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Abstract—We initiate the study of testing properties of
images that correspond to sparse 0/1-valued matrices of size
n × n. Our study is related to but different from the study
initiated by Raskhodnikova (Proceedings of RANDOM, 2003),
where the images correspond to dense 0/1-valued matrices.
Specifically, while distance between images in the model studied
by Raskhodnikova is the fraction of entries on which the
images differ taken with respect to all n2 entries, the distance
measure in our model is defined by the fraction of such entries
taken with respect to the actual number of 1’s in the matrix.
We study several natural properties: connectivity, convexity,
monotonicity, and being a line. In all cases we give testing
algorithms with sublinear complexity, and in some of the cases
we also provide corresponding lower bounds.
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I. INTRODUCTION

Suppose we are given access to an image that is defined
by a 0/1-valued n × n matrix M , and would like to know
whether it has a particular property (e.g., the image it
contains corresponds to a convex shape). We may read all
pixels (bits) in the matrix and run an appropriate algorithm
on this data, thus obtaining an exact answer in at least
linear time. However, assume we are interested in a much
more efficient algorithm, and are willing to sacrifice some
precision. Namely, we seek a randomized, sublinear-time
algorithm that can distinguish with high success probability
between a matrix that has the specified property, and a matrix
that is relatively far from having the property. In other words,
we seek a property testing algorithm [24], [13].

In order to formalize the above question, we first need to
define what it means to be far from having the property, and
what access we have to the matrix. One natural definition
of distance between matrices is the Hamming weight of
their symmetric difference, normalized by the size of the
matrices, which is n2, and the most straightforward form of
accessing the matrix is probing its entries. Indeed, this model
of testing properties of images was introduced and studied
by Raskhodnikova [22], and we later discuss in more details
the results that she obtained as well as their relation to our
results.

This work was supported by the Israel Science Foundation (grant number
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The abovementioned model is most suitable for relatively
dense images, that is, images in which the number of 1-
pixels (i.e., entries (i, j) for which M [i, j] = 1) is Ω(n2).
However, if the image is relatively sparse, e.g., the number of
1-pixels is O(n), then a natural alternative is to normalize the
distance with respect to the Hamming weight of the matrix,
which we denote by w(M), rather than to normalize by
n2. We believe that this type of measurement is appropriate
in many contexts. For instance, an image of a single line
of constant width is not generally viewed as very similar
to an empty image, while it is considered so in the dense-
images model. Essentially, while the dense-images model is
suitable for testing images composed of areas, the sparse-
images model works just as well with images composed of
lines (or outlines).

An additional difference between the dense-images model
and the sparse-images model is that in the latter model we
also give the algorithm access to uniformly selected 1-pixels
(in addition to query access to entries of its choice). Observe
that if an image is sparse, then it actually makes sense to
store it in a data-structure of size O(w(M) log n) rather
than in an n×n matrix. Such space-efficient data structures
may be easily devised to support uniform sampling of 1-
pixels as well as answering queries to particular entries of M
(possibly with an overhead of O(log w(M))). In the dense
image model (as in many property testing scenarios) the
algorithm complexity is measured in terms of the number
of queries it performs, where a query is checking whether
the value of a pixel is 0 or 1. As we also allow our
algorithms access to uniformly selected 1-pixels, we will
wish to know how many of these were sampled, as well.
Thus we consider two measures of complexity – the number
of locations in the image that the algorithm queries, which
we call query complexity, and the number of uniformly
selected 1-pixels that the algorithm requests, which we call
sample complexity.

We note that the relation between the dense-images model
and the sparse-images model, is reminiscent of the rela-
tion between the dense-graphs model [13] and the sparse-
graphs model [20], [17] (which extends the bounded-degree
model [14]). We return to this relation subsequently, but first
we state our results and the techniques we apply.



A. Our results

In what follows, when we use the term “complexity” we
mean the sample and query complexity of the algorithm.
For all the properties we study, except for line imprints, the
running time of the algorithm is at most a logarithmic factor
larger, and for line imprints it is polynomial in the number
of queries (which is independent of n). The parameter ε is
the distance parameter. Namely, the algorithm should accept
with high constant probability1 every matrix that has the
property and should reject with high constant probability
every matrix M that is ε-far from having the property (that
is, more than ε·w(M) pixels in M should be modified so that
it obtains the property). We study the following properties.

• Connectivity. We say that an image M is connected
if the underlying graph induced by the neighborhood
relation between 1-pixels is connected. We give a
testing algorithm for connectivity whose complexity is
Õ

(
min

{
w(M)1/2, n2/w(M)

} · ε−2
)
. Thus, as long as

w(M) ≤ n4/3, the complexity of the algorithm increases
like the square-root of w(M), and once w(M) > n4/3

it starts decreasing as w(M) increases. We also prove
a lower bound of Ω

(
min

{
w(M)1/3, n2/w(M)

})
for

ε = Θ(1). For one-sided error algorithms (that is, al-
gorithms which accept an image with probability 1 if the
image has the property) we show a simple lower bound
of Ω(min{w(M), n2/w(M)}) (which is Ω(w(M)) for
w(M) = O(n)).

