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Abstract—We consider k-median clustering in finite metric
spaces and k-means clustering in Euclidean spaces, in the
setting where k is part of the input (not a constant). For
the k-means problem, Ostrovsky et al. [18] show that if the
optimal (k−1)-means clustering of the input is more expensive
than the optimal k-means clustering by a factor of 1/ǫ2, then
one can achieve a (1 + f(ǫ))-approximation to the k-means
optimal in time polynomial in n and k by using a variant
of Lloyd’s algorithm. In this work we substantially improve
this approximation guarantee. We show that given only the
condition that the (k−1)-means optimal is more expensive than
the k-means optimal by a factor 1+α for some constant α > 0,
we can obtain a PTAS. In particular, under this assumption, for
any ǫ > 0 we achieve a (1 + ǫ)-approximation to the k-means
optimal in time polynomial in n and k, and exponential in
1/ǫ and 1/α. We thus decouple the strength of the assumption
from the quality of the approximation ratio. We also give a
PTAS for the k-median problem in finite metrics under the
analogous assumption as well. For k-means, we in addition
give a randomized algorithm with improved running time of

nO(1)(k log n)poly(1/ǫ,1/α).
Our technique also obtains a PTAS under the assumption of

Balcan et al. [4] that all (1 + α) approximations are δ-close to
a desired target clustering, in the case that all target clusters
have size greater than δn and α > 0 is constant. Note that
the motivation of Balcan et al. [4] is that for many clustering
problems, the objective function is only a proxy for the true
goal of getting close to the target. From this perspective, our
improvement is that for k-means in Euclidean spaces we reduce
the distance of the clustering found to the target from O(δ)
to δ when all target clusters are large, and for k-median we
improve the “largeness” condition needed in [4] to get exactly
δ-close from O(δn) to δn. Our results are based on a new
notion of clustering stability.

1. INTRODUCTION

Clustering is a well-studied task, arising in numerous

areas from computer vision to computational biology to
distributed computing. Generally speaking, the goal of clus-

tering is to partition n given data objects into k groups that
share some commonality. Operationally, clustering is often
performed by viewing the data as points in a metric space

and then optimizing some natural objective over them. In this

paper, we consider two popular such objectives, k-median
and k-means. Both measure a k-partition by choosing a
special point for each cluster, called the center, and define

the cost of a clustering as a function of the distances between
the data points and their respective centers. In the k-median
case, the cost is the sum of the distances of the points

to their centers, and in the k-means case, the cost is the
sum of these distances squared. The k-median objective
is typically studied for data in a finite metric (complete

weighted graph satisfying triangle inequality) over the n data
points; k-means clustering is typically studied for n points
in a (finite dimensional) Euclidean space. Both objectives

are known to be NP-hard (we view k as part of the input
and not a constant, though even the 2-means problem in
Euclidean space was recently shown to be NP-hard [8]).

For k-median in a finite metric, there is a known (1+1/e)-
hardness of approximation result [14] and substantial work
on approximation algorithms [11], [7], [2], [14], [9], with

the best guarantee a 3 + ǫ approximation. For k-means in
a Euclidean space, there is also a vast literature of approx-
imation algorithms [17], [3], [9], [10], [12], [15] with the

best guarantee a constant-factor approximation if polynomial

dependence on k and the dimension d is desired.1

Ostrovsky et al. [18] proposed an interesting condition
under which one can achieve better k-means approximations
in time polynomial in n and k. They consider k-means
instances where the optimal k-clustering has cost noticeably
smaller than the cost of any (k−1)-clustering, motivated by
the idea that “if a near-optimal k-clustering can be achieved
by a partition into fewer than k clusters, then that smaller
value of k should be used to cluster the data” [18]. Under
the assumption that the ratio of the cost of the optimal
(k−1)-means clustering to the cost of the optimal k-means
clustering is at least max{100, 1/ǫ2}, Ostrovsky et al. show
that one can obtain a (1+ f(ǫ))-approximation for k-means
in time polynomial in n and k, by using a variant on Lloyd’s
algorithm. In this paper, we substantially improve on this

approximation guarantee. We show that under the much
weaker assumption that the ratio of these costs is just at

least (1 + α) for some constant α > 0, we can achieve a
PTAS: namely, (1 + ǫ)-approximate the k-means optimum,
for any constant ǫ > 0. Our approximation scheme runs
in time which is poly(n, k) and exponential only in 1/ǫ
and 1/α. Thus, we decouple the strength of the assumption
from the quality of the conclusion, and in the process allow

the assumption to be substantially weaker. For k-means
clustering we in addition give a randomized algorithm with

improved running time nO(1)(k log n)poly(1/ǫ,1/α).
Balcan et al. [4], motivated by the fact that objective

functions are often just a proxy for the underlying goal
of getting the data clustered correctly, propose clustering

instances that satisfy the condition that all (1 + α) approxi-

1If k is constant, then k-median in finite metrics can be trivially solved
in polynomial time and there is a PTAS known for k-means (and k-median)
in Euclidean space [16]. There is also a PTAS known for low-dimensional
Euclidean spaces (dimension at most log log n) [1], [12].



mations to the given objective (e.g., k-median or k-means)
are δ-close, in terms of how points are partitioned, to a
target clustering (such as a correct clustering of proteins

by function or a correct clustering of images by who is in
them). This can be viewed as an assumption made implicitly

when considering approximation algorithms for problems
of this nature where the true goal is to get close to the

target. Balcan et al. show that for any α and δ, given an
instance satisfying this property for k-median or k-means
objectives, one can in fact efficiently produce a clustering

that is O(δ/α)-close to the target clustering (so, O(δ)-close
for any constant α > 0), even though obtaining a 1 + α
approximation to the objective is NP-hard for α < 1

e , and

remains hard even under this assumption. Thus they show

that one can approximate the target even though it is hard to
approximate the objective. One interesting question that has

remained is the approximability of the objectives when all

target clusters are large compared to δn, since the hardness
of approximation requires allowing small clusters.2 Here, we

show that for both k-median and k-means objectives, if all
clusters contain more than δn points, then for any constant
α > 0 we can in fact get a PTAS. Thus, we (nearly) resolve
the approximability of these objectives under this condition.
Note that under this condition, this further implies finding a

δ-close clustering (setting ǫ = α). Thus, we also extend the
results of Balcan et al. [4] in the case of large clusters and
constant α by getting exactly δ-close for both k-median and
k-means objectives. (In [4] this exact closeness was achieved
for the k-median objective but needed a somewhat larger
O(δn(1 + 1/α)) minimum cluster size requirement).
Our algorithmic results are achieved by examining impli-

cations of a property we call weak deletion-stability that is
implied by both the separation condition of Ostrovsky et al.

[18] as well as (when target clusters are large) the stability
condition of Balcan et al. [4]. In particular, an instance of k-
median/k-means clustering satisfies weak deletion-stability
if in the optimal solution, deleting any of the centers c∗i
and assigning all points in cluster i instead to one of the
remaining k − 1 centers c∗j , results in an increase in the
k-median/k-means cost by an (arbitrarily small) constant
factor.

