

(B1) (
⋃
A,≤) is a poset of width w unless A = ∅.

(B2) Each A ∈ A is an antichain of size w.

(B3) Elements in A are pairwise disjoint.

(B4) The set A is linearly ordered with respect to ⊑-relation,

where X ⊑ Y if for any x ∈ X there is y ∈ Y with

x ≤ y.
(B5) For every two consecutive antichains L, H in (A,⊑)

the comparability graph (L ∪ H, <|L∪H) (shortly written
(L, H, <)) is regular, i.e., each edge (x < y) in (L, H, <)
is extendable to a matching of size w in (L, H, <).

Each antichain A ∈ A is introduced by Spoiler during a single

round of the game as a one atomic move. For convenience we

assume that during the first two rounds of the game Spoiler

introduces two antichains ⊥ and ⊤ such that x < y for all

x ∈ ⊥, y ∈ ⊤. The antichains ⊥ and ⊤ are fixed to be

the borders of the board, i.e., further antichains are placed in

between ⊥ and ⊤ with respect to ⊑ relation; see Fig. 2.

In a single round of the regular game its board (A,≤) from
the previous round is transformed into (A+,≤+) according

to the following rules. First, Spoiler chooses two consecutive

antichains L, H in (A,⊑). Then, he introduces a set M of

size w, i.e. it sets A+ = A ∪ {M}, and extends the relation

≤ to ≤+ so that:

• ≤+|S A equals ≤,

• for any x ∈ M all immediate predecessors (successors)

of x are contained in L (H).

Obviously, (A+,≤+) must satisfy (B1)-(B5). It means, in

particular, that (L, M, <+) and (M, H, <+) are regular. Note

also that the condition ≤+|S A =≤ means in consecutive

rounds of the game the order (
⋃
A,≤) is extended in the

on-line way; see Fig. 2.

The task of Algorithm is to maintain a coloring of the

elements of the poset (
⋃
A \ (⊥ ∪⊤) ,≤) such that the points

with the same color form a chain.

The reduction from the general chain partition problem to

the regular game is done in two steps. First the on-line order

(P,≤) is split into a sequence of w suborders P1, . . . , Pw such

that the width of P1∪. . .∪Pi is at most i. This is done on-line
by assigning the new point x to the first Pi where it does not

violate the above width constraints. Each Pi is then used to

construct a regular game of width i. The coloring produced in

this regular game yields a chain partition of Pi. The essence

of the reduction is captured in the following proposition:

Proposition 2.1: If Algorithm has a strategy which uses

at most reg(v) colors on a regular game of width v for

v = 1, . . . , w, then there is an on-line algorithm that partitions

posets of width w into at most reg(1) + . . . + reg(w) chains.

In the next section we will prove the following.

Proposition 2.2: Suppose that there is a strategy that parti-

tions on-line orders of width v < w into at most alg(v) colors.
Then there exists a strategy for Algorithm in the regular game

of width w that uses at most
(

2

(
w3 + 1

2

)

+ 2

)

· 3 (2w − 1)
(
w3

)2
· w2 · alg(w/2)

colors.

The combination of the previous two propositions yields the

main result of the paper:

alg(w) ≤

≤ w ·

(

2

(
w3 + 1

2

)

+ 2

)

· 3 (2w − 1)
(
w3

)2
· w2 · alg(w/2)

≤ poly(w) · w16 log w

that may be easily strengthen to alg(w) ≤ w16 log w.

III. THE STRATEGY FOR ALGORITHM IN THE REGULAR

GAME

In this section we present techniques and main ideas that

allow us to provide a strategy for Algorithm in the regular
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Fig. 2. Two moves of Spoiler in a regular game of width 4.

game claimed in Proposition 2.2. Throughout this section we

assume that (A,≤) is a board of a regular game of width w.

We begin with a simple but crucial observation that links

the notions of optimal (of size w) chain partitions of (
⋃
A,≤)

with matchings between consecutive antichains in (A,⊑).
So suppose that C = {C1, . . . , Cw} is an optimal chain

partition of (
⋃
A,≤). Let L, H be two consecutive antichains

in (A,⊑). Then C yields a unique matching M in the regular

graph (L, H, <) defined (x < y) ∈ M if x, y ∈ Ci for some

i. On the other hand, if for any two consecutive antichains

L, H in (A,⊑) a matching M in (L, H, <) is fixed, then the

transitive closure of the union of all those matchings yields an

optimal chain partition of (
⋃

A,≤). Therefore we have also

the following observation.

