Sublinear Optimization for Machine Learning

Kenneth L. Clarkson

IBM Almaden Research Center
San Jose, CA

Elad Hazan™*

Department of Industrial Engineering
Technion - Israel Institute of Technology

David P. Woodruff

IBM Almaden Research Center
San Jose, CA

Haifa 32000 Israel

Abstract—We give sublinear-time approximation algo-
rithms for some optimization problems arising in machine
learning, such as training linear classifiers and finding
minimum enclosing balls. Our algorithms can be extended
to some Kernelized versions of these problems, such
as SVDD, hard margin SVM, and L1-SVM, for which
sublinear-time algorithms were not known before. These
new algorithms use a combination of a novel sampling
techniques and a new multiplicative update algorithm. We
give lower bounds which show the running times of many
of our algorithms to be nearly best possible in the unit-
cost RAM model. We also give implementations of our
algorithms in the semi-streaming setting, obtaining the
first low pass polylogarithmic space and sublinear time
algorithms achieving arbitrary approximation factor.

I. INTRODUCTION

Linear classification is a fundamental problem of ma-
chine learning, in which positive and negative examples
of a concept are represented in Euclidean space by
their feature vectors, and we seek to find a hyperplane
separating the two classes of vectors.

The Perceptron Algorithm for linear classification is
one of the oldest algorithms studied in machine learning
[1]1, [2]. It can be used to efficiently give a good
approximate solution, if one exists, and has nice noise-
stability properties which allow it to be used as a sub-
routine in many applications such as learning with noise
[3], [4], boosting [S] and more general optimization
[6]. In addition, it is extremely simple to implement:
the algorithm starts with an arbitrary hyperplane, and
iteratively finds a vector on which it errs, and moves in
the direction of this vector by adding a multiple of it to
the normal vector to the current hyperplane.

The standard implementation of the Perceptron Al-
gorithm must iteratively find a “bad vector” which is
classified incorrectly, that is, for which the inner product
with the current normal vector has an incorrect sign.
Our new algorithm is similar to the Perceptron Algo-
rithm, in that it maintains a hyperplane and modifies
it iteratively, according to the examples seen. However,
instead of explicitly finding a bad vector, we run another
dual learning algorithm to learn the “most adversarial”
distribution over the vectors, and use that distribution
to generate an “expected bad” vector. Moreover, we do

*Work done while at IBM Almaden Research Center

not compute the inner products with the current normal
vector exactly, but instead estimate them using a fast
sampling-based scheme.

Thus our update to the hyperplane uses a vec-
tor whose ‘“badness” is determined quickly, but very
crudely. We show that despite this, an approximate
solution is still obtained in about the same number of
iterations as the standard perceptron. So our algorithm
is faster; notably, it can be executed in time sublinear
in the size of the input data, and still have good
output, with high probability. (Here we must make some
reasonable assumptions about the way in which the data
is stored, as discussed below.)

This technique applies more generally than to the
perceptron: we also obtain sublinear time approxima-
tion algorithms for the related problems of finding an
approximate Minimum Enclosing Ball (MEB) of a set of
points, and training a Support Vector Machine (SVM),
in the hard margin or Lo-SVM formulations.

We give lower bounds that imply that our algorithms
for classification are best possible, up to polylogarithmic
factors, in the unit-cost RAM model, while our bounds
for MEB are best possible up to an O(e~!) factor.
For most of these bounds, we give a family of inputs
such that a single coordinate, randomly “planted” over a
large collection of input vector coordinates, determines
the output to such a degree that all coordinates in the
collection must be examined for even a 2/3 probability
of success.

We show that our algorithms can be implemented in
the parallel setting, and in the semi-streaming setting;
for the latter, we need a careful analysis of arithmetic
precision requirements and an implementation of our
primal-dual algorithms using lazy updates, as well as
some recent sampling technology [7].

Our approach can be extended to give algorithms
for the kernelized versions of these problems, for some
popular kernels including the Gaussian and polynomial,
and also easily gives Las Vegas results, where the output
guarantees always hold, and only the running time is
probabilistic. ! Our approach also applies to the case

I'For MEB and the kernelized versions, we assume that the Eu-
clidean norms of the relevant input vectors are known. Even with the
addition of this linear-time step, all our algorithms improve on prior
bounds, with the exception of MEB when M = o(¢~%/2(n + d)).

of soft margin SVM (joint work in progress with Nati
Srebro).

Our main results, except for semi-streaming and
parallel algorithms, are given in Figure 1. The notation
is as follows. All the problems we consider have an
n X d matrix A as input, with M nonzero entries, and
with each row of A with Euclidean length no more
than one. The parameter € > 0 is the additive error; for
MEB, this can be a relative error, after a simple O(M)
preprocessing step. We use the asymptotic notation
o(f) = O(f - polylog%d). The parameter o is the
margin of the problem instance, explained below. The
parameters s and g determine the standard deviation of
a Gaussian kernel, and degree of a polynomial kernel,
respectively.