We also show that weak deletion-stability still allows for

NP-hard instances and that no FPTAS is possible as well
(unless P = NP). Thus, our algorithm, whose running time

is (nk)poly(1/ǫ,1/β), is optimal in the sense that the super-
polynomial dependence on 1/ǫ and 1/β is unavoidable.
After presenting notation and preliminaries in Section 2,

in Section 3 we introduce weak deletion-stability and relate
it to the stability notions of [18] and [4]. We then define

another property of a clustering being β-distributed which,
while not so intuitive, we show is implied by weak deletion-
stability and will be the actual condition that our algorithms

will use. We then go on to prove that being β-distributed

2In fact, as shown in [19], the k-median algorithm in [4] for the case that
clusters are sufficiently large compared to δn(1 + 1/α) achieves a better
constant-factor approximation. Note that δ need not be a constant.

suffices to give a PTAS for k-median in Section 4. We extend
the algorithm to k-means clustering in Section 5, where
we also introduce a randomized version whose run-time is

bounded by n3 ((log(n) · k))
poly(1/ǫ,1/β)

. We conclude with
discussion and open problems in Section 6.

2. NOTATION AND PRELIMINARIES

We are given a set S of n points. When discussing k-
median, we assume the n points reside in a finite metric
space, and when discussing k-means, we assume they all
reside in a finite dimensional Euclidean space. We de-

note d : S × S → R≥0 as the distance function. A
solution to the k-median objective partitions the n points
into k disjoint subsets, C1, C2, . . . , Ck and assigns a center

ci for each subset. The k-median cost of this partition
is then measured by

∑k
i=1

∑

x∈Ci
d(x, ci). A solution to

the k-means objective again gives a k-partition of the
n data points, but now we may assume uses the center
of mass, µCi

= 1
|Ci|

∑

x∈Ci
x, as the center of the Ci.

We then measure the k-means cost of this clustering by
∑k

i=1

∑

x∈Ci
d2(x, µCi

) =
∑k

i=1

∑

x∈Ci
‖x− µCi

‖2.
The optimal clustering (w.r.t. to either the k-median or the

k-means objective) is denoted as C∗ = {C∗
1 , C∗

2 , . . . , C∗
k},

and its cost is denoted as OPT. The centers used in the
optimal clustering are denoted as {c∗1, c∗2, . . . , c∗k}. Clearly,
given the optimal clustering, we can find the optimal centers
(either by brute-force checking all possible points for k-
median, or by c∗i = µC∗

i
for k-means). Alternatively, given

the optimal centers, we can assign each x to its nearest
center, thus obtaining the optimal clustering. Thus, we use

C∗ to denote both the optimal k-partition, and the optimal
list of k centers. We use OPTi to denote the contribution
of the cluster i to OPT, that is OPTi =

∑

x∈C∗

i
d(x, c∗i )

in the k-median case, or OPTi =
∑

x∈C∗

i
d2(x, c∗i ) in the

k-means case.

3. STABILITY PROPERTIES

As mentioned above, our results are achieved by ex-

ploiting implications of a stability condition we call weak

deletion-stability, and in particular an implication we call
being β-distributed. In this section we define weak deletion-
stability and of being β-distributed, relate weak deletion-
stability to conditions of Ostrovsky et al. [18] and Balcan
et al. [4], and show that weak deletion-stability implies the

clustering is β-distributed. In Sections 4 and 5 we use the
property of being β-distributed to obtain a PTAS.3

Definition 3.1. For α > 0, a k-median/k-means instance
satisfies (1+α) weak deletion-stability, if it has the following
property. Let {c∗1, c∗2, . . . , c∗k} denote the centers in the
optimal k-median/k-means solution. Let OPT denote the

optimal k-median/k-means cost and let OPT
(i→j) denote

the cost of the clustering obtained by removing c∗i as a center

3Technically, we could skip the “middleman” of weak deletion-stability
and just define the property of being β-distributed as our main stability
notion, but weak deletion-stability is a more intuitive condition.



and assigning all its points instead to c∗j . Then for any i 6= j,
it holds that

OPT
(i→j) > (1 + α)OPT

We use weak deletion-stability via the following implica-

tion we call being β-distributed.

Definition 3.2. For β > 0, a k-median instance is β-
distributed if for any center c∗i of the optimal clustering and
any data point x /∈ C∗

i , it holds that

d(x, c∗i ) ≥ β · OPT

|C∗
i |

.

A k-means instance is β-distributed if for any such c∗i and
x /∈ C∗

i , it holds that

d2(x, c∗i ) ≥ β · OPT

|C∗
i |

We prove that (1+ α) weak deletion-stability implies the
clustering is α/2-distributed for k-median (α/4-distributed
for k-means) in Theorem 3.5 below. First, however, we relate
weak deletion-stability to the conditions considered in [18]

and [4].

A. ORSS-Separability

Ostrovsky, Rabani, Schulman and Swamy [18] define a
clustering instance to be ǫ-separated if the optimal k-means
solution is cheaper than the optimal (k− 1)-means solution
by at least a factor ǫ2. For a given objective (k-means or
k-median) let us use OPT(k−1) to denote the cost of the

optimal (k − 1)-clustering. Introducing a parameter α > 0,
say a clustering instance is (1 + α)-ORSS separable if

OPT(k−1)

OPT
> 1 + α

If an instance satisfies (1+α)-ORSS separability then all
(k − 1) clusterings must have cost more than (1 + α)OPT

and hence it is immediately evident that the instance will

also satisfy (1 + α)-weak deletion-stability. Hence we have
the following claim:

Claim 3.3. Any (1+α)-ORSS separable k-median/k-means
instance is also (1 + α)-weakly deletion stable.

B. BBG-Stability

Balcan, Blum, and Gupta [4] (see also Balcan and Braver-

man [5] and Balcan, Röglin, and Teng [6]) consider a notion

of stability to approximations motivated by settings in which
there exists some (unknown) target clustering Ctarget we

would like to produce. Balcan et al. [4] define a clustering

instance to be (1 + α, δ) approximation-stable with respect
to some objective Φ (such as k-median or k-means), if any
k-partition whose cost underΦ is at most (1+α)OPT agrees
with the target clustering on all but at most δn data points.
That is, for any (1 + α) approximation C to objective Φ,
we have minσ∈Sk

∑

i |Ctarget
i − Cσ(i)| ≤ δn (here, σ is

simply a matching of the indices in the target clustering to

those in C). In general, δn may be larger than the smallest

target cluster size, and in that case approximation-stability
need not imply weak deletion-stability (not surprisingly

since [4] show that k-median and k-means remain hard to
approximate). However, when all target clusters have size
greater than δn (note that δ need not be a constant) then
approximation-stability indeed also implies weak deletion-
stability, allowing us to get a PTAS (and thereby δ-close to
the target) when α > 0 is a constant.

Claim 3.4. A k-median/k-means clustering instance that
satisfies (1 + α, δ) approximation-stability, and in which all
clusters in the target clustering have size greater than δn,
also satisfies (1 + α) weak deletion-stability.