Observation 3.1: Suppose that A ⊑ B ⊑ C are three

antichains from A, let X ⊆ B. Then

|A ∩ X⇓| ≥ |X | and |C ∩ X⇑| ≥ |X | .

A. Nodes and their characteristics.

In this subsection we will introduce a concept of a node;

this is somehow the basic notion that will help us to describe

changes done on the board (A,≤) of the regular game.

Definition 3.1: (X, Y, <) is a node in (L, H, <) if after

some round of the regular game L, H are consecutive in

(A,⊑) and X ∪ Y is a maximal connected component of

(L, H, <).
The next observations collects some simple but important facts

concerning nodes in (L, H, <) (see Fig. 3).

Observation 3.2: Let (X, Y, <) be a node in (L, H, <).
Then:

1) (X, Y, <) is regular, i.e., |X | = |Y | and each edge

(x < y) in (X, Y, <) is extendable to a matching from

X to Y ,

2) for all ∅ 6= S ⊆ X the inequality |S⇑ ∩ Y | ≥
min {|S| + 1, |Y |} is satisfied.

Proof: The statements follow by the facts (L, H, <) is

regular and X ∪ Y is a minimal connected component in

(L, H, <).
The characteristics of a node (X, Y, <) in (L, H, <) consists

of its width w(X, Y, <) = |X | = |Y | and its surplus (in the

Hall’s condition) s(X, Y, <) which is the largest k such that

for all non-empty S ⊆ X we have

|S⇑ ∩ Y | ≥ min {|S| + k, |Y |} .

For (X, Y, <) being a complete bipartite graph the above

condition is true for every k and we put s(X, Y, <) = ∞.
For a node (X, Y, <) its characteristics is denoted as a pair

(w(X, Y, <) , s(X, Y, <)) (see Fig. 3). Note that by Observa-

tion 3.2.(2) we have s(X, Y, <) ≥ 1 for any node (X, Y, <).
So far we defined two parameters of a given node (X, Y, <):
the width and the surplus. Here we define the third one:

vitality. A cross of a node (X, Y, <) is a set {x1, x2, y1, y2},
where x1, x2 ∈ X , y1, y2 ∈ Y , with the four edges (xi < yj)
for i, j = 1, 2 such that both edges (x1 < y1), (x2 < y2)
are extendable to a matching M in (X, Y, <). A node is

vital if it contains a cross; otherwise a node is non-vital.

We assume that for each vital node (X, Y, <) a representative

cross R(X, Y, <) is fixed (see Fig. 3).

B. A single round of a regular game

Assume that (A,≤) determines the board of a regular game

after t rounds, t ≥ 3. Suppose that in the t−th round Spoiler

has put an antichain M between L and H , i.e. L ⊑ M ⊑ H
are consecutive in (A,⊑).
We begin with the observation that describes the mutual

location of nodes in (L, H, <) and of new nodes that have

appeared either in (L, M, <) or in (M, H, <) (see Fig. 4).

For this purpose, for a node (X, Y, <) we set

int(X, Y, <) =

=
{

z ∈
⋃

A : x ≤ z ≤ y for some x ∈ X, y ∈ Y
}

.

Observation 3.3: The following statements hold:

1) for each node (X, Y, <) in (L, H, <) we have X⇑ ∩
M = Y ⇓ ∩ M, and this set is of size |X | = |Y |,

2) for each node (Z, T, <) in (L, M, <) [(M, H, <)] there
exists a unique node (X, Y, <) in (L, H, <) such that

int(Z, T, <) ⊆ int(X, Y, <) .

Proof: By Observation 3.1 and by the fact (X⇑ ∩ M)⇑∩
H ⊆ Y we get

|X | ≤ |X⇑ ∩ M | ≤ |(X⇑ ∩ M)⇑ ∩ H | ≤ |Y |

and, since |X | = |Y |, we imply all the above sets are of the

same size |X |. Similarly, we have

|Y | = |Y ⇓ ∩ M | = |(Y ⇓ ∩ M)⇓ ∩ L| = |X | .