The time bounds given for our algorithms, except the
Las Vegas ones, are under the assumption of constant
error probability; for output guarantees that hold with
probability 1 — 4, our bounds should be multiplied by
log(n/9).

The time bounds also require the assumption that the
input data is stored in such a way that a given entry A; ;
can be recovered in constant time. This can be done by,
for example, keeping each row A; of A as a hash table.
(Simply keeping the entries of the row in sorted order by
column number is also sufficient, incurring an O(log d)
overhead in running time for binary search.)

By appropriately modifying our algorithms, we obtain
algorithms with very low pass, space, and time com-
plexity. Many problems cannot be well-approximated
in one pass, so a model permitting a small number of
passes over the data, called the semi-streaming model,
has gained recent attention [11], [12]. In this model the
data is explicitly stored, and the few passes over it result
in low I/O overhead. It is quite suitable for problems
such as MEB, for which any algorithm using a single
pass and sublinear (in n) space cannot approximate the
optimum value to within better than a fixed constant
[13]. Unlike traditional semi-streaming algorithms, we
also want our algorithms to be sublinear time, so that
in each pass only a small portion of the input is read.

We assume we see the points (input rows) one at a
time in an arbitrary order. The space is measured in
bits. For MEB, we obtain an algorithm with O(¢~!)
passes, O(e~2) space, and O(¢73(n + d)) total time.
For linear classification, we obtain an algorithm with
O(e72) passes, O(e2) space, and O(s~%(n+d)) total
time. For comparison, prior streaming algorithms for
these problems [13], [14] require a prohibitive (d)
space, and none achieved a sublinear o(nd) amount of
time. Further, their guarantee is an approximation up to
a fixed constant, rather than for a general € (though they
can achieve a single pass).

Formal Description: Classification: In the linear
classification problem, the learner is given a set of n
labeled examples in the form of d-dimensional vectors,
comprising the input matrix A. The labels comprise a

vector y € {+1,—1}".

The goal is to find a separating hyperplane, that is,
a normal vector z in the unit Euclidean ball B such
that for all ¢, y(i) - A;x > 0; here y(i) denotes the
1’th coordinate of y. As mentioned, we will assume
throughout that A; € B for all ¢ € [n], where generally
[m] denotes the set of integers {1,2,...,m}.

As is standard, we may assume that the labels y(7)
are all 1, by taking A; < —A; for any ¢ with y(i) =
—1. The approximation version of linear classification
(which is necessary in case there is noise), is to find a
vector x. € B that is an e-approximate solution, that is,

Vi’ Ayx. > maxmin A;x — €. (1)
x€EB 1

The optimum for this formulation is obtained when
|lz|| = 1, except when no separating hyperplane exists,
and then the optimum z is the zero vector.

Note that min, A;x = minyea p' Az, where A C
R™ is the unit simplex {p € R™ | p; > 0, . p; =
1}. Thus we can regard the optimum as the outcome
of a game to determine p' Az, between a minimizer
choosing p € A, and a maximizer choosing z € B,
yielding

o =maxminp' Az,
z€B peEA

where this optimum o is called the margin. From
standard duality results, o is also the optimum of the
dual problem

minmaxp' Az,

pEA z€EB
and the optimum vectors p* and z* are the same for
both problems.

The classical Perceptron Algorithm returns an e-
approximate solution to this problem in E% iterations,
and total time O(e~2M).

For given 6 € (0,1), our new algorithm takes
O(e72(n + d)(logn)log(n/§)) time to return an &-
approximate solution with probability at least 1 — J.
Further, we show this is optimal in the unit-cost RAM
model, up to poly-logarithmic factors.

Formal Description: Minimum Enclosing Ball
(MEB): The MEB problem is to find the smallest
Euclidean ball in R? containing the rows of A. It is a
special case of quadratic programming (QP) in the unit
simplex, namely, to find min,eca pTb+pT AATp, where
b is an n-vector. This relationship, and the generalization
of our MEB algorithm to QP in the simplex, is discussed
in §III-C; for more general background on QP in the
simplex, and related problems, see for example [10].

A. Related work

Perhaps the most closely related work is that of
Grigoriadis and Khachiyan [15], who showed how to
approximately solve a zero-sum game up to additive
precision ¢ in time O(¢%(n + d)), where the game
matrix is n x d. This problem is analogous to ours, and
our algorithm is similar in structure to theirs, but where

Problem Previous time Time Here Lower Bound
classification/perceptron ~O(E’QM) . O(e~2(n +d)) §II Q(e723(n +d)) §VII-A
min. enc. ball (MEB) (e=Y2M) [8] O(e?n+e'd) §II-A | Q(e~'n+e7'd) §VII-B
QP in the simplex O(E"tM) 9 O(e7%n + e~ 1d) §1I-C
Las Vegas versions additive O(M) Cor I1.11 Q(M) §VII-C
kernelized MEB and QP factors O(s?) or O(q) §VI
Figure 1. Our results, except for semi-streaming and parallel

we minimize over p € A and maximize over z € B,
their optimization has not only p but also x in a unit
simplex.