Proof: Consider an instance of k-median/k-means clus-
tering which satisfies (1 + α, δ) approximation-stability. As
before, let {c∗1, c∗2, . . . , c∗k} be the centers in the optimal
solution and consider the clustering C(i→j) obtained by

no longer using c∗i as a center and instead assigning each
point from cluster i to c∗j , making the ith cluster empty.
The distance of this clustering from the target is defined as
1
n minσ∈Sk

∑

i′ |C
target
i′ − C

(i→j)
σ(i′) |. Since C(i→j) has only

(k − 1) nonempty clusters, one of the target clusters must
map to an empty cluster under any permutation σ. Since by
assumption, this target cluster has more than δn points, the
distance between Ctarget and C(i→j) will be greater than δ
and hence by the BBG stability condition, the k-median/k-
means cost of C(i→j) must be greater than (1 + α)OPT.

C. Weak Deletion-Stability implies β-distributed

We show now that weak deletion-stability implies the

instance is β-distributed.

Theorem 3.5. Any (1+α)-weakly deletion-stable k-median
instance is α

2 -distributed. Any (1+α)-weakly deletion-stable
k-means instance is α

4 -distributed.

Proof: Fix any center in the optimal k-clustering, c∗i ,
and fix any point p that does not belong to the C∗

i cluster.

Denote by C∗
j the cluster that p is assigned to in the optimal

k-clustering. Therefore it must hold that d(p, c∗j ) ≤ d(p, c∗i ).
Consider the clustering obtained by deleting c∗i from the list
of centers, and assigning each point in C∗

i to C∗
j . Since

the instance is (1 + α)-weakly deletion-stable, this should
increase the cost by at least αOPT.

Suppose we are dealing with a k-median instance. Each
point x ∈ C∗

i originally pays d(x, c∗i ), and now, assigned to
c∗j , it pays d(x, c∗j ) ≤ d(x, c∗i )+d(c∗i , c

∗
j ). Thus, the new cost

of the points in C∗
i is upper bounded by

∑

x∈C∗

i
d(x, c∗j ) ≤

OPTi + |C∗
i |d(c∗i , c

∗
j ). As the increase in cost is lower

bounded by αOPT and upper bounded by |C∗
i |d(c∗i , c

∗
j ), we

deduce that d(c∗i , c
∗
j ) > αOPT

|C∗

i
| . Observe that triangle inequal-

ity gives that d(c∗i , c
∗
j ) ≤ d(c∗i , p) + d(p, c∗j ) ≤ 2d(c∗i , p), so

we have that d(c∗i , p) > (α/2)OPT

|C∗

i
| .

Suppose we are dealing with a Euclidean k-means in-
stance. Again, we have created a new clustering by assigning



all points in C∗
i to the center c∗j . Thus, the cost of transi-

tioning from the optimal k-clustering to this new (k − 1)-
clustering, which is at least αOPT, is upper bounded by
∑

x∈C∗

i
‖x− c∗j‖2−‖x− c∗i ‖2. As c∗i = µC∗

i
, it follows that

this bound is exactly
∑

x∈C∗

i
‖c∗j − c∗i ‖2 = |C∗

i |d2(c∗i , c
∗
j ),

see [13] (§2, Theorem 2). It follows that d2(c∗i , c
∗
j ) > αOPT

|C∗

i
| .

As before, d2(c∗i , c
∗
j ) ≤

(

d(c∗i , p) + d(p, c∗j )
)2 ≤ 4d2(c∗i , p),

so d2(c∗i , p) > α
4

OPT

|C∗

i
| .

D. NP-hardness under weak deletion-stability

Finally, we would like to point out that NP-hardness of the

k-median problem in maintained even if we restrict ourselves
only to weakly deletion-stable instances. Also the reduction
uses only integer poly-size distances, and hence rules out

the existence of a FPTAS for the problem, unless P = NP.

In addition, the reduction can be modified to show that NP-
hardness is maintained under the conditions studied in [18]

and [4].

Theorem 3.6. For any constant α > 0, finding the opti-
mal k-median clustering of (1 + α)-weakly deletion-stable
instances is NP-hard.

Proof: Omitted.

4. A PTAS FOR ANY β-DISTRIBUTED k-MEDIAN
INSTANCE

We now present the algorithm for finding a (1 + ǫ)-
approximation of the k-median optimum for β-distributed
instances. First, we comment that using a standard doubling
technique, we can assume we approximately know the value

of OPT.4 Our algorithm works if instead of OPT we use

a value v s.t. OPT ≤ v ≤ (1 + ǫ/2)OPT, but for ease of
exposition, we assume that the exact value of OPT is known.
Below, we informally describe the algorithm for a special

case of β-distributed instances in which no cluster dominates
the overall cost of the optimal clustering. Specifically, we
say a cluster C∗

i in the optimal k-median clustering C∗
(hereafter also referred to as the target clustering) is cheap

if OPTi ≤ βǫOPT

32 , otherwise, we say C∗
i is expensive. Note

that in any event, there can be at most a constant ( 32
βǫ )

number of expensive clusters.
Algorithm Intuition: The intuition for our algorithm and

for introducing the notion of cheap clusters is the following.

Pick some cluster C∗
i in the optimal k-median clustering.

Since the instance is β-distributed, any x /∈ C∗
i is far

from c∗i , namely, d(x, c∗i ) > β OPT

|C∗

i
| . In contrast, the average

distance of x ∈ C∗
i from c∗i is

OPTi

|C∗

i
| . Thus, if we focus on

a cluster whose contribution, OPTi, is no more than, say,
β

100OPT, we have that c∗i is 100 times closer, on average, to
the points of C∗

i than to the points outside C∗
i . Furthermore,

using the triangle inequality we have that any two “average”

points of C∗
i are of distance at most

2β
100

OPT

|C∗

i
| , while the

distance between any such “average” point and any point

4Instead of doubling from 1, we can alternatively run an off-the-shelf
5-approximation of OPT, which will return a value v ≤ 5OPT.

outside of C∗
i is at least

99β
100

OPT

|C∗

i
| . So, if we manage to

correctly guess the size s of a cheap cluster, we can set
a radius r = Θ

(

β OPT

s

)

and collect data-points according

to the size and intersection of the r-balls around them. We
note that this use of balls with an inverse relation between
size and radius is similar to that in the min-sum clustering

algorithm of [5].

Note that in the general case we might have up to 32
βǫ

expensive clusters. We handle them by brute force guessing

their centers. In Subsection 4-A, we present the algorithm
for clustering β-distributed instances of k-median under the
assumption that for all the expensive clusters we have made
the correct guess for their cluster centers. The algorithm

populates a list Q, where each element in this list is a subset
of points. Ideally, each subset is contained in some target
cluster, yet we might have a few subsets with points from

two or more target clusters. The first stage of the algorithm

is to add components into Q, and the second stage is to find
k good components in Q, and use these k components to
retrieve a clustering with low cost.