It follows |X | = |X⇑ ∩ M | = |Y ⇓ ∩ M | = |Y |. But we

have also X⇑ ∩ M = Y ⇓ ∩ M as otherwise X⇑ ∩ H 6⊆
Y or Y ⇓ ∩ L 6⊆ X , which would contradict (X ∪ Y ) is a
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Fig. 3. A regular graph (L, H, <) and its three nodes (X1, Y1, <), (X2, Y2, <) and (X3, Y3, <). Their characteristics are equal (3, 1), (4, 1) and (2,∞),
respectively. The node (X1, Y1, <) is non-vital. The nodes (X2, Y2, <) and (X3, Y3, <) are vital; their crosses and matchings extending the crosses are
drawn with bolded lines.
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Fig. 4. Spoiler introduces M between L and H . The node (X2, Y2, <) has five subnodes.

maximal connected component in (L, H, <). It proves (1). The
statement (2) is an immediate consequence of (1).

C. A regular game tree

Observation 3.3.(2) asserts all nodes appearing during the

regular game can be organized in a tree, called a regular game

tree.

Definition 3.2: A regular game tree is a pair (TG,⊢), where
TG is a set of all nodes appearing during a regular game and

⊢ is a binary relation on TG defined (Z, T, <) ⊢ (X, Y, <)
if for (Z, T, <) (X, Y, <) is a unique node that satisfies the

statement (2) of Observation 3.3.

Obviously, the root of (TG,⊢) is the node (⊥,⊤, <) and the

leafs of (TG,⊢) are nodes that are settled between some two

consecutive antichains in (A,⊑).
The next observation says that the characteristics (width,

surplus) of nodes are weakly decreasing with respect to the

lex-order along paths in the regular game tree.

Observation 3.4: If (X, Y, <) is an ancestor of (Z, T, <)
in (TG,⊢) then:

1) w(Z, T, <) ≤ w(X, Y, <),
2) if w(Z, T, <) = w(X, Y, <) then s(Z, T, <) ≤

s(X, Y, <),
3) if (Z, T, <) is vital then (X, Y, <) is vital as well.

Proof: To complete the proof it suffices to show the

statements (1), (2), (3) are satisfied for (Z, T, <) being a

subnode of (X, Y, <). Without loss of generality, assume that

Z ⊆ X ⊆ L, T ⊆ M and Y ⊆ H for some three consecutive

antichains L ⊑ M ⊑ H in (A,⊑). By Observation 3.3 there

exists a matching from X⇑∩M to Y . Then, by transitivity of

< and by the inclusion T ⊆ (X⇑ ∩ M) we deduce (1), (2),

(3) hold.

D. An edge coloring function.

For a node (X, Y, <) ∈ TG by E(X, Y, <) we denote all

edges (x < y) in the node (X, Y, <).

Now, we make a first remark how Algorithm in the regular

game works. During round t, just before coloring the points of

an incoming antichain M , Algorithm assigns a non-empty set

of colors to each comparability edge of the incoming regular

orders (L, M, <) and (M, H, <) such that:

∗∗ for each color γ the set of points incident to an edge

colored with γ forms a chain in ≤.

Thus Algorithm maintains a coloring c : E(TG) −→ P+(Γ).
The next step is easy. To every x ∈ M Algorithm assigns a

color of any edge incidental to x. Condition ∗∗ guarantees that

all points with the same color lie in one chain.

E. An edge order.

In the next two subsections we will prove the lemmas

that bases the strategy of coloring the edges from E(TG).
In particular, we will be working with subsets of TG that

satisfy so-called ancestor-free property. We say N ⊆ TG is

ancestor-free if for all two nodes N1, N2 ∈ N the node N1

is not an ancestor of N2.

We begin with a short technical lemma; but earlier for

(X, Y, <) ∈ TG we set

int(X, Y, <) =

=
{

z ∈
⋃

A : x < z < y for some x ∈ X, y ∈ Y
}

.

Lemma 3.1: Let N ⊆ TG be an ancestor-free set. Assume

that for all N in N a matching M(N) in N is fixed. Let

P− =
⋃

A \
⋃

{int(N) : N ∈ N} .

Then there exists a chain partition {C1, . . . , Cw} of (P−,≤)
such that for all (a < b) in M(N), N ∈ N , the points a and

b are in a same chain Ci. In addition, b immediately succeeds

a in Ci (see Fig. 5).