Their algorithm (and ours) relies on sampling based
on z and p, to estimate inner products =" v or p'w for
vectors v and w that are rows or columns of A. For a
vector p € A, this estimation is easily done by returning
w,; with probability p;.

For vectors x € B, however, the natural estimation
technique is to pick 4 with probability 7, and return
v;/x;. The estimator from this ¢y sample is less well-
behaved, since it is unbounded, and can have a high
variance. While ¢» sampling has been used in streaming
applications [7], it has not previously found applications
in optimization due to this high variance problem.

Indeed, it might seem surprising that sublinearity is
at all possible, given that the correct classifier might be
determined by very few examples, as shown in figure
2. It thus seems necessary to go over all examples at
least once, instead of looking at noisy estimates based
on sampling.

Figure 2. The optimum z is determined by the vectors near the
horizontal axis.

However, as we show, in our setting there is a ver-
sion of the fundamental Multiplicative Weights (MW)
technique that can cope with unbounded updates, and
for which the variance of /s-sampling is manageable.

In our version of MW, the multiplier associated with
a value z is quadratic in z, in contrast to the more
standard multiplier that is exponential in z; while the
latter is a fundamental building block in approximate
optimization algorithms, as discussed by Plotkin er al.
[16], in our setting such exponential updates can lead
to a very expensive d*(!) iterations.

We analyze MW from the perspective of on-line
optimization, and show that our version of MW has
low expected expected regret given only that the ran-
dom updates have the variance bounds provable for ¢
sampling. We also use another technique from on-line
optimization, a gradient descent variant which is better
suited for the ball.

For the special case of zero-sum games in which
the entries are all non-negative (this is equivalent to
packing and covering linear programs), Koufogiannakis
and Young [17] give a sublinear-time algorithm which
returns a relative approximation in time O(e~2(n+d)).
Our lower bounds show that a similar relative approx-
imation bound for sublinear algorithms is impossible
for general classification, and hence general linear pro-
gramming.

II. LINEAR CLASSIFICATION AND THE PERCEPTRON

Please note: space limitations require that we omit
the proofs of most of our results from this abstract.

Before our algorithm, some reminders and further
notation: A C R”™ is the unit simplex {p € R" |
pi > 0,>,p; = 1}, B C R? is the Euclidean unit
ball, and the unsubscripted ||z|| denotes the Euclidean
norm ||z||2. The n-vector, all of whose entries are one,
is denoted by 1,

The i’th row of the input matrix A is denoted A;,
although a vector is a column vector unless otherwise
indicated. The i’th coordinate of vector v is denoted
v(i). For a vector v, we let v? denote the vector whose
coordinates have v?(i) = v(i)? for all i.

A. The Sublinear Perceptron

Our sublinear perceptron algorithm is given in Fig-
ure 3. The algorithm maintains a vector w; € R”, with
nonnegative coordinates, and also p; € A, which is w;
scaled to have unit /; norm. A vector y; € R¢ is main-
tained also, and z; which is y; scaled to have Euclidean
norm no larger than one. These normalizations are done
on line 4.

1: Input: € > 0, A € R"*? with A; € B for i € [n].
2: Let T < 200%¢—2logn, 31 < 0, wy + 1,,

logn

R RV
3: fort=1to T do
W+ Y
P Tudn T ma LT ,
5. Choose i; € [n] by iy < 4 with prob. p:(i).
6.
;

Y41 < Yo t \/%Az’t
Choose j; € [d] by
ji + j with probability x;(5)%/||z¢||%.

8. for i€ [n] do

9: (1) = Ai(Ge) llzel? /e (e)

10: ve(2) « clip(:(), 1/n)

11: W1 (1) 4= wi(0)(1 = 1oe(i) + 0 (i)?)
12: end for

13: end for

, -1
14: return T = £), x4

Figure 3.
algorithm

Algorithm Sublinear Perceptron, a perceptron training

In lines 5 and 6, the algorithm is updating y; by
adding a row of A randomly chosen using p;. This is a
randomized version of Online Gradient Descent (OGD);
due to the random choice of i;, A;, is an unbiased
estimator of p,; A, which is the gradient of p,” Ay with
respect to y.

In lines 7 through 12, the algorithm is updating w;
using a column j; of A randomly chosen based on z,
and also using the value x;(j;). This is a version of
the Multiplicative Weights (MW) technique for online
optimization in the unit simplex, where v, is an unbiased
estimator of Ax,, the gradient of p' Az, with respect
to p.

Actually, v, is not unbiased, after the clip operation:
for 2,V € R, clip(z, V) = min{V, max{-V, z}}, and
our analysis is helped by clipping the entries of vy; we
show that the resulting slight bias is not harmful.

As discussed in §I-A, the sampling used to choose
j+ (and update p;) is f3-sampling, and that for i;, £1-
sampling. These techniques, which can be regarded as
special cases of an {,-sampling technique, for p €
[1, 00), yield unbiased estimators of vector dot products.
It is important for us also that /¢9-sampling has a
variance bound here; in particular, for each relevant ¢
and ¢,

E[v:(i)] < [|Ai]]?[le]* < 1. 2)

First we note the running time.