• A line (imprint). We say that an image is a line imprint
(or simply a line) if there exists a line such that all the
pixels that the line intersects are 1-pixels, and there are no
other 1-pixels in the image. We give a (one-sided error)
algorithm for testing this property whose complexity
is O(log(1/ε)/ε). This algorithm and its analysis are
presented with a more general result concerning testing
sparse images that have a small VC-dimension (and a
corresponding result about learning when the distance
measure is defined with respect to w(M) rather than the
size of the domain, which is n2). While this result is fairly
simple, it does not follow from the known transformation
of (proper) learning results to testing results [13].

• Convexity. We say that an image M is convex if there
exists a convex shape that is connected, closed and such
that all the pixels that the shape intersects in M are 1-
pixels, and there are no other 1-pixels in the image.2

We assume without loss of generality that the convex
shape is a polygon, and we consider a certain variant of
this property where we require the gradient of the lines
defining the convex shape to be of the form 1/r for an

1Whenever we refer to an event that occurs “with high constant proba-
bility”, we mean with probability at least 1 − δ for any small constant δ
of our choice.

2We assume that the shape is contained within the image area.

integer r.3 For this property we give an algorithm whose
complexity is Õ(w(M)1/4 · ε−2).

• Monotonicity. We say that an image M is mono-
tone if for every two 1-pixels (i1, j1) and (i2, j2), if
i1 < i2, then j1 ≤ j2. We give a one-sided error
algorithm for testing monotonicity whose complexity
is Õ

(
(n2/3/w(M)1/3)ε−2

)
. This algorithm improves

on a simple sampling algorithm whose complexity is
O((w(M)/ε)1/2), whenever w(M) = Ω(n4/5). (This
simple algorithm only takes uniform samples and rejects
if and only if it detects a violation of monotonicity.) For
example, when w(M) = Θ(n), the dependence on n
is reduced from n1/2 to n1/3. We also give an almost
matching lower bound. Namely, we show that any (two-
sided error) testing algorithm for monotonicity must have
complexity Ω(min{w(M)1/2, n2/3/w(M)1/3}) (for con-
stant ε).

For illustrations of the different properties, see Figure 1.
Our algorithms (with the exception of the line imprint
algorithm) are assumed to be given a constant factor estimate
of w(M). The lower bounds hold when the algorithm has
such knowledge as well. In the case of connectivity and
convexity we show how such an estimate can be obtained
without increasing the complexity of the algorithm.

B. Techniques

As noted in the previous subsection, one of our results,
concerning testing the basic property of being a line, is part
of a more general technique that exploits the small VC-
dimension of the property. While using bounds on the VC-
dimension is far from being new, there is a small “twist” in
our application. The other results differ from this one, and
though each has its own particularities, they can be viewed
as sharing a common “theme”.

This common theme is that the image is considered in
two “scales”: a coarser one and a finer one. The coarser
scale is determined by uniform samples of 1-pixels, and the
finer scale by queries. For example, in the case of testing
connectivity, the algorithm considers a partition of the input
matrix into submatrices (of size roughly

√
w(M) in each

dimension). Given a sample of 1-pixels, the algorithm first
checks whether the submatrices that contain samples are
connected. If they are not connected, then the algorithm
rejects.4 Otherwise these submatrices are considered the
backbone of the image and the algorithm now tests (with
the use of queries), whether all but a small fraction of
the submatrices in the backbone are “internally connected”,

3The requirement for a gradient of the form 1/r is imposed to avoid a
host of issues relating to the irregular shape of pixelated lines in polygons
with other gradients. It is possible that our results can be extended to such
cases almost unchanged or that the difference is of essence.

4Indeed, this causes the algorithm to have two-sided error. As noted
previously, if we require that the algorithm have one-sided error, then there
is no sublinear algorithm when the matrix is relatively sparse.)



Figure 1. Examples of the tested properties in images: (A) is a connected image, (B) is a line imprint, (C) is convex and (D) is monotone. The image
(E) is relatively far from having any of the properties.

and that all but a small fraction of the points are “well
connected” to them.

In the case of monotonicity there is no predetermined
partition, but rather the sample determines such a partition
(or causes rejection since a violation of monotonicity is
observed). The partition is such that if the image is far
from being monotone, then (almost all) the violations are
within the submatrices defined by the sample. We then show
that by performing queries within these submatrices (with
an appropriate distribution over the queries), we will detect
a violation with high probability. The convexity testing
algorithm also does not have a predetermined partition, but
its use of queries is more similar to the connectivity testing
algorithm (though it is able to exploit certain useful features
of convex images, and is hence more efficient).

C. The work of Raskhodnikova [22] and its relation to our
work

Raskhodnikova studies three properties in the dense-
images model: connectivity, convexity, and being a half-
plane. All the algorithms in [22] have complexity that is
at most quadratic in 1/ε, and have no dependence on the
size (n2) of the matrix.

We also consider the (same) property of connectivity and
give two algorithms. The first is more efficient when the
matrix is below a certain threshold of the density (i.e.,
w(M) ≤ n4/3) and the second is more efficient when the
density goes above this threshold. The second algorithm is
essentially the same as the connectivity testing algorithm
in [22] (with the appropriate setting of certain parameters),
and its analysis is similar (with certain subtleties). This algo-
rithm is also similar to the connectivity testing algorithm in
bounded-degree graphs [14] (though the analysis is naturally
different).