Since we do not have many expensive clusters, we can

run the algorithm for all possible guesses for the centers

of the expensive clusters and choose the solution which
has the minimum cost. The analysis below shows that

one such guess will lead to a solution of cost at most

(1+ǫ)OPT. Later, in Section 5, when we deal with k-means
in Euclidean space, we use sampling techniques, similar to

those of Kumar et al. [16] and Ostrovsky et al. [18], to get
good substitutes for the centers of the expensive clusters.

Note however an important difference between the approach

of [16], [18] and ours. While they sample points from all
k clusters, we sample points only for the O(1) expensive
clusters. As a result, the runtime of the PTAS of [16], [18]

has exponential dependence in k, while ours has only a
polynomial dependence in k.

A. Clustering β-distributed Instances

The algorithm is presented in Figure 1. In this section

we assume that at the beginning, the list Q is initialized
with Qinit which contains the centers of all the expensive

clusters. In general, the algorithm will be run several times

with Qinit containing different guesses for the centers of the
expensive clusters. Before going into the proof of correctness

of the algorithm, we introduce another definition. We define

the inner ring of C∗
i as the set

{

x; d(x, c∗i ) ≤ βOPT

8|C∗

i
|

}

. Note

the following fact:

Fact 4.1. If C∗
i is a cheap cluster, then no more than an

ǫ/4 fraction of its points reside outside the inner ring. In
particular, at least half of a cheap cluster is contained within

the inner ring.

Proof: This follows from Markov’s inequality. If more

than (ǫ/4)|C∗
i | points are outside of the inner ring, then

OPTi >
ǫ|C∗

i |
4 · βOPT

8|C∗

i
| = βǫOPT/32. This contradicts the

fact that C∗
i is cheap.



1) Initialization Stage: Set Q ← Qinit.

2) Population Stage: For s = n, n−1, n−2, . . . , 1
do:

a) Set r = βOPT

4s .

b) Remove any point x such that d(x,Q) <
2r.
(Here, d(x,Q) = minT∈Q;y∈T d(x, y).)

c) For any remaining data point x, denote the
set of data points whose distance from x
is at most r, by B(x, r). Connect any two
remaining points a and b if:
(i) d(a, b) ≤ r, (ii) |B(a, r)| > s

2 and (iii)

|B(b, r)| > s
2 .

d) Let T be a connected component of size
> s

2 . Then:

i) Add T to Q. (That is, Q ← Q∪{T }.)
ii) Define the set B(T ) = {x : d(x, y) ≤

2r for some y ∈ T }. Remove the
points of B(T ) from the instance.

3) Centers-Retrieving Stage: For any choice of k
components T1, T2, . . . , Tk out of Q (we later
show that |Q| < k + O(1/β))

a) Find the best center ci for

Ti ∪ B(Ti). That is ci =
argminp∈Ti∪B(Ti)

∑

x∈Ti∪B(Ti)
d(x, p).a

b) Partition all n points according to the
nearest point among the k centers of the
current k components.

c) If a clustering of cost at most (1+ ǫ)OPT

is found – output these k centers and halt.

aThis can be done before fixing the choice of k components out
of Q.

Figure 1. The algorithm to obtain a PTAS for β-distributed instances of
k-median.

Our high level goal is to show that for any cheap cluster

C∗
i in the target clustering, we insert a component Ti that is

contained within C∗
i , and furthermore, contains only points

that are close to c∗i . It will follow from the next claims that
the component Ti is the one that contains points from the

inner ring of C∗
i . We start with the following Lemma which

we will utilize a few times.

Lemma 4.2. Let T be any component added to Q. Let
s be the stage in which we add T to Q. Let C∗

i be

any cheap cluster s.t. s ≥ |C∗
i |. Then (a) T does not

contain any point z s.t. the distance d(c∗i , z) lies within

the range
[

β
2

OPT

|C∗

i
| ,

3β
4

OPT

|C∗

i
|

]

, and (b) T cannot contain both

a point p1 s.t. d(c∗i , p1) < β
2

OPT

|C∗

i
| and a point p2 s.t.

d(c∗i , p2) > 3β
4

OPT

|C∗

i
| .

Proof: We prove (a) by contradiction. Assume T con-
tains a point z s.t. β

2
OPT

|C∗

i
| ≤ d(c∗i , z) ≤ 3β

4
OPT

|C∗

i
| . Set

r = βOPT

4s ≤ βOPT

4|C∗

i
| , just as in the stage when T was added to

Q, and let p be any point in the ball B(z, r). Then by the tri-
angle inequality we have that d(c∗i , p) ≥ d(c∗i , z)−d(z, p) ≥
β
4

OPT

|C∗

i
| , and similarly d(c∗i , p) ≤ d(c∗i , z) + d(z, p) ≤ βOPT

|C∗

i
| .

Since our instance is β-distributed it holds that p belongs to
C∗

i , and from the definition of the inner ring of C
∗
i , it holds

that p falls outside the inner ring. However, z is added to T
because the ball B(z, r) contains more than s/2 ≥ |C∗

i |/2
many points. So more than half of the points in C∗

i fall

outside the inner ring of C∗
i , which contradicts Fact 4.1.

Assume now (b) does not hold. Recall that T is a con-
nected component, so exists some path p1 → p2. Each two

consecutive points along this path were connected because

their distance is at most βOPT

4s ≤ βOPT

4|C∗

i
| . As d(c∗i , p1) <

β
2

OPT

|C∗

i
| and d(c∗i , p2) > 3β

4
OPT

|C∗

i
| , there must exist a point z

along the path whose distance from c∗i falls in the range
[

β
2

OPT

|C∗

i |
, 3β

4
OPT

|C∗

i |

]

, contradicting (a).

Claim 4.3. Let C∗
i be any cheap cluster in the target

clustering. By stage s = |C∗
i |, the algorithm adds to Q

a component T that contains a point from the inner ring of
C∗

i .

Proof: Suppose that up to the stage s = |C∗
i | the

algorithm has not inserted such a component into Q. Now, it
is possible that by stage s, the algorithm has inserted some
component T ′ to Q, s.t. some x in the inner ring of C∗

i

is too close to some y ∈ T ′ (namely, d(x, y) ≤ 2r), thus
causing x to be removed from the instance. Assume for now
this is not the case. This means that the inner ring of cluster

C∗
i still contains more than |C∗

i |/2 points. Also observe that
all inner ring points are of distance at most βOPT

8|C∗

i |
from the

center, so every pair of inner ring points has a distance of

at most βOPT

4|C∗

i
| . Hence, when we reach stage s = |C∗

i |, any
ball of radius r = βOPT

4s = βOPT

4|C∗

i
| centered at any inner-ring

point, must contain all other inner-ring points. This means
that at stage s = |C∗

i | all inner ring points are connected
among themselves, so they form a component (in fact, a

clique) of size > s/2. Therefore, the algorithm inserts a
new component, containing all inner ring points.

So, by stage s = |C∗
i |, one of two things can happen.

Either the algorithm inserts a component that contains some
inner ring point to Q, or the algorithm removes an inner
ring point due to some component T ′ ∈ Q. If the former
happens, we are done. So let us prove by contradiction that

we cannot have only the latter.