Theorem II.1. The sublinear perceptron takes
O(e~2logn) iterations, with a total running time of

O(e72(n + d)logn).

Next we analyze the output quality. The proof uses
new tools from regret minimization and sampling that
are the building blocks of most of our upper bound
results.

Let us first state the MW algorithm used in all our
algorithms.

Definition II.2 (MW algorithm). Consider a sequence
of vectors q1,...,qr € R™. The Multiplicative Weights
(MW) algorithm is as follows. Let w; + 1,, and for
t>1,

Pt < wi/||wl1, 3)

and for 0 <np € R
wip (i) = we(i)(1 = nge (i) + n°q:(1)*), (@)

The following is a key lemma, which proves a novel
bound on the regret of the MW algorithm above, suit-
able for the case where the losses are random variables
with bounded variance.

Lemma IL.3 (Variance MW Lemma). The MW algo-
rithm satisfies

Z ptTQt < minie[n] Zte[T] max{q; (i), _%}
te(T]
+logn +0 X e P G-

The following three lemmas give concentration
bounds on our random variables from their expectations.
The first two are based on standard martingale analysis,
and the last is a simple Markov application.

Lemma I14. Forn <

O(1/n),
max Z v (4

te[T)

10T , with probability at least

— A;xy] < 90nT.

Lemma IL5. For n < l‘ng", with probability at least

1—0(1/n), it holds that ‘ZtE[T] A,z =Y, plve| <
1009T.

Lemma II 6 With probability at least 1 —
that Y, pf v} < 8T.

Theorem IL.7 (Main Theorem). With probability 1/2,
the sublinear perceptron returns a solution T that is an
g-approximation.

1 it holds

Corollary II.8 (Dual solution). The vector p =
> ¢ €i, /T is, with probability 1/2, an O(e)-approximate
dual solution.

B. High Success Probability and Las Vegas

Given two vectors u,v € B, we have seen that

a single ¢o-sample is an unbiased estimator of thelr
inner product with variance at most one Averaglng
such samples reduces the variance to 2, which reduces
the standard deviation to . Repeatlng O(log 5) such
estimates, and taking the median, gives an estimator
denoted X, 5, which satisfies, via a Chernoff bound:

Pr[|X.s —v'ul >¢] <6

As an immediate corollary of this fact we obtain:

Corollary I1.9. There exists a randomized algorithm
that with probability 1 — §, successfully determines
whether a given hyperplane with normal vector © € B,
together with an instance of linear classification and
parameter o > 0, is an e-approximate solution. The
algorithm runs in time O(d 4 2 log %).

Hence, we can amplify the success probability of
Algorithm Sublinear Perceptron to 1 — 4 for any § > 0
albeit incurring additional poly-log factors in running
time:

Corollary I1.10 (High probability). There exists a ran-
domized algorithm that with probability 1 — § returns
an e-approximate solution to the linear classification

problem, and runs in expected time O("S;d log %).

It is also possible to obtain an algorithm that never
errs:

Corollary II.11 (Las Vegas Version). After
O(e=2logn) iterations, the sublinear perceptron
returns a solution that with probability 1/2 can be
verified in O(M) time to be e-approximate. Thus with
expected O(1) repetitions, and a total of expected
O(M +¢&72(n+d) logn) work, a verified e-approximate
solution can be found.

C. Implications in the PAC model

Consider the “separable” case of hyperplane learning,
in which there exists a hyperplane classifying all data
points correctly. It is well known that the concept class
of hyperplanes in d dimensions with margin o has ef-
fective dimension at most min{d, -5} + 1. Consider the
case in which the margin is significant, i.e. % < d.PAC
learning theory implies that the number of examples
needed to attain generalization error of 4 is O(<35).

Using the method of online to batch conversion (see
[18]), and applying the online gradient decent algorithm,
it is possible to obtain ¢ generalization error in time
O(%) time, by going over the data once and perform-
ing a gradient step on each example.

Our algorithm improves upon this running time bound
as follows: we use the sublinear perceptron to compute
a o/2-approximation to the best hyperplane over the
test data, where the number of examples is taken to be
n = O(=%5) (in order to obtain & generalization error).
As slllown previously, the total running time amounts to
O(Z5) = O(; +).

_ This improves upon standard methods by a factor of
O(o?d), which is always an improvement by our initial
assumption on ¢ and d.

III. STRONGLY CONVEX PROBLEMS: MEB AND
SVM

A. Minimum Enclosing Ball

In the Minimum Enclosing Ball problem the input
consists of a matrix A € R™*?. The rows are interpreted

as vectors and the problem is to find a vector 2 € R?
such that

T, = argmin, ps max||lz — A;]|?
’ 1€[n]

We further assume for this problem that all vectors
A, have Euclidean norm at most one. Denote by o =
max; e, [|[2 — A;]|? the radius of the optimal ball, and
we say that a solution is e-approximate if the ball it
generates has radius at most o + €.