We also have an algorithm for testing convexity, however,
the notion we study of convexity (appropriate for sparse
images where w(M) = O(n)) and the one studied in [22]
(which considers the convex hull of 1-pixels and hence is
appropriate for dense images) are different, and so the results
are incomparable.

Finally, our testing algorithm for a line imprint can be seen
as the “sparse analog” of being a half-plane. As noted by
Raskhodnikova [22], it is possible to test whether an image

corresponds to a half-plane by attempting to learn the half-
plane. She suggests a direct approach that is more efficient
(the complexity is O(1/ε) rather than O(log(1/ε)/ε)). For
the line imprint we do take what can be seen as a “learning-
based” approach (for an appropriate notion of learning), and
it is possible that in our case an improvement is possible as
well by a direct approach.

D. The relation to models for testing graph properties

In the adjacency-matrix (dense-graphs) model [13], the
distance between two n-vertex graphs is the fraction of
entries on which their adjacency matrices differ (where the
fraction is with respect to n2). In this model the algorithm
is allowed to probe the matrix (that is, query whether there
is an edge between any pair of vertices of its choice). In the
sparse/general graphs model [20], [17], distance is measured
with respect to the number of edges, m, in the graph (or
a given upper bound on this number). The algorithm may
query any vertex of its choice on its ith neighbor (for any
i), and it may also query whether there is an edge between
any two vertices (the latter is useful when the graph is
sufficiently dense).

Thus there is a similarity in the way the sparse/general
graphs model relates to the dense-graphs model and the
way the sparse-images model relates to the dense-images
model. We also note that for both types of objects (graphs
and images) while some properties are meaningful only in
one model (dense or sparse), there are properties that are
of interest in both models. For example, in the case of
graphs, the property of bipartiteness (studied in [13], [2],
[14], [17]) exhibits an interesting behavior when considering
the whole spectrum of graph densities. In particular, as long
as the number of edges, m in the graph is below n3/2,
the complexity grows like n1/2, and once the edge-density
increases, the complexity behaves like n2/m (and there is
an almost tight corresponding lower bound). In the case of
images, the property of connectivity exhibits a somewhat
similar behavior (as discussed previously).

E. Other related work

In addition to the work of Raskhodnikova [22] (which
has been discussed above), Kleiner et al. [18] study testing
partitioning properties of dense images, and there have been
quite a few works on testing geometric properties, and in



particular convexity, in various models [9], [21], [5], [7],
[6]. The property of monotonicity has been studied quite
extensively in the context of functions [9], [3], [12], [8],
[1], [15], [11], [10], [16], [4], [19].
F. Organization

Due to space constraints we have chosen to mainly focus
on one property - connectivity. For the other properties we
provide a short overview. All missing details can be found
in the full version of this paper [23].

II. TESTING CONNECTIVITY

For a {0, 1} matrix M , consider the underlying undirected
graph G(M) = (V (M), E(M)), where V (M) = {(i, j) :
M [i, j] = 1} (so that |V (M)| = w(M)) and E(M) consists
of all pairs (i1, j1) �= (i2, j2) in V (M) such that |i1−i2| ≤ 1
and |j1 − j2| ≤ 1. We say that M is connected if the under-
lying graph G(M) is connected. Given the correspondence
between M and G(M) we shall interchangeably refer to 1-
pixels in M and vertices of G(M). We shall assume that
w(M) ≥ 1, since we can detect that w(M) = 0 by asking
for a single sample 1-pixel (and getting none), in which case
we can accept. For the sake of simplicity, unless it affects
the analysis (by more than introducing constant factors in
the complexity), we ignore floors and ceilings. Note that as
defined above, two pixels that are neighbors on a diagonal
are considered neighbors.

In this section we describe an algorithm for testing
connectivity whose sample complexity, query complexity
and running time are Õ

(
min

{
w(M)1/2, n2/w(M)

}) ·
poly(1/ε). Thus, as long as w(M) ≤ n4/3, the complexity
increases with w(M)1/2, and once w(M) goes above n4/3,
the complexity starts decreasing. We later prove a lower
bound of Ω(min{w(M)1/3, n2/w(M)}) queries (for a con-
stant ε) on the complexity of any two-sided error algorithm.
We also show that if one requires that the algorithm have
one-sided error, then there is no sublinear-time algorithm
(that is, there is a lower bound of Ω(w(M))).

A. The algorithm

We start by assuming that we are given a constant
factor estimate, ŵ of w(M). We shortly discuss in Sub-
section II-A2 how this assumption can be removed.

We describe an algorithm such that given w(M)/c ≤
ŵ ≤ c · w(M) (for some fixed and known constant c), the
algorithm has query and sample complexities, as well as
running time, Õ(

√
w(M)ε−2). We may thus assume that

ε = ω(1/
√

w(M)) or else, we can take a single sample 1-
pixel, run a Breadth First Search (BFS) to find its connected
component in G(M) by performing O(1/ε2) = O(w(M))
queries, and then take an additional sample of Θ(1/ε) 1-
pixels to verify that are are no (few) 1-pixels that do not
belong to this component. In Subsection II-A1 we shortly
discuss the case that w(M) is relatively large (the threshold
is roughly around w(M) = n4/3). In this case, an alternative

(and simpler) algorithm, which generalizes the algorithm
in [22], has better performance (and in particular improves
as w(M) increases).