Proof: Let

TG− = TG \ {N ′ : N ′ is a descendant of a node from N} .
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Fig. 5. {N1, N2, N3, N4} is ancestor-free. P− contains all black points. For
any leaf N in

`

TG−,⊢ |TG−

´

the edges of M(N) are: bolded if N ∈ N
or dotted if N /∈ N .

Clearly, (TG−, ⊢|TG−
) is a subtree of (TG,⊢); the nodes

from N are leafs in (TG−, ⊢|TG−
). For any leaf node N in

(TG−, ⊢|TG−
), N /∈ N , we fix a matching M(N) in N .

Then we note that the transitive closure of

⋃{
M(N) : N is a leaf in

(
TG−, ⊢|TG−

)}

yields a desired chain partition of (P−,≤).

Let N ⊆ TG be an ancestor-free set. On the set E(N ) we

define the binary relation <e:

(a < b) <e (c < d) iff b ≤ c.

Lemma 3.2: Assume N ⊆ TG is ancestor-free. Then the

pair (E(N ) ,≤e) is a partial order of width at most w3.

Proof: It is straightforward to check (E(N ) , <e) is

irreflexive and transitive. Thus (E(N ) ,≤e) is a partial order.

Let U be an antichain in (E(N ) ,≤e). We will show |U | ≤
w3. It yields (E(N ) ,≤e) is of width at most w3.

To prove |U | ≤ w3, assume that U is the set of all nodes

from N that contain at least one edge from U . We will

show |U| ≤ w and then, since each node contains at most

w2 edges, we will have |U | ≤ w3. Assume contrary that

|U| > w. For each node N ∈ U let M(N) be a matching

in N extending at least one edge from U – such a matching

exists as N is regular. By Lemma 3.1 there is a chain partition

{C1, . . . , Cw} of (
⋃
A \

⋃
{int(N) : N ∈ U} ,≤) such that

for each (x < y) ∈ M(N), N ∈ U , the points x and y are

in a same chain Ci and y immediately succeeds x in Ci. By

the pigeonhole principle there exists a chain Cj such that two

edges from U share a common chain Cj . Of course, these two

edges are comparable with respect to ≤e relation. It contradicts

U is an antichain in (E(N ) ,≤e).

F. Recursive partial orders.

A node N with characteristics (u, s) is called active if it is

vital (thus a representative cross R(N) is fixed) and it has no

ancestor in (TG,⊢) with the same characteristics. On the set

P(u,s) of all active nodes with characteristics (u, s) we define

a binary relation <(u,s) as follows (see Fig. 6):

N <(u,s) N ′ iff

∃x ∈ max(R(N)) ∃y ∈ min(R(N ′)) with x ≤ y.

A3

A1

A4

A5

A2

N1 N2

N3

N4

Fig. 6. {N1, N2, N3, N4} ⊆ P(3,1) . The set {N1, N3, N4} forms a

maximum antichain in (P(3,1),≤(3,1)). We have N3 ≤(3,1) N2.

Lemma 3.3: The pair
(
P(u,s),≤(u,s)

)
is a partial order of

width at most ⌊w/2⌋.
Proof: One may easily verify that <(u,s) is transitive and

irreflexive. Thus
(
P(u,s),≤(u,s)

)
is a partial order.

For N ∈ P(u,s) let M(N) be a matching that extends two

edges from R(N); such a matching exists by definition of

R(N). As P(u,s) is ancestor-free, by Lemma 3.1 there exists

a chain partition of (
⋃
A \

⋃
{int(N) : N ∈ P(u,s)},≤)

such that for each edge (a < b) ∈ M(N), N ∈ P(u,s), a
and b are in a same chain and in this chain b immediately

succeeds a. As two edges of any representant R(N) of N ,

N ∈ P(u,s), are settled on two different chains, we easily

deduce that a maximum antichain in (P(u,s),≤(u,s)) is of size
at most ⌊w/2⌋. Thus the width of (P(u,s),≤(u,s)) is at most

⌊w/2⌋.
Lemma 3.4: Let C ⊆ P(u,s) be a chain in

(
P(u,s),≤(u,s)

)
.

Then the partial order (E(C) ,≤e) is ((2w − 1)+(2w − 1))-
free and the width of (E(C) ,≤e) does not exceed w3.