Let s ≥ |C∗
i | be the stage in which we throw away the first

inner ring point of the cluster C∗
i . At stage s the algorithm

removes this inner ring point x because there exists a point y
in some component T ′ ∈ Q, s.t. d(x, y) ≤ 2r = βOPT

2s , and

so d(c∗i , y) ≤ d(c∗i , x) + d(x, y) ≤ βOPT

8|C∗

i
| + βOPT

2s ≤ 5
8

βOPT

|C∗

i
| .

This immediately implies that T ′ cannot be the center of an
expensive cluster since any such point will be at a distance at

least
βOPT

|C∗| from c∗i . Let s
′ ≥ s ≥ |C∗

i | be the previous stage
in which we added the component T ′ to Q. As Lemma 4.2
applies to T ′, we deduce that d(c∗i , y) < β

2
OPT

|C∗

i
| . Recall



that T ′ contains > s′/2 ≥ |C∗
i |/2 many points, yet, by

assumption, contains none of the |C∗
i |/2 points that reside

in the inner ring of C∗
i . It follows from Fact 4.1 that some

point w ∈ T ′ must belong to a different cluster C∗
j . Since

the instance is β-distributed, we have that d(c∗i , w) > βOPT

|C∗

i
| .

The existence of both y and w in T ′ contradicts part (b) of
Lemma 4.2.

We call a component T ∈ Q good if it contains an inner
ring point of some cheap cluster C∗

i . A component is called

bad if it is not good and is not one of the initial centers
present in Qinit. We now discuss the properties of good

components.

Claim 4.4. Let T be a good component added to Q,
containing an inner ring point from a cheap cluster C∗

i .

(By Claim 4.3 we know at least one such T exists.) Then:
(a) all points in T are of distance at most βOPT

2|C∗

i |
from c∗i ,

(b) T ∪ B(T ) is fully contained in C∗
i , and (c) the entire

inner ring of C∗
i is contained in T ∪B(T ), and (d) no other

component T ′ ∈ Q, T ′ 6= T , contains an inner ring point
from C∗

i .

Proof: As we do not know (d) in advance, it might

be the case that Q contains many good components, all
containing an inner-ring point from the same cluster, C∗

i .
Out of these (potentially many) components, let T denote
the first one inserted to Q. Denote the stage in which T
was inserted to Q as s. Due to the previous claim, we know
s ≥ |C∗

i |, and so Lemma 4.2 applies to T . We show (a), (b),
(c) and (d) hold for T , and deduce that T is the only good
component to contain an inner ring point from C∗

i .

Part (a) follows immediately from Lemma 4.2. We know
T contains some inner ring point x from C∗

i , so d(c∗i , x) ≤
β
8

OPT

|C∗

i
| < β

2
OPT

|C∗

i
| , so we know that any y ∈ T must satisfy

that d(c∗i , y) < β
2

OPT

|C∗

i
| . Since we now know (a) holds and the

instance is β-distributed, we have that T ⊂ C∗
i , so we only

need to show B(T ) ⊂ C∗
i . Fix any y ∈ B(T ). The point y is

assigned to B(T ) (thus removed from the instance) because
there exists some point x ∈ T s.t. d(x, y) ≤ 2r. So again,
we have that d(c∗i , y) ≤ d(c∗i , x) + d(x, y) ≤ βOPT

|C∗

i
| , which

gives us that y ∈ C∗
i (since the instance is β-distributed).

We now prove (c). Because of (b), we deduce that the
number of points in T is at most |C∗

i |. However, in order
for T to be added to Q, it must also hold that |T | > s/2. It
follows that s < 2|C∗

i |. Let x be an inner ring point of C∗
i

that belongs to T . Then the distance of any other inner ring
point of C∗

i and x is at most βOPT

4|C∗

i
| < βOPT

2s = 2r. It follows

that any inner ring point of C∗
i which isn’t added to T is

assigned to B(T ). Thus T ∪ B(T ) contains all inner-ring
points. Finally, observe that (d) follows immediately from
the definition of a good component and from (c).

We now show that in addition to having all k good
components, we cannot have too many bad components.

Claim 4.5. We have less than 16/(3β) bad components.

Proof: Let T be a bad component, and let s be the stage

in which T was inserted to Q. Let y be any point in T , and
let C∗ be the cluster to which y belongs in the optimal
clustering with center c∗. We show d(c∗, y) > 3β

8
OPT

s . We
divide into cases.

Case 1: C∗ is an expensive cluster. Note that we are

working under the assumption that Qinit contains the cor-
rect centers of the expensive clusters. In particular, Qinit

contains c∗. Also, the fact that point y was not thrown out
in stage s implies that d(c∗, y) > 2r = βOPT

2s > 3βOPT

8s .

Case 2: C∗ is a cheap cluster and s ≥ |C∗|. We apply
Lemma 4.2, and deduce that either d(c∗, y) < β

2
OPT

|C∗| or

that d(c∗, y) > 3β
4

OPT

|C∗| ≥
3β
4

OPT

s . As the inner ring of C∗

contains > |C∗|/2 and T contains > s/2 ≥ |C∗|/2 many
points, none of which is an inner ring point, some point

w ∈ T does not belong to C∗ and hence d(c∗, w) > βOPT

|C∗| >
3β
4

OPT

|C∗| . Part (b) of Lemma 4.2 assures us that all points in

T are also far from c∗.
Case 3: C∗ is a cheap cluster and s < |C∗|. Using
Claim 4.3 we have that some good component containing a
point x from the inner ring of C∗ was already added to Q.
So it must hold that d(x, y) > 2r, for otherwise we removed
y from the instance and it cannot be added to any T . We
deduce that d(c∗, y) ≥ d(x, y)−d(c∗, x) ≥ βOPT

2s −
βOPT

8|C∗| >
3β
8

OPT

s .

All points in T have distance > 3βOPT

8s from their
respective centers in the optimal clustering, and recall that T
is added to Q because T contains at least s/2 many points.
Therefore, the contribution of all elements in T to OPT is
at least 3βOPT

16 . It follows that we can have no more than

16/3β such bad components.
We can now prove the correctness of our algorithm.

Theorem 4.6. The algorithm outputs a k-clustering whose
cost is no more than (1 + ǫ)OPT.

Proof: Using Claim 4.4, it follows that there exists some
choice of k components, T1, . . . , Tk, such that we have the

center of every expensive cluster and the good component

corresponding to every cheap cluster C∗. Fix that choice.
We show that for the optimal clustering, replacing the true

centers {c∗1, c∗2, ..., c∗k} with the centers {c1, c2, ..., ck} that
the algorithm outputs, increases the cost by at most a (1+ǫ)
factor. This implies that using the {c1, c2, ..., ck} as centers
must result in a clustering with cost at most (1 + ǫ)OPT.