As in the case of linear classification, to obtain tight
running time bounds we use a primal-dual approach;
this is combined with an approach of randomly skip-
ping primal updates, to take advantage of the faster
convergence of OGD for strongly convex functions. Due
to space limitations we omit further description of the
algorithm.

Theorem IIL.1. Algorithm Sublinear MEB runs in
O(%) iterations, with a total expected running time

of
~ d
€ €
and with probability 1/2, returns an e-approximate
solution.

The following Corollary is a direct analogue of Corol-
lary IL.8.

Corollary IIL.2 (Dual solution). The vector p =
> €i, /T is, with probability 1/2, an O(e)-approximate
dual solution.

B. High Success Probability and Las Vegas

As for linear classification, we can amplify the suc-
cess probability of Algorithm Sublinear MEB to 1 — §
for any § > 0 albeit incurring additional poly-log factors
in running time.

Corollary II1.3 (MEB high probability). There exists a
randomized algorithm that with probability 1—§ returns
an e-approximate solution to the MEB problem, and
runs in expected time O(Zzlog Z5 + glogé). There
is also a randomized algorithm that returns an e-
approximate solution in O(M + 2% + £) time.

C. Convex Quadratic Programming in the Simplex

We can extend our approach to problems of the form

minp b+pT AATp, 5)

peEA
where b € R", A € R**? and A is, as usual, the
unit simplex in R™. As is well known, this problem
includes the MEB problem, margin estimation as for
hard margin support vector machines, the Ly-SVM
variant of support vector machines, the problem of
finding the shortest vector in a polytope, and others.
We omit further discussion in this abstract.

1: Let T + max{T.(LRA), g™} |

£2

1 + LRA(initial), wy < L,, 7 ¢ 1o51/ 8%

2: fort=1to T do

3. for i € [n] do

4: Let v:(i) < Sample(zy, ¢;)

5: ve(2) + clip(9:(2),1/n)

6: Wi (1) 4= we(8)(1 = nue (i) +nPve(i)?)
7. end for

P

9:

Choose i; € [n] by i; < i with probability p, (7).
10: xy < LRA(x1-1,¢i,)

11: end for

12: return T = £y, 7

Figure 4. Sublinear Primal-Dual Generic Algorithm

IV. A GENERIC SUBLINEAR PRIMAL-DUAL
ALGORITHM

We note that our technique above can be applied
more broadly to any constrained optimization problem
for which low-regret algorithms exist and low-variance
sampling can be applied efficiently; that is, consider the
general problem with optimum o:

max min ¢; (x) =o0. (6)
Suppose that for the set K and cost functions c¢;(x),
there exists an iterative low regret algorithm, denoted
LRA, with regret R(T) = o(T). Let T.(LRA) be the
smallest 7" such that % < e. We denote by x4 +
LRA(xt,c) an invocation of this algorithm, when at
state x; € K and the cost function c is observed.

Let Sample(x,c) be a procedure that returns an
unbiased estimate of ¢(x) with variance at most one,
that runs in constant time. Further assume |¢;(z)] < 1
forallz € K, i € [n].

Applying the techniques of section II we can obtain
the following generic lemma.

Lemma IV.1. The generic sublinear primal-dual al-
gorithm returns a solution x that with probabil-
ity at least % is an e-approximate solution in

max{T.(LRA), "\ iterations.

2

High-probability results can be obtained using the
same technique as for linear classification.

A. More applications

The generic algorithm above can be used to derive the
result of Grigoriadis and Khachiyan [15] on sublinear
approximation of zero sum games with payoffs/losses
bounded by one (up to poly-logarithmic factors in
running time). A zero sum game can be cast as the
following min-max optimization problem:

min max A;x
TEAGIEA,

That is, the constraints are inner products with the rows
of the game matrix. This is exactly the same as the linear
classification problem, but the vectors = are taken from
the convex set KU which is the simplex - or the set of
all mixed strategies of the column player.

A low regret algorithm for the simplex is the
multiplicative weights algorithm, which attains regret
R(T) < 2y/Tlogn. The procedure Sample(z, A;) to
estimate the inner product A;z is much simpler than
the one used for linear classification: we sample from
the distribution 2 and return A;(j) w.p. z(j). This has
correct expectation and variance bounded by one (in
fact, the random variable is always bounded by one).
Lemma IV.1 then implies:

Corollary IV.2. The sublinear primal-dual algorithm
applied to zero sum games returns a solution x that
with probability at least % is an e-approximate solution

in O(X%8™) iterations and total time O(2%2),
€ g

Essentially any constrained optimization problem
which has convex or linear constraints, and is over a
simple convex body such as the ball or simplex, can be
approximated in sublinear time using our method. The
particular application to soft margin SVM, together with
its practical significance, is explored in ongoing work
with Nati Srebro.