The high level idea of the algorithm is as follows: the al-
gorithm tries to find evidence that the tested matrix M is not
connected, where the evidence comes in one of the following
two forms. (1) “Hard” evidence, in the form of a small
connected component in G(M); (2) “Soft” (“statistical”)
evidence in the form of more than one connected component
when viewing the matrix at a “coarser” resolution. Namely,
if we partition the matrix into (equal-size) submatrices, and
take a sample of 1-pixels, then we can define a graph
over those submatrices that contain at least one sample 1-
pixel similarly to the way it was defined for single 1-pixels
(i.e., G(M)). The algorithm checks whether this “backbone’
graph is connected. Evidence against connectivity of this
type is “soft”, or “statistical” since it is possible that the
matrix is connected but the sample missed some submatrix,
causing the backbone graph to be disconnected. Basing the
decision of the algorithm on the second type of evidence
and not only on the first, is what makes the algorithm have
two-sided error. Evidence of the “hard” form is obtained by
performing several BFS’s on G(M) (note that the neighbors
of a vertex in G(M) that corresponds to an entry (i, j) in
M can be obtained by performing 8 queries to M ).

Algorithm 1: Testing connectivity (Version I)

1) Consider a fixed partition of M into equal-size sub-
matrices of dimensions s×s where s =

√
ŵ/c (recall

that ŵ ≤ c · w(M) and that the constant c is known
to the algorithm).

2) Take a sample S1 of t1 = Θ
(√

ŵ · log(ŵ)
)

uniformly
distributed 1-pixels in M and consider all non-empty
submatrices in the abovementioned partition (that is,
all submatrices that contain a sample 1-pixel). Let
B(S1) be the (“backbone”) graph whose vertices are
the non-empty submatrices, and where there is an
edge between two submatrices if they are adjacent
(horizontally, vertically, or diagonally). If B(S1) is not
connected, then REJECT (otherwise, continue).

3) Select, uniformly at random, t2 = Θ(log(ŵ)/ε) non-
empty submatrices (vertices in B(S1)). For each sub-
matrix selected, consider the first sample 1-pixel that
fell into the submatrix, and perform a BFS in G(M)
starting from the vertex that correspond to this 1-pixel.
Stop once the BFS reaches at least 8

√
c · ŵ/ε vertices

in G(M) or the BFS gets “stuck” (a small connected
component in G(M) is detected). In the latter case
REJECT (otherwise, continue).

4) Take an additional sample, S3, of t3 = Θ(1/ε) 1-
pixels. If any selected 1-pixel belongs to a submatrix
that does not neighbor a submatrix in the backbone (a
vertex of B(S1)), then REJECT. Otherwise, perform
a BFS starting from each sample 1-pixel in S3 as



3

1

2

1

4

5

6

7

8

2 3 4 5 6 7 8

Figure 2. An illustration for the execution of Algorithm 1. The partition into submatrices is marked by a grid of dashed lines. The sampled 1-pixels
(in either Step 3 or in Step 4) are marked by dark filled pixels, and the queried entries that are answered by 1 in the course of the BFS’s are marked by
lighter filled pixels. The backbone is outlined by a bold line. Note that the marked pixels outside the backbone correspond to a BFS performed in Step 4.

described in the previous step. If a small connected
component is found then REJECT.

5) If no step caused rejection, then ACCEPT.
For an illustration of a (successful) execution of the algo-
rithm, see Figure 2.

Theorem 2.1: Algorithm 1 is a (two-sided error) testing
algorithm for connectivity. Its sample and query complex-
ities as well as its running time are Õ

(√
ŵ · ε−2

)
=

Õ
(√

w(M) · ε−2
)

.
Proof: The sample complexity of the algorithm is

t1 + t3 = O
(√

ŵ · log(ŵ) · ε−1
)

. Its query complexity is

O(log(ŵ) · ε−1) · O(
√

ŵ · ε−1) = O
(√

ŵ · log(ŵ) · ε−2
)

,

since it performs t2 + t3 = O(log(ŵ) · ε−1) searches (in
Steps 3 and 4), in each search it reaches O(

√
ŵ·ε−1) vertices

in G(M), and determining all neighbors of a vertex in G(M)
can be done by performing 8 queries to M . The algorithm
can be implemented so that it run in time Õ

(√
ŵ · ε−2

)
.

We turn to analyzing the correctness of the algorithm. In
all that follows, when we refer to submatrices, we mean one
of the (n/s)2 = c ·n2/ŵ submatrices in the partition defined
by the algorithm. For each s× s submatrix, we say that the
submatrix is heavy if the number of 1-pixels in it is at least
s/2 (recall that s =

√
ŵ/c). Otherwise it is light. By our

choice of the sample size t1 = Θ(
√

ŵ log(ŵ)), with high
constant probability, in Step 2 we’ll get at least one sample
1-pixel from each heavy submatrix. We shall say in such a
case that the sample S1 is typical.