Fix any C∗
i in the optimal clustering. Let OPTi be the

cost of this cluster. If C∗
i is an expensive cluster then we

know that its center c∗i is present in the list of centers
chosen. Hence, the cost paid by points in C∗

i will be at
most OPTi. If C∗

i is a cheap cluster then denote by T
the good component corresponding to it. We break the
cost of C∗

i into two parts: OPTi =
∑

x∈C∗

i
d(x, c∗i ) =

∑

x∈T∪B(T ) d(x, c∗i ) +
∑

x∈C∗

i
, yet x/∈T∪B(T ) d(x, c∗i ) and

compare it to the cost C∗
i using ci, the point picked

by the algorithm to serve as center:
∑

x∈C∗

i
d(x, ci) =

∑

x∈T∪B(T ) d(x, ci) +
∑

x∈C∗

i
, yet x/∈T∪B(T ) d(x, ci). Now,

the first term is exactly the function that is minimized



by ci, as ci = arg minp

∑

x∈T∪B(T ) d(x, p). We also
know c∗i , the actual center of C∗

i , resides in the in-

ner ring, and therefore, by Claim 4.4 must belong

to T ∪ B(T ). It follows that
∑

x∈T∪B(T ) d(x, ci) ≤
∑

x∈T∪B(T ) d(x, c∗i ). We now upper bound the 2nd term,
and show that

∑

x∈C∗

i
, yet x/∈T∪B(T ) d(x, ci) ≤ (1 +

ǫ)
∑

x∈C∗

i
, yet x/∈T∪B(T ) d(x, c∗i )

Any point x ∈ C∗
i , s.t. x /∈ T ∪ B(T ), must reside

outside the inner ring of C∗
i . Therefore, d(x, c∗i ) > βOPT

8|C∗

i
| .

We show that d(ci, c
∗
i ) ≤ ǫβOPT

8|C∗

i
| , and thus we have that

d(x, ci) ≤ d(x, c∗i ) + d(c∗i , ci) ≤ (1 + ǫ)d(x, c∗i ), which
gives the required result.

Note that thus far, we have only used the fact that the

cost of any cheap cluster is proportional to βOPT/|C∗
i |.

Here is the first (and the only) time we use the fact that

the cost is actually at most (ǫ/32) · βOPT/|C∗
i |. Using the

Markov inequality, we have that the set of points satisfying
{x; d(x, c∗i ) ≤ ǫ · βOPT/(16|C∗

i |)} contains at least
half of the points in C∗

i , and they all reside in the inner

ring, thus belong to T ∪ B(T ). Assume for the sake of
contradiction that d(ci, c

∗
i ) ≥ ǫβOPT

8|C∗

i
| . Then at least half of

the points in C∗
i contribute more than ǫ βOPT

16|C∗

i
| to the sum

∑

x∈T∪B(T ) d(x, ci). It follows that this sum is more than

ǫ βOPT

32|C∗

i
| ≥ OPTi. However, ci is the point that minimizes

the sum
∑

x∈T∪B(T ) d(x, p), and by using p = c∗i we have
∑

x∈T∪B(T ) d(x, p) ≤ OPTi. Contradiction.

B. Runtime analysis

A naive implementation of the 2nd step of algorithm in
Section 4-A takes O(n3) time (for every s and every point
x, find how many of the remaining points fall within the
ball of radius r around it). Finding ci for all components
takes O(n2) time, and measuring the cost of the solution
using a particular set of k data points as centers takes
O(nk) time. Guessing the right k components takes kO(1/β)

time. Overall, the running time of the algorithm in Figure

1 is O(n3kO(1/β)). The general algorithm that brute-force
guesses the centers of all expensive clusters, makes nO(1/βǫ)

iterations of the given algorithm, so its overall running time

is nO(1/βǫ)kO(1/β).

5. A PTAS FOR ANY β-DISTRIBUTED EUCLIDEAN
k-MEANS INSTANCE

Analogous to the k-median algorithm, we present an es-
sentially identical algorithm for k-means in Euclidean space.
Indeed, the fact that k-means considers distances squared,
makes upper (or lower) bounding distances a bit more

complicated, and requires that we fiddle with the parameters
of the algorithm. In addition, the centers c∗i may not be data
points. However, the overall approach remains the same.

Roughly speaking, converting the k-median algorithm to the
k-means case, we use the same constants, only squared.5

5We stress that we made no attempt to optimize the constants.

As before we handle expensive clusters by guessing good
substitutes for their centers and obtain good components for

cheap clusters.
Often, when considering the Euclidean space k-means
problem, the dimension of the space plays an important

factor. In contrast, here we make no assumptions about the

dimension, and our results hold for any poly(n) dimension.
In fact, for ease of exposition, we assume all distances

between any two points were computed in advance and are

given to our algorithm. Clearly, this only adds O(n2 · dim)
to our runtime. In addition to the change in parameters, we

utilize the following facts that hold for the center of mass

in Euclidean space.

Fact 5.1. Let U be a (finite) set of points in an Eu-

clidean space, and let µU denote their center of mass

(µ = 1
|U|

∑

x∈U x). Let A be a random subset of U , and

denote by µA the center of mass of A. Then for any δ < 1/2,
we have both

Pr

[

‖µU − µA‖2 >
1

δ|A| ·
1

|U |
∑

x∈U

‖x− µU‖2
]

< δ (1)

Pr

[

∑

x∈U

‖x− µA‖2 > (1 +
1

δ|A| ) ·
∑

x∈U

‖x− µU‖2
]

< δ

(2)

Fact 5.2. Let U be a (finite) set of points in an Euclidean
space, and let A 6= ∅ and B be a partition of U . Denote
by µU and µA the center of mass of U and A resp. Then
‖µU − µA‖2 ≤ 1

|U|

∑

x∈U ‖x− µU‖2 · |B|
|A| .

Fact 5.2, proven in [18] (Lemma 2.2), allows us to upper

bound the distance between the real center of a cluster

and the empirical center we get by averaging all points in
T ∪ B(T ) for a good component T . Fact 5.1 allows us to
handle expensive clusters. Since we cannot brute force guess

a center (as the center of the clusters aren’t necessarily data
points), we guess a sample of O(β−1 + ǫ−1) points from
every expensive cluster, and use their average as a center.

Both properties of Fact 5.1, proven in [13] (§3, Lemma 1
and 2), assure us that the center is an adequate substitute
for the real center and is also close to it. This motivates the

approach behind our first algorithm, in which we brute-force
traverse all choices of O(ǫ−1 + β−1) points for any of the
expensive clusters.
The second algorithm, whose runtime is

(k log n)poly(1/ǫ,1/β)O(n3), replaces brute-force guessing
with random sampling. Indeed, if a cluster contains

poly(1/k) fraction of the points, then by randomly
sampling O(ǫ−1 + β−1) points, the probability that
all points belong to the same expensive cluster, and

furthermore, their average can serve as a good empirical
center, is at least 1/kpoly(1/ǫ,1/β). In contrast, if we have

expensive clusters that contain few points (e.g. an expensive

cluster of size
√

n, while k = poly(log(n))), then random
sampling is unlikely to find good empirical centers for

them. However, recall that our algorithm collects points and



deletes them from our instance. So, it is possible that in the
middle of the run, we are left with so few points, so that

expensive clusters whose size is small in comparison to the

original number of points, contain a poly(1/k) fraction of
the remaining points.