V. A SEMI-STREAMING IMPLEMENTATION

In order to achieve space that is sublinear in d, we
cannot afford to output a solution vector. We instead
output both the cost of the solution, and a set of
indices 41,...,4; for which the solution is a linear
combination (that we know) of A; ,...,A4;,. We note
that all previous algorithms for these problems, even
to achieve this notion of output, required (d) space
and/or Q(nd) time, see, e.g., the references in [13].

We discuss the modifications to the sublinear primal-
dual algorithm that need to be done for classification
and minimum enclosing ball problems.

Our algorithm assumes it sees entire points at a
time, i.e., it sees the entries of A row at a time,
though the rows may be ordered arbitrarily. It relies on
two streaming results about a d-dimensional vector x
undergoing updates to its coordinates. We assume that
each update is of the form (4,z), where i € [d] is a
coordinate of x and z € {—P,—P+1,..., P} indicates
that x; < z; + z. The first is an efficient ¢5-sketching
algorithm of Thorup and Zhang. This algorithm allows
for (1+¢)-approximation of ||x||2 with high probability
using 1-pass, O(e~2) space, and time proportinal to the
length of the stream.

The second component is due to Monemizadeh and
Woodruff [7]. We are given a stream of updates to
a d-dimensional vector x, and want to output a ran-
dom coordinate I € [d] for which for any j € [d],

Pr[I =j] = L2 We also want the algorithm to return
[ETH

the value x;. Such an algorithm is called an exact aug-
mented {o-Sampler. As shown in [7], an augmented /-
Sampler with O(log d) space, O(1) passes, and running
time O(Q) exists, where @ is the number of updates
in the stream. This is what we use to ¢;-sample from
an iterate vector that we can only afford to represent
implicitly. R

We maintain the indices i; and j; used in all O(c~2)
iterations of the primal dual algorithm. Notice that in
a single iteration ¢ the same /5-sample index j; can be
used for all n rows. While we cannot afford to remem-
ber the probabilities in the dual vector, we can store the

values “‘j , where «; is a (1 £ €)-approximation of

Tt
IEAR wh(ic)h can be obtained using the Thorup-Zhang
sketch. We also need such an approximation to ||z;|| to
appropriately weight the rows used to do /5-sampling
(see below). Since we see rows (i.e., points) of A at a
time, we can reconstruct the probability of each row
in the dual vector on the fly in low space, and can
use reservoir sampling to make the next choice of ;.
Then we use an augmented ¢5-sampler to make the next
choice of j;, where we must {5 sample from a weighted
sum of rows indexed by i1, ..., in low space. We can
show that the algorithm remains correct given the per-
iteration rounding of the updates v;(i) to relative error
1, where p is on the order of ne/T.

Theorem V.1. There is an O(e_QQ—pass, O(e~2)-space
algorithm running in total time O(c~*(n + d)) which
returns a list of T = O(c™2) row indices iy,...,ir
which implicitly represent the normal vector to a hy-
perplane for e-approximate classification, together with
an additive-¢ approximation to the margin.

For the MEB problem with high probability there are
only O(e~1) different values of 4; (i.e., updates to the
primal vector). An important point is that we can get all
O(e™1) ¢5-samples independently from the same primal
vector between changes to it by running the algorithm
of [7] independently O(¢~!) times in parallel.

We spend O((n + d)e~2) time per iteration, to
reconstruct the dual vector and run the algorithm of
[7] independently O(c~1!) times on a stream of length

O(de™1) to do ly-sampling).

Theorem V.2. Given the norms of each row A;, there
is an O(e~')-pass, O(e™2)-space algorithm running
in total time O(e~*(n + d)) which returns a list of
T = O(e7Y) row indices iy,...,ir which implicitly
represent the MEB center, together with an additive ¢-
approximation to the MEB radius.

VI. KERNELIZING THE SUBLINEAR ALGORITHMS

An important generalization of linear classifiers is
that of kernel-based linear predictors (see e.g. [19]).
Let ¥ : R? — H be a mapping of feature vectors into
a reproducing kernel Hilbert space. In this setting, we
seek a non-linear classifier given by A € H so as to

maximize the margin:

o = max grel[lrlgﬁh, U(A;)).
The kernels of interest are those for which we can com-
pute inner products of the form k(z,y) = (¥ (z), ¥(y))
efficiently.

One popular kernel is the polynomial kernel, for
which the corresponding Hilbert space is the set of
polynomials over R? of degree q. The mapping ¥ for
this kernel is given by

VSCId, |S|<q.¥(x)s= Hmz
ics
That is, all monomials of degree at most ¢q. The kernel
function in this case is given by k(z,y) = (x'y)%
Another useful kernel is the Gaussian kernel k(z,y) =

2
exp(—%), where s is a parameter. The mapping

here is defined by the kernel function (see [19] for more
details).

In the full paper, we show that for both of these
kernels have fast, unbiased, low variance estimators,
based on /5 sampling, and that such estimators can be
leveraged to build fast estimators for the Hilbert-space
inner products needed for a kernelized version of the the
sublinear perceptron. The resulting Algorithm Sublinear
Kernel has provably correct, sublinear performance,
with the following bounds.