Consider first the case that M is connected. We claim
that the probability that it is rejected is at most a small
constant. First we observe that M cannot be rejected due
to a small connected component of G(M) being found
in Step 3 or Step 4, since G(M) consists of a single
connected component of size w(M) (and we assume that
ε = ω(1/

√
ŵ) = ω(1/

√
w(M)). Next we note that if S1 is

typical, then the backbone graph B(S1) must be connected.
This is true since each submatrix is of size s × s for
s =

√
ŵ/c, so the existence of more than one connected

component in B(S1) implies that some heavy submatrix
was not hit (under the premise that M is connected).5 By
the same reasoning, if S1 is typical, then all 1-pixels in
the sample selected in Step 4 belong to submatrices that
belong to or neighbor the backbone submatrices. Since the
probability that S1 is not typical is upper bounded by a small
constant, M will be accepted with high constant probability.

We now turn to deal with the case that M is ε-far
from being connected. If the backbone graph B(S1) is not
connected, then M is rejected in Step 2 of the algorithm,
so we consider the case that B(S1) is connected. We say
that a submatrix in the backbone is “reliable” if it would

5To see this, consider the 1-pixels in the area of two connected compo-
nents in B(S1), C1 and C2. As G(M) is connected, there must be at least
one path between these pixels in G(M), and as B(S1) isn’t connected, the
length of this path must be at least s. Let us trace this path until it leaves
the submatrices neighboring C1. In particular, consider the last s 1-pixels
in this subpath. These pixels pass through no more than 2 submatrices and
so one of these is heavy. Such a heavy submatrix must be hit by S1 in a
typical sample.



pass the BFS test performed by the algorithm in Step 3
(starting from the first sample 1-pixel that fell into it).
Otherwise it is “unreliable”. Similarly, we say that a 1-
pixel is “well connected” to the backbone if it would pass
the test performed in Step 4 of the algorithm (that is, it
belongs to a submatrix that neighbors one of the backbone
submatrices, and a BFS that starts from it does not detect a
small connected component).

Suppose that the number of submatrices in the backbone
that are unreliable is greater than (ε/8)

√
w(M) ≥ (ε/8) ·√

ŵ/c. Recall that the total number of submatrices in the

backbone is at most t1 = Θ
(√

ŵ · log(ŵ)
)

. Therefore,
one of these submatrices is selected with high constant
probability in Step 3 of the algorithm (where Θ (log(ŵ/ε))
submatrices of the backbone are selected), causing the
algorithm to reject. Similarly, if the fraction of 1-pixels that
are not well-connected to the backbone is greater than ε/8,
then with high constant probability we’ll obtain such a 1-
pixel in Step 4 of the algorithm and reject.

We next show that if both the number of unreliable
submatrices in the backbone is at most (ε/8)

√
w(M), and

the fraction of 1-pixels that are not well-connected to the
backbone is at most ε/8, then M is ε-close to being
connected. We show this by describing how M can be
made connected with relatively few modifications, building
on the backbone. This implies that if M is ε-far from
being connected then it will be rejected with high constant
probability. Details follow.

For each of the reliable submatrices of the backbone,
consider the BFS performed starting from the first sample
1-pixel in S1 that belongs to the submatrix. Since the
submatrix is reliable, at least 8

√
cŵ/ε vertices in G(M)

are reached by the BFS. Similarly, for each well-connected
1-pixel, consider the BFS that starts from this 1-pixel
and reaches at least 8

√
cŵ/ε vertices in G(M). Since the

total number of vertices in G(M) is w(M), the number
of connected components in the subgraph of G(M) that
is induced by the union of all these BFS’s is at most

w(M)

8
√

c bw/ε
≤ (ε/8)

√
w(M). We note that, by their definition,

well-connected 1-pixels may belong to submatrices in the
backbone. That is, there may be more than one BFS that
starts in the same submatrix.

Next we deal with the unreliable submatrices in the
backbone (where there are at most (ε/8)

√
w(M) ≤

(ε/8)w(M)/s such submatrices). For each unreliable sub-
matrix in the backbone, we change at most s of the entries
in it from 0 to 1, so as to obtain a connected component that
corresponds to some arbitrary row in the submatrix (say, the
middle row). Let M ′ be the resulting matrix (where M ′ and
M differ in at most (ε/8)w(M) entries).

At this point we have at most (ε/4)
√

w(M) connected
components in the subgraph of G(M ′) that is induced
by the aforementioned BFS’s and the modified entries

in the unreliable submatrices. These components intersect
all submatrices in the backbone and possibly additional
neighboring submatrices (due the the BFS’s that start from
well-connected 1-pixels). If we consider an auxiliary graph
whose vertices are these components and where there is an
edge between two components if they intersect neighboring
submatrices or the same submatrix, then this auxiliary graph
is connected. Let T be some (arbitrary) spanning tree of this
auxiliary graph. For each edge in the spanning tree (a pair
of neighboring (or identical) submatrices that are intersected
by different connected components), we can modify at
most 23/2s = 23/2

√
ŵ/c ≤ 23/2

√
w(M) entries in the

neighboring (or identical) submatrices from 0 to 1 so as to
connect the two corresponding connected components, and
get a single connected component. Let M ′′ be the resulting
matrix (so that M ′′ and M ′ differ on less than (3ε/4)w(M)
entries).