Indeed, this is the motivation behind our second algo-

rithm. We run the algorithm while interleaving the Popula-
tion Stage of the algorithm with random sampling. Instead

of running s from n to 1, we use
{

n, n
k2 , n

k4 , n
k6 , . . . , 1

}

as break points. Correspondingly, we define li to be the
number of expensive clusters whose size is in the range
[

n · k−2i−2, n · k−2i
)

. Whenever s reaches such a n · k−2i

break point, we randomly sample points in order to guess

the li+3 centers of the clusters that lie 3 intervals “ahead”
(and so, initially, we guess all centers in the first 3 intervals).
We prove that in every interval we are likely to sample good

empirical centers. This is a simple corollary of Fact 5.2 along

with the following two claims. First, we claim that at the end
of each interval, the number of points remaining is at most

n ·k−2i+1. Secondly, we also claim that in each interval we

do not remove even a single point from a cluster whose size
is smaller than n·k−2i−6. We refer the reader to Appendix A

for the algorithms and their analysis.

6. DISCUSSION AND OPEN PROBLEMS

The algorithm we present here for k-median has runtime
of poly(n1/β , n1/ǫ, k), and the algorithm for k-means has
runtime poly(n, (k log n)1/ǫ, (k log n)1/β).6 We comment
that it is unlikely that we can obtain an algorithm of runtime
poly(n1/ǫ, 1/β, k). Observe that for any clustering instance

and any k > 1 we have that
OPT(k−1)

OPT
> 1 + 1

n , simply
by considering the k-clustering that results from taking the
optimal (k − 1)-clustering, and setting the point which is
the furthest from its center in a cluster of its own (as a

new center). Hence, any k-median/k-means instance is β-
distributed for β = Ω( 1

n ). Recall from Section 3-D the k-
median problem restricted only to weakly-stable instances

has no FPTAS. So the fact that our algorithm’s runtime

has super-polynomial dependence in both 1/β and 1/ǫ is
unavoidable. Nonetheless, one might still hope to do better.

In particular, one major runtime expense of our algorithm

comes from handling expensive clusters by brute-force
guessing or sampling. Can one improve the runtime by doing

something more clever for expensive clusters? It is worth

noting that for the stability conditions of [4], Voevodski et
al. [20] develop an especially efficient implementation with

good performance (in terms of both accuracy and speed) on
real-world protein sequence datasets.

A different open problem lies in the relation to results

of Ostrovsky et al. [18]. Their motivating question was

to analyze the performance of Lloyd-type methods over
stable instances. Is it possible that weak deletion-stability

is sufficient for some version of the k-means heuristic to
converge to the optimal clustering?

6When dealing with k-means in a Euclidean space of dimension dim, we
need to explicitly compute the distances, so we add n2dim to the runtime.
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APPENDIX

We present the algorithm for (1+ ǫ)-approximation to the
k-means optimum of a β-distributed instance. Much like in
Section 4, we call a cluster in the optimal k-means solution
cheap if OPTi =

∑

x∈C∗

i
d2(x, c∗i ) ≤ βǫOPT

46 .

A. Clustering β-distributed Instances of Euclidean k-means

The algorithm is presented in Figure 2. The correctness
is proved in a similar fashion to the proof of correctness

presented in Section 4. First, observe that by the Markov
inequality, for any cheap cluster C∗

i , we have that the set{

x; d2(x, c∗i ) > tβOPT

|C∗

i
|

}

cannot contain more than ǫ/(46t)

fraction of the points in |C∗
i |. It follows that the inner ring of

C∗
i , the set

{

x; d2(x, c∗i ) ≤ βOPT

256|C∗

i
|

}

, contains at least half

of the points of C∗
i . As mentioned Section 5 the algorithm

populates the list Q with good components corresponding
to cheap clusters. Also from Section 5, we know that for

every expensive cluster, there exists a sample of O( 1
β + 1

ǫ )
data points whose center is a good substitute for the center

of the cluster. Below, we assume that Q has been initialized
correctly with Qinit containing these good substitutes. In
general, the algorithm will be run multiple times for all

possible guesses of samples from expensive clusters. We

now present (without proof) the main lemmas involved in
the analysis. The proofs are essentially identical to those in

Section 4-A.

Lemma A.1. Let T ∈ Q be any component and let s be the
stage in which we insert T to Q. Let C∗

i be any cheap cluster

s.t. s ≥ |C∗
i |. Then (a) T does not contain any point z s.t.

the distance d2(c∗i , z) lies within the range
[

β
16

OPT

|C∗

i |
, β

4
OPT

|C∗

i |

]

,

and (b) T cannot contain both a point p1 s.t. d
2(c∗i , p1) ≤

β
16

OPT

|C∗

i
| and a point p2 s.t. d

2(c∗i , p2) > β
4

OPT

|C∗

i
| .

Claim A.2. Let C∗
i be any cheap cluster in the target

clustering. By stage s = |C∗
i |, the algorithm adds to Q

a component T that contains a point from the inner ring of
C∗

i .

Claim A.3. Let T be a good connected component added
to Q, containing an inner ring point from cluster C∗

i . Then:

(a) all points in T are of distance squared at most βOPT

16|C∗

i
|

from c∗i , (b) T ∪B(T ) is fully contained in C∗
i , and (c) the

entire inner ring of C∗
i is contained in T ∪ B(T ), and (d)

no other component T ′ 6= T in Q contains an inner ring
point from C∗

i .

Lemma A.4. We do not add to Q more than 1000/β bad
components.

We now prove the main theorem.

1) Initialization Stage: Set Q ← Qinit.

2) Population Stage: For s = n, n−1, n−2, . . . , 1
do:

a) Set r = βOPT

64s .

b) Remove any point x such that d2(x,Q) <
4r.
(Here, d(x,Q) = minT∈Q;y∈T d(x, y).)

c) For any remaining data point x, denote the
set of data points whose distance squared
from x is at most r, by B(x, r). Connect
any two remaining points a and b if:
(i) d2(a, b) ≤ r, (ii) |B(a, r)| > s

2 and
(iii) |B(b, r)| > s

2 .

d) Let T be a connected component of size
> s

2 . Then:

i) Add T to Q. (That is, Q ← Q∪{T }.)
ii) Define the set B(T ) = {x :

d2(x, y) ≤ 4r for some y ∈ T }. Re-
move the points of B(T ) from the
instance.

3) Centers-Retrieving Stage: For any choice of
k components T1, T2, . . . , Tk out of Q
a) Find the best center ci for Ti ∪B(Ti).
That is ci = µ(Ti ∪ B(Ti)) =

1
|Ti∪B(Ti)|

∑

x∈Ti∪B(Ti)
x.

b) Partition all n points according to the
nearest point among the k centers of the
current k components.

c) If a clustering of cost at most (1+ ǫ)OPT

is found – output these k centers and halt.