Corollary VIL.1. For the polynomial degree-q kernel,
Algorithm Sublinear Kernel runs in time

santd) dlogg g
O(T+mm{ 0).

Corollary VL2. For the Gaussian kernel with param-
eter s, Algorithm Sublinear Kernel runs in time

ontd min{%, %}).

ste?

Analogously to Algorithm Sublinear Kernel, we can
define the kernel version of strongly convex problems,
including MEB. The kernelized version of MEB is
particularly efficient, needing O(e~2n+¢~1d) time, for
fixed s or gq.

VII. LOWER BOUNDS

All of our lower bounds are information-theoretic,
meaning that any successful algorithm must read at
least some number of entries of the input matrix A.
Clearly this also lower bounds the time complexity of
the algorithm in the unit-cost RAM model.

Some of our arguments use the following meta-
theorem. Consider a p X ¢ matrix A, where p is an
even integer. Consider the following random process.
Let W > ¢q. Let @ = 1 — 1/W, and let e; denote
the j-th standard g-dimensional unit vector. For each
i € [p/2], choose a random j € [g| uniformly, and
set Ajip/2 < Ai « aej + b(1, — e;), where b is

chosen so that ||A4;||2 = 1. We say that such an A is a
YES instance. With probability 1/2, transform A into
a NO instance as follows: choose a random i* € [p/2]
uniformly, and if A;« = ae; +b(1,—e;) for a particular
J* € lal, set Apyp /o < —aej- + (1 —ejx).

Suppose there is a randomized algorithm reading at
most s positions of A which distinguishes YES and NO
instances with probability > 2/3, where the probability
is over the algorithm’s coin tosses and this distribution w
on YES and NO instances. By averaging this implies a
deterministic algorithm Alg reading at most s positions
of A and distinguishing YES and NO instances with
probability > 2/3, where the probability is taken only
over u. We show the following meta-theorem with a
standard argument.

Theorem VIIL.1. (Meta-theorem) For any such algo-
rithm Alg, s = Q(pq).

A. Classification

Recall that the margin o(A) of an n x d matrix A
is given by max,cp min; A;x. Since we assume that
||A;]]2 <1 for all ¢, we have that o(A4) < 1.

1) Relative Error: We start with a theorem for rela-
tive error algorithms.

Theorem VIL.2. Let k > 0 be a sufficiently small con-
stant. Let ¢ and o(A) have o(A)~2c~! < kmin(n, d),
o(A) < 1— ¢, with ¢ also bounded above by a suffi-
ciently small constant. Also assume that M > 2(n+d),
that n > 2, and that d > 3. Then any randomized
algorithm which, with probability at least 2/3, outputs
a number in the interval [o0(A) —eo(A),o(A)] must
read

Q(min(M,o(A) 2" (n + d)))

entries of A. This holds even if || A;||2 = 1 for all rows
A;.

Notice that this yields a stronger theorem than as-
suming that both n and d are sufficiently large, since
one of these values may be constant.

2) Additive Error: Here we give a lower bound for
the additive error case. We give two different bounds,
one when ¢ < o, and one when € > o. Notice that
o > 0 since we may take the solution z = 04. The
following is a corollary of Theorem VII.2.

Corollary VIL3. Let v > 0 be a sufficiently small
constant. Let €,0(A) be such that o(A)~le™! <
kmin(n,d) and o(A) <1 —¢/o(A), where 0 < ¢ <
k' for a sufficiently small constant ' > 0. Also assume
that M > 2(n+d), n > 2, and d > 3. Then any
randomized algorithm which, with probability at least
2/3, outputs a number in the interval [0 — ¢,0]| must
read

Q(min(M, o~ e (n + d)))

entries of A. This holds even if | A;|| = 1 for all rows
A,.

The following handles the case when € = (o).

Corollary VII4. Let « > 0 be a sufficiently small
constant. Let ¢,0(A) be such that =2 < kmin(n, d),
o(A) +e < %, and ¢ = Qo). Also assume that
M > 2(n+d), n > 2, and d > 3. Then any randomized
algorithm which, with probability at least 2/3, outputs

a number in the interval [0 — e, 0| must read
Q(min(M, e %(n+d)))

entries of A. This holds even if ||A;|| = 1 for all rows
A;.

B. Minimum Enclosing Ball

Theorem VILS. Let v > 0 be a sufficiently small
constant. Assume ¢~' < kmin(n,d) and ¢ is less
than a sufficiently small constant. Also assume that
M > 2(n + d) and that n > 2. Then any randomized
algorithm which, with probability at least 2/3, outputs
a number in the interval

min max||z — A;]|? — &, min max||z — AiHQ}
x K3 x 1

must read
Q(min(M, e (n + d)))

entries of A. This holds even if ||A;|| = 1 for all rows
A;.

C. Las Vegas Algorithms

While our algorithms are Monte Carlo, meaning they
err with small probability, it may be desirable to obtain
Las Vegas algorithms, i.e., randomized algorithms that
have low expected time but never err. We show this
cannot be done in sublinear time.