Finally, we observe that all vertices in G(M ′′) that do not
belong to the abovementioned single connected component
in G(M ′′) necessarily correspond to 1-pixels in M that are
not well-connected (though it is possible that some 1-pixels
that are not defined as well-connected belong to the single
connected component). Therefore, we can change all these
(at most (ε/8) · w(M)) entries in M ′′ from 1 to 0 and
remain with a single connected component in the resulting
matrix. The total number of modifications made is at most
(ε/8)w(M) + (3ε/4)w(M) + (ε/8) · w(M) = εw(M),
implying that M is ε-close to being connected, as claimed.

1) An alternative algorithm for dense submatrices:
The alternative algorithm has complexity O(n2/w(M)) ·
poly(1/ε), so that it improves on Algorithm 1 when
w(M) = Ω(n4/3). The algorithm is essentially a gen-
eralization of the algorithm of Raskhodnikova [22] for
testing connectivity in the dense-images model (which is
appropriate when w(M) = Θ(n2)) and is reminiscent of
the algorithm for testing connectivity in bounded-degree
graphs [14]. The algorithm simply takes a sample of Θ(1/ε)
1-pixels and from each it performs a BFS in G(M) until it
reaches a sufficiently large number of vertices (of the order
of (n2/w(M))ε−2), or it finds a small connected component,
in which case it rejects.

2) Obtaining an estimate of w(M): It is possible to
obtain a constant factor estimate of w(M) by taking a sam-
ple of size O(min{√w(M), n2/w(M)}) and performing
at most these many queries. The idea behind the algorithm
is the following. It is possible to obtain an estimate of
w(M) in two different ways. Roughly speaking, the first
achieves a better performance when w(M) is “large”, and
the second when w(M) is “small”. Specifically, the first
approach is to simply query uniformly selected entries in
M and take the fraction of entries that are 1 (among those
queried) to be an estimate for p(M) def= w(M)/n2, and the
second is to estimate the collision probability when taking



uniform samples. By combining the two procedures we get
the desired estimate (with the stated complexity).

B. Lower bounds on testing connectivity

We start with a simple lower bounded for one-sided error
algorithms, and then turn to two-sided error algorithms.

Theorem 2.2: Any one-sided error testing algorithm
for connectivity must perform Ω(min{w(M), n2/w(M)})
queries (for a constant ε). The lower bound holds when the
algorithm is given an estimate ŵ such that w(M)/2 ≤ ŵ ≤
2w(M).
The proof of Theorem 2.2 can be found in the full version
of this paper [23].

Theorem 2.3: Any (two-sided) error testing algorithm for
connectivity has sample complexity and query complexity
Ω(min{w(M)1/3, n2/w(M)}) (for a constant ε). The lower
bound holds when the algorithm is given an estimate ŵ such
that w(M)/2 ≤ ŵ ≤ 2w(M).

Proof: Here we establish the claim for ŵ = Θ(n)
(where the bound is Ω(n1/3)). in the fulll version of this
paper [23] we explain how to modify it to smaller and
larger values of ŵ (and hence w(M)). In order to prove the
lower bound we define two families of matrices. In the first
family, denoted F1, all matrices are connected, and in the
second family, denoted F2, with very high probability over
the choice of a random matrix in F2, the matrix is Ω(1)-far
from being connected. We shall show that any algorithm that
takes a sample of size o(n1/3) and performs at most these
many queries, cannot distinguish with constant probability
between a matrix selected uniformly at random from F1 and
a matrix selected uniformly at random from F2.

Defining the two families. Consider a partition of the
entries of an n × n matrix into submatrices of dimensions
n1/3 × n1/3. For both families there will actually be 1-
pixels only in the first “row” of these submatrices, where
we number this sequence of submatrices from 1 to n2/3

(from left to right).
Each matrix in F1 is determined by 2n2/3 integers,

i1, . . . , in2/3 and j1, . . . , jn2/3 , where 1 ≤ ik, jk ≤ n1/3 for
every 1 ≤ k ≤ n1/3. These integers determine the locations
of the 1-pixels in the matrix in the following way: For each
k, there are 1-pixels in row ik of submatrix number k and
submatrix number k + 1 (if such exists), and there are 1-
pixels in column jk of submatrix number k. All other entries
are 0.

Each matrix in F2 is determined by two subsets Tr, Tc ⊂
[n2/3] each of size n2/3/2 and by n2/3 indices {ik}k∈Tr ∪
{j�}�∈Tc where 1 ≤ ik, j� ≤ n1/3 for every k ∈ Tr and
� ∈ Tc. These integers determine the locations of the 1-
pixels in the matrix in the same way that was defined for
matrices in F1. That is, For each k ∈ Tr, there are 1-pixels
in row ik of submatrix number k and submatrix number
k +1 (if such exists), and for each � ∈ Tc there are 1-pixels
in column j� of submatrix number �. All other entries are

0. Thus, the difference between matrices in F1 and matrices
in F2, is that in the latter family, there may be submatrices
(in the first row of submatrices) that are “empty” (contain
only 0’s) or contain only a row of 1-pixels and no column
of 1-pixels.