Proof: The set C, as a subset of P(u,s), is ancestor-free.

Thus, by Lemma 3.2 we have (E(C) ,≤e) is a partial order of

width at most w3.

To prove (E(C) ,≤e) is ((2w − 1)+(2w − 1))-free we as-

sume contrary that (E(C) ,≤e) contains two incomparable

chains

(a1 < b1) <e . . . <e (a2w−1 < b2w−1)

and

(c1 < d1) <e . . . <e (c2w−1 < d2w−1) ,

where (ai < bi) ∈ Ni, (ci < di) ∈ Mi for some Ni, Mi ∈ C,
i = 1, . . . , 2w − 1. Assume that ai ∈ Ai, bi ∈ Bi, ci ∈ Ci,

di ∈ Di for some Ai, Bi, Ci, Di ∈ A. First, we will prove the

following claim.

Claim 3.1: The relation b1 < x holds for some x ∈
min(R(Nw)) (see Fig. 8).



Proof: The sentence of the claim is equivalent to

(b1⇑ ∩ Aw)∩min(R(Nw)) 6= ∅. First, we note that if for some

i ∈ {2, . . . , w − 1} we had (b1⇑ ∩ Ai) ∩ R(Ni) 6= ∅ then by

Ni ≤(u,s) Nw we would get (b1⇑ ∩ Aw) ∩ min(R(Nw)) 6= ∅
and our claim would be proved. So we may assume that for

i = 2, . . . , w − 1 we have

(b1⇑ ∩ Ai) ∩ min(R(Ni)) = ∅. (1)

With this assumption we claim that for i = 1, . . . , w − 1

|b1⇑ ∩ Bi| ≥ i. (2)

We prove (2) by induction on i. For i = 1 the inequality

(2) is obvious. Assume |b1⇑ ∩ Bi−1| ≥ i − 1 (see Fig. 7).

Let Ni = (Xi, Yi, <). In the set Ai we distinguish two sets:

Ai

Ai−1

Bi−1

Bi

ai−1

bi−1

ai

bi

ST

T⇑ ∩ Bi S⇑ ∩ Bi

b1⇑ ∩ Bi−1

(Xi, Yi, <)

Fig. 7.

S = b1⇑∩Xi and T = b1⇑∩(Ai \ Xi). The sets S and T are

disjoint. By |b1⇑ ∩ Bi−1| ≥ i − 1 and by Observation 3.1 we

imply S∪T contains at least i−1 elements. Now we consider

the sets S⇑∩Bi and T⇑∩Bi. The sets S⇑∩Bi and T⇑∩Bi are

disjoint as Ni is a node in (Ai, Bi, <). Again, by Observation

3.1 the set T⇑ ∩ Bi contains at least |T | elements. Note that

S ∩ min(R(Ni)) = ∅ by (1). Hence S  X1. But, ai ∈
S as (a1 < b1) <e (ai < bi). Then, by Observation 3.2.(2)

we have S⇑ ∩ Bi contains at least |S| + 1 elements. Thus

(S⇑ ∩ Bi) ∪ (T⇑ ∩ Bi) ⊆ (b1⇑ ∩ Bi) has at least i elements.

It proves (2).

By (2) we conclude the set (b1⇑ ∩ Bw−1) contains at

least w − 1 elements. Again, by Observation 3.1 we imply

(b1⇑ ∩ Aw) ∩ min(R(Nw)) 6= ∅. It proves b1 < x for some

x ∈ min(R(Nw)).

Quite similar we may prove the following claims (see Fig. 8):

Claim 3.2: The relation a2w−1 > x holds for some x ∈
max(R(Nw)).

Claim 3.3: The relation d1 < x holds for some x ∈
min(R(Mw)).

Claim 3.4: The relation c2w−1 > x holds for some x ∈
max(R(Mw)).

Thus, as C is a chain in
(
P(u,s),≤(u,s)

)
then either Nw ≤(u,s)

Mw and then (a1 < b1) ≤e (c2w−1 < d2w−1) or Mw ≤(u,s)

Nw and then (c1 < d1) ≤e (a2w−1 < b2w−1); see Fig. 8.

Hence the chains

c2w−1

b2w−1

R(Mw)

R(Nw)

a1

b1

c1

d1

d2w−1

a2w−1

Fig. 8.