Theorem VIL.6. For the classification and minimum
enclosing ball problems, there is no Las Vegas algorithm
that reads an expected o(M) entries of its input matrix
and solves the problem to within a one-sided additive
error of at most 1/2. This holds even if | A;|| = 1 for
all rows A;.

VIII. CONCLUDING REMARKS

We have described a general method for sublinear op-
timization of constrained convex programs, and showed
applications to classical problems in machine learning
such as linear classification and minimum enclosing ball
obtaining improvements in leading-order terms over the
state of the art. The application of our sublinear primal-
dual algorithms to soft margin SVM and related convex
problems is currently explored in ongoing work with
Nati Srebro.

In all our running times the dimension d can be
replaced by the parameter S, which is the maximum
over the input rows A; of the number of nonzero
entries in A;. Note that d > S > M/n. Here we
require the assumption that entries of any given row can
be recovered in O(S) time, which is compatible with

keeping each row as a hash table or (up to a logarithmic
factor in run-time) in sorted order.

Acknowledgements: We thank Nati Srebro and an

anonymous referee for helpful comments on the relation
between this work and PAC learning theory.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

(11]

REFERENCES

A. Novikoff, “On convergence proofs on perceptrons.”
in Proceedings of the Symposium on the Mathematical
Theory of Automata, Vol XII, 1962, pp. 615-622.

M. L. Minsky and S. Papert, Perceptrons: An introduc-
tion to computational geometry. MIT press Cambridge,
Mass, 1988.

T. Bylander, “Learning linear threshold functions in the
presence of classification noise,” in COLT ’94: Proceed-
ings of the Seventh Annual Conference on Computational
Learning Theory. New York, NY, USA: ACM, 1994,
pp. 340-347.

A. Blum, A. M. Frieze, R. Kannan, and S. Vempala,
“A polynomial-time algorithm for learning noisy linear
threshold functions,” Algorithmica, vol. 22, no. 1/2, pp.
35-52, 1998.

R. A. Servedio, “On PAC learning using winnow, per-
ceptron, and a perceptron-like algorithm,” in COLT
’99: Proceedings of the Twelfth Annual Conference on
Computational Learning Theory. New York, NY, USA:
ACM, 1999, pp. 296-307.

J. Dunagan and S. Vempala, “A simple polynomial-
time rescaling algorithm for solving linear programs,’
in STOC ’04: Proceedings of the Thirty-Sixth Annual
ACM Symposium on the Theory of Computing. New
York, NY, USA: ACM, 2004, pp. 315-320.

M. Monemizadeh and D. Woodruff, “l-pass relative
error [,-sampling with applications,” in SODA ’10: Proc.
Twenty-First ACM-SIAM Symposium on Discrete Algo-
rithms, 2010.

A. Saha and S. Vishwanathan, “Efficient approxima-
tion algorithms for minimum enclosing convex shapes,”
2009, arXiv:0909.1062v2.

M. Frank and P. Wolfe, “An algorithm for quadratic
programming,” Naval Res. Logist. Quart., vol. 3, p.
957110, 1956.

K. L. Clarkson, “Coresets, sparse greedy approximation,
and the Frank-Wolfe algorithm,” in SODA '08: Proc.
Nineteenth ACM-SIAM Symposium on Discrete Algo-
rithms. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2008, pp. 922-931.

J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and
J. Zhang, “Graph distances in the data-stream model,”
SIAM J. Comput., vol. 38, no. 5, pp. 1709-1727, 2008.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

S. Muthukrishnan, “Data streams: Algorithms and appli-
cations,” Foundations and Trends in Theoretical Com-
puter Science, vol. 1, no. 2, 2005.

P. Agarwal and R. Sharathkumar, “Streaming algorithms
for extent problems in high dimensions,” in SODA ’10:
Proc. Twenty-First ACM-SIAM Symposium on Discrete
Algorithms, 2010.

H. Zarrabi-Zadeh and T. M. Chan, “A simple streaming
algorithm for minimum enclosing balls,” in CCCG,
2006.

M. D. Grigoriadis and L. G. Khachiyan, “A sublinear-
time randomized approximation algorithm for matrix

games,” Operations Research Letters, vol. 18, pp. 53—
58, 1995.

S. A. Plotkin, D. B. Shmoys, and E. Tardos, “Fast
approximation algorithms for fractional packing and cov-
ering problems,” in SFCS '91: Proceedings of the 32nd
Annual Symposium on Foundations of Computer Science.
Washington, DC, USA: IEEE Computer Society, 1991,
pp. 495-504.

C. Koufogiannakis and N. E. Young, “Beating simplex
for fractional packing and covering linear programs,” in
FOCS. 1EEE Computer Society, 2007, pp. 494-504.

N. Cesa-Bianchi, A. Conconi, and C. Gentile, “On the
generalization ability of on-line learning algorithms,”
1EEE Transactions on Information Theory, vol. 50, no. 9,
pp- 20502057, 2004.

B. Scholkopf and A. J. Smola, “A short introduction to
learning with kernels,” pp. 41-64, 2003.