Properties of the two families. By the above description,
every matrix in F1 is connected. On the other hand, it is
not hard to verify that with very high probability (at least
1 − exp(−nα) for some constant α > 0), a uniformly
selected matrix in F2 will be Ω(1)-far from being connected.
The reason is that with high probability over the choice
of M in F2, the graph G(M) will contain Ω(n2/3) con-
nected components, and furthermore, if we consider these
components from left to right, then a constant fraction of
pairs of consecutive connected components are separated by
a submatrix that contains no 1-pixels.

The difficulty of distinguishing between the two fami-
lies. Consider any (two-sided error) algorithm for testing
connectivity of matrices that takes a sample of o(n1/3) 1-
pixels and asks o(n1/3) queries. We may assume without
loss of generality that it first takes the sample and then
performs all queries (possibly adaptively). We first show that
for both families, the distributions on sampled 1-pixels are
very similar. More precisely, we show that unless a certain
low probability event occurs, the distributions on samples
are identical. We later deal with the answers to queries.

Since once the algorithm is given a sample 1-pixel it
can determine in an additional constant number of queries
whether the 1-pixel belongs to a row or to a column (and
in the former case whether the row extends to the next
submatrix or to the previous submatrix), we assume that the
algorithm is actually given a sample of rows/columns. That
is, each sample is either of the form (k, ik) or (�, j�) for
k, � ∈ [n2/3] and ik, jk ∈ [n1/3]. Rather than first selecting
a matrix uniformly from F1 (similarly, uniformly from F2)
and then generating a sample, we may think of the sample
being generated in the process of determining the uniformly
selected matrix. Specifically, for each family we define a
“process” (P1 for F1 and P2 for F2) that generates samples
that are distributed according to a uniformly selected matrix
in the family, while constructing the matrix. This is done as
follows.

For each new sample, both of the processes first flip a
coin with bias 2/3 to decide whether to generate a row
or a column (as in both families the number of 1-pixels
that belong to rows is twice as large as the number of 1-
pixels that belong to columns). Suppose that a row is to be
generated (the generation of a column is analogous). Let t
be the number of different rows already generated (where by
our assumption on the sample complexity of the algorithm,
t = o(n1/3)). Then the process P1 flips a coin with bias
t/n2/3 to determine whether the new row will be identical
to a row that already appeared in the sample. If the coin turns
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Figure 3. An illustration for the proof of Theorem 2.3 for bw = n. On the top is an example of the first row of submatrices of a matrix in F1, and on
the bottom is an example of the first row of submatrices of a matrix in F2. The outline of the submatrices is marked in dashed lines, and the rows and
columns of 1-pixels are marked by bold lines.

out “heads”, then one of the previously generated rows is
selected to be the next sample row, while if the coin turns
out “tails”, then the process uniformly selects a submatrix
k that is not yet associated with a row (that is, there is no
row starting at this submatrix and ending in the next). It then
uniformly selects ik ∈ [n1/3] to determine the position of the
row in submatrix k (and k+1). The process P2 does the same
except that it flips a coin with bias t/(n2/3/2) = 2t/n2/3.
The important observation is that for both processes, for any
choice of a prefix of the sample, conditioned on the coin
coming up “tails” (which occurs with probability at least
1 − 2t/n2/3 in both cases), the distribution over the new
row is identical.

The above discussion implies, that, since the algorithm
takes a sample of size o(n1/3), with probability at least 1−
o(n1/3) ·o(n1/3)/n2/3 = 1−o(1), the distributions over the
samples that the algorithm observes are identical for both
families (processes).

It remains to deal with the queries. Here the argument
is even simpler, where we now let the two processes
answer queries while continuing to construct a matrix in
their respective families. We may assume, without loss of
generality, that the algorithm does not ask queries about
1-pixels that belong to rows/columns that it observed in
the sample (as we already gave the algorithm the complete
row/column “for free”). Thus the algorithm only asks queries
about entries that do not belong to sample rows/columns.
We claim that given that the algorithm asks o(n1/3) queries,
for both processes (families), with probability 1 − o(1), all
queries are answered by 0.

To verify this, consider any fixed submatrix k. If the
algorithm asked already t queries in the submatrix, so that
the queries belong to at most t rows and at most t columns,
and they were all answered by 0, for both processes, the
probability that the next query in the submatrix is answered
by 1 is upper bounded by O(1/(n1/3 − t)). Since the
algorithm performs o(n1/3) queries, the probability that it

gets an answer of 1 to any of its queries, is o(1), as claimed.
Thus, if the algorithm takes a sample of size o(n1/3)

and performs o(n1/3) queries, then with probability at least
1− o(1) the distributions on samples and the answers to its
queries are identical when the matrix is uniformly selected
in F1 and when it is uniformly selected in F2. This implies
that there is no testing algorithm with this complexity for
the property of connectivity when w(M) = Θ(n).

III. A SHORT OVERVIEW OF THE OTHER RESULTS

In the following subsections we give a flavor of the testing
algorithms for the other properties we study. Unless stated
otherwise, assume that w is the number of pixels in the
n × n image M that we are testing. Likewise, assume that
ε is fixed.