(a1 < b1) <e . . . <e (a2w−1 < b2w−1)

and

(c1 < d1) <e . . . <e (c2w−1 < d2w−1)

are not incomparable – a contradiction.

G. Algorithm in the regular game.

We begin with a description of how Algorithm colors the

edges of all active nodes appearing in (TG,⊢):

• Algorithm generates on-line a partition of
(
P(u,s),≤(u,s)

)

into at most alg(w/2) chains (Lemma 3.3);

• For each chain C ∈
(
P(u,s),≤(u,s)

)
First-Fitpartitions

(E(C) ,≤e) into at most 3 (2w − 1)
(
w3

)2
(Lemmas 3.2

and 3.4, Theorem 1.5).

As there are at most w2 feasible characteristics (u, s), to com-

plete this task Algorithm needs λ (w) = 3 (2w − 1)
(
w3

)2
·w2 ·

alg(w/2) colors.

Here we sketch the general idea how the coloring of edges

from active nodes is extended on the whole set E(TG) so that

∗∗ is preserved.

With an active node N we associate a set D(N) of

dependent nodes. It is the set of nodes N ′ such that N
is the first active node on the path from N ′ to the root

(⊥,⊤, <) of (TG,⊢). Since (⊥,⊤, <) is active, the set

{D(N) : N is active} forms a partition of all nodes in TG.

The basic idea is to replace each of the λ(w) colors used

for the edges of active node by a bundle of µ colors. Then the

colors in the bundles associated with the edges of an active

node N are used to color all the edges from E(D(N)).
Observation 3.4.(3) yields the following property of non-

vital nodes:

• All descendants of a non-vital node are also non-vital

and therefore if N ′ is a non-vital node in D(N) then all

descendants of N ′ are also in D(N).

Although a non-vital N ′ ∈ D(N) may have a lot of descen-

dants the fact it does not have a cross results in:

• There is a greedy strategy that extends an edge coloring

of a non-vital node N ′ to an edge coloring with property

∗∗ of all edges of descendants of N ′. This extension does

not require additional colors.



V1

V2

F1

V3

F1

F2 F3

V4

F1

F2 F3

F4 F5

F1

V2

F3

F2

V3

F5

V4

F4

N = V1

– active – vital – non-vital

D(N)

Fig. 9. The tree-structure and the path of vital nodes in D(N).

Now, in order to color all the edges in D(N) it remains to

deal with the edges of vital nodes in D(N) and with their non-

vital sons (we briefly call them first-non-vital nodes). Unless

N represents a complete bipartite graph we have:

• All vital nodes in D(N) have the same characteristics as

N and they form a path in (TG,⊢) (see Fig. 9).

Note that consecutive vital nodes on a path in D(N) split

first-non-vital nodes in D(N) into two subsets. Let V be the

last vital node on this path and let A (V ) [respectively B(V )]
be the set of first-non-vital nodes F such that

int(F ) ⊆ max(V )⇑ [int(F ) ⊆ min(V )⇓].

Obviously, A (V ) and B(V ) are ancestor-free. Now, consider
(
E(A (V )) ,≤e

)
[
(
E(B(V )) ,≤e

)
] as on-line orders:

•

(
E(A (V )) ,≤e

)
[
(
E(B(V )) ,≤e

)
] is down-growing [up-

growing] order of width at most w3, see Lemma 3.2.

Hence, it can be partitioned on-line into
(
w3+1

2

)
chains,

see Theorem 1.4.

To an edge (z < t) ∈ E(A (V )) ∪ E(B(V )) we want to

assign a color that is used on some edge (x < y) in N such

that property ∗∗ is preserved. That is we need x ≤ z < t ≤ y.
Such a color assignment is certainly possible if only every

edge (x < y) ∈ N has 2
(
w3+1

2

)
colors in its bundle.

It remains to color edges of vital nodes and possibly first-

non-vital nodes that appear as sons of the last node on a path

of vital nodes in D(N). To take care of all those edges it is

sufficient to have two additional colors in the bundle of every

edge (x < y) ∈ N .

The case where N represents a complete bipartite graph can

be handled with similar ideas.

We deduce that the strategy presented above requires(

2
(
w3+1

2

)
+ 2

)

· 3 (2w − 1)
(
w3

)2
· w2 · alg(w/2) colors as

it was claimed in Proposition 2.2.
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