A. Testing and Learning in the Sparse Image Model

In our Testing and Learning results we show that member-
ship in families of images with a small VC-dimension [25]
is easy to test for. It was observed in [13], that given a proper
learning algorithm for a class of Boolean functions C (which
is allowed queries and works under the uniform distribution),
we can easily transform it into a testing algorithm for
the property of membership in this class, with the same
complexity. As the sparse image model is not a classic
learning setting, we adapt results that show that classes of
functions with small VC-dimension are easy to learn (and
thus, to test for) in our model. The approach is as follows.

Imagine we wish to test for membership in a class of
images C. We begin by assuming that the number of 1-
pixels, w in the tested image, M , is known to us. We can
thus think of learning this image only from the members
of C that are of size exactly w. We note that if an image
I ∈ C that is of size w is different from M by εw pixels,
then it is different from M by at least εw/2 pixels that are
1-pixels in M . Thus, based on the standard results from
learning theory, given the exact value of w we can test for



membership in a number of queries that depends only on the
VC-dimension of C. We then extend this result to the case
where w is unknown. We present a procedure that performs
a type of binary search for w while learning, and that uses
queries and not only uniform samples of 1-pixels from M .
This costs us an additional complexity factor of Õ(log(n)).

Finally, we give an algorithm that tests for a particular
property - being the imprint of a line, in a number of queries
that depends only on ε. As stated in the introduction we say
that an image is a line imprint (or simply a line) if there
exists a line such that all the pixels that the line intersects are
1-pixels, and there are no other 1-pixels in the image. This
algorithm uses the constant VC-dimension of lines but does
not require the additional Õ(log(n)) factor we generally pay
for not knowing what w is. It seems reasonable that other
such algorithms can be designed for additional properties.

We note that the results and principles we present here
may be of general interest in learning and testing sparse sets.
If we consider an image as the set of 1-pixels it contains, we
only use the limited VC-dimension and the ability to query
uniform members of the set.

B. Testing Convexity

As noted in the introduction, we say that an image M
is convex if there exists a convex shape that is connected,
closed and such that all the pixels that the shape intersects in
M are 1-pixels, and there are no other 1-pixels in the image.
We assume without loss of generality that the convex shape
is a polygon, and we consider a slightly restricted version of
this property where we require the slope of the lines defining
the convex shape to be of the form 1/r for an integer r. This
leads us to an alternative definition of a convex shape that is
based on ”blocks” and ”sub-blocks”. Informally, a sub-block
is a set of pixels that appear consecutively in the same row or
column. A block is a connected series of sub-blocks that all
have the same number of pixels (which we call the “period
length” of the block). It turns out that a convex shape is
an image such that all the top-most, bottom-most, left-most
and right-most 1-pixels are (within each set) connected, and
such that these sets of pixels are connected between them
in a structured manner. For instance, The top-most 1-pixel
in the leftmost set of pixels and the left-most 1-pixel in the
topmost set of pixels are connected by a series of vertical
blocks of monotonically decreasing period-length followed
by a series of horizontal blocks of monotonically increasing
period-length.

We show that there are at most O(
√

w) different blocks in
a convex image, and thus reach the conclusion that it can be
learned almost exactly using Õ(

√
w) queries (the boundaries

of each block can be learned using O(log(w)) queries).
This immediately leads to a Õ(

√
w) testing algorithm, but

we show that we can improve on this and get a Õ(w1/4))
algorithm. This algorithm uses uniform sampling of 1-pixels
to get a sample of the different blocks in M , and uses both

queries and samples to check that a sample of these blocks is
“properly connected” (that is, that the interval between two
consecutive blocks is indeed composed of blocks consistent
with a convex shape). Some technical adjustments are made
to this approach as we see that we can’t always perform
such a verification. Essentially, we show that the number of
pixels in intervals we can’t properly check is not expected
to be very large.

C. Testing Monotonicity

We say that a matrix M is monotone if for every two
1-pixels (i1, j1) and (i2, j2), if i1 < i2 then j1 ≤ j2. We
begin by introducing a simple one-sided error algorithm that
uses only sampling - it simply takes a sample of Θ(ŵ1/2)
1-pixels and rejects if and only if it gets a pair that violates
monotonicity. Clearly, a monotone matrix is never rejected,
and we show that we are likely to encounter a pair of non-
monotone 1-pixels in images that are far from monotone.

We next give an algorithm whose complexity is
Õ(n2/3/(w1/3)), which improves on the simple sampling
algorithm (in terms of the dependence on n) when w(M) =
Ω(n4/5). This algorithm performs queries in addition to
sampling. Roughly speaking, by sampling we try to detect
violations that occur at relatively large distances, and by
performing queries we try to detect violations that occur at
relatively small distances.

The algorithm first takes a sample that with high probabil-
ity either contains evidence that the matrix is not monotone
(in a form of a “distant” pair of points that aren’t monotone),
or it (the sample) can be used to determine a set of
submatrices with the following properties. First, the fraction
of 1-pixels that reside outside the submatrices is relatively
small. Second, there can be no violations between pairs of
1-pixels that reside in two different submatrices. Therefore,
if the matrix is far from being monotone, then the violations
are within the submatrices.

In the second stage of the algorithm we take an additional
(small) sample, and for each sampled 1-pixel we perform
queries within its submatrix (at varying distances from
the selected 1-pixel) in order to detect violations with the
sampled 1-pixels.
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