Figure 2. A PTAS for β-distributed instances of Euclidean k-means.

Theorem A.5. The algorithm outputs a k-clustering whose
cost is at most (1 + ǫ)OPT.

Proof: Using Claim A.3, it follows that there exists

some choice of k components which has good components
for all the cheap clusters and good substitutes for the centers

of the expensive clusters. Fix that choice and consider a

cluster C∗
i with center c∗i . If C∗

i is an expensive cluster
then from Section 5 we know that Qinit contains a point ci

such that d2(ci, c
∗
i ) ≤ βǫ

β+ǫ
OPTi

|C∗

i
| . Hence, the cost paid by the

points in C∗
i will be atmost (1 + ǫ)OPTi. If C∗

i is a cheap

cluster then denote by T the good component that resides
within C∗

i . Denote T ∪B(T ) by A, and C∗
i \A by B. Let

ci be the center of A. We know that the entire inner-ring
of C∗

i is contained in A, therefore, B cannot contain more
than ǫ/16 fraction of the points of C∗

i . Fact 5.2 dictates

that in this case, ‖c∗i − ci‖2 ≤ ǫ2 βOPT

46|C∗

i
| . We know every

x ∈ B contributes at least βOPT

256|C∗

i
| to the cost of C∗

i , so

‖c∗i − ci‖2 ≤ ǫ
16‖x− c∗i ‖2. Thus, for every x ∈ B, we have

that ‖x−ci‖2 ≤ (1+ǫ)‖x−c∗i ‖2. It follows that
∑

x∈B ‖x−
ci‖2 ≤ (1 + ǫ)

∑

x∈B ‖x− c∗i ‖2, and obviously
∑

x∈A ‖x−



ci‖2 ≤
∑

x∈A ‖x − c∗i ‖2 as ci is the center of mass of A.
Therefore, when choosing the good k components out of Q,
we can assign them to the centers in such a way that costs

no more than (1+ǫ)OPT. Obviously the assignment of each
point to the nearest of the k-centers only yields a less costly
clustering, and thus its cost is also at most (1 + ǫ)OPT.

B. A Randomized Algorithm for β-distributed k-Means In-
stances

We now present a randomized algorithm which

achieves a (1 + ǫ) approximation to the k-means op-
timum of a β-distributed instance and runs in time
(k logk n)poly(1/ǫ,1/β)O(n3). The algorithm is similar in
nature to the one presented in the previous section, except
that for expensive clusters we replace brute force guessing

of samples with random sampling. Note that the straightfor-
ward approach of sampling the points right at the start of

the algorithm might fail, if there exist expensive clusters

which contain very few points. A better approach is to
interleave the sampling step with the rest of the algorithm. In

this way we sample points from an expensive cluster only

when it contains a reasonable fraction of the total points
remaining, hence our probability of success is noticeable

(namely, poly(1/k)).
The high-level approach of the algorithm is to partition
the main loop of the Population Stage, in which we try all

possible values of s (starting from n and ending at 1), into
intervals. In interval i we run s on all values starting with n

k2i

and ending with n
k2i+2 . So overall, we have no more than t =

1
2 logk(n) intervals. Our algorithm begins by guessing l, the
number of expensive clusters, then guessing g1, g2, . . . , gt

s.t.
∑

i gi = l. Each gi is a guess for the number of expensive

clusters whose size lies in the range
[

n
k2i ,

n
k2(i−1)

)

. Note that
∑

i gi = # expensive clusters ≤ 46

βǫ . Hence, there are at most

(logk n)
46

βǫ number of possible assignments to gi’s and we

run the algorithm for every such possible guess.
Fixing g1, g2, . . . , gt, we run the Population Stage of the
previous algorithm. However, whenever s reaches a new
interval, we apply random sampling to obtain good empirical
centers for the expensive clusters whose size lies three

intervals “ahead”. That is, in the beginning of interval i,
the algorithm tries to collect centers for the clusters whose
size ≥ n

k6+2i = s
k6 , yet ≤ n

k4+2i = s
k4 . We assume for this

algorithm that k is significantly greater than 1
β . Obviously,

if k is a constant, then we can use the existing algorithm of
Kumar et al. [16].
In order to prove the correctness of the new algorithm, we

need to show that the sampling step in the initialization stage
succeeds with noticeable probability. Let li be the actual
number of expensive clusters whose size belongs to the

range
[

n
k2i ,

n
k2(i−1)

)

. In the proof which follows, we assume
that the correct guess for li’s has been made, i.e. gi = li,
for every i. We say that the algorithm succeeds at the end
of interval i if the following conditions hold:

1) In the beginning of the interval, our guess for all

clusters that belong to interval (i + 3) produces good

1) Guess l ≤ 46

βǫ , the number of expensive clusters.

Set t = 1
2 (logk n). Guess non-negative integers

g1, g2, . . . gt, such that
∑

i gi = l.
2) Sample g1 +g2 +g3 sets, by sampling indepen-

dently and u.a.r O( 1
β + 1

ǫ ) points for each set.

For each such set T̃j , add the singleton {µ(T̃j)}
to Q.

3) Modify the Population Stage from the previous

algorithm, so that whenever s = n
k2i for some

i ≥ 1 (We call this the interval i)

• Sample gi+3 sets, by sampling indepen-

dently and u.a.r O( 1
β + 1

ǫ ) points for each

set. For each such set T̃j , add the singleton

{µ(T̃j)} to Q.

empirical centers. That is, for every expensive cluster

C∗ of size in the range
[

n
k6+2i ,

n
k4+2i

)

, the algorithm

picks a sample T̃ such that the mean µ(T̃ ) satisfies:

(a) d2(µ(T̃ ), c∗) ≤ βOPT

256|C∗| .

(b)
∑

x∈C∗ d2(x, µ(T̃ )) ≤ (1 + ǫ)
∑

x∈C∗ d2(x, c∗).

2) During the interval, we do not delete any point p that
belongs to some target cluster C∗ of size ≤ n

k4+2(i+1)

points.

3) At the end of the interval, the total number of remain-
ing points (points that were not added to some T ∈ Q
or deleted from the instance because they are too close
to some T ′ ∈ Q) is at most n

k2i−1 .

Lemma A.6. For every i ≥ 1, let Si denote the event

that the algorithm succeeds at the end of interval i. Then
Pr[Si|S1, S2, . . . , Si−1] ≥ k−l(i+3)·O( 1

β
+ 1

ǫ
)

Proof: Omitted.

We now show that Lemma A.6 proves that with noticeable
probability, our algorithm returns a (1+ǫ)-approximation of
the k-means optimal clustering. First, observe the technical
fact that for the first three intervals l1, l2, l3, we need to
guess the centers of clusters of size ≥ n

k6 before we start

our Population Stage. However, as these clusters contain k−6

fraction of the points, then using Fact 5.1, our sampling finds

good empirical centers for all of these l1 + l2 + l3 expensive

clusters w.p. ≥ k−(l1+l2+l3)O( 1
β

+ 1
ǫ
). Applying Lemma A.6

we get that the probability our algorithm succeeds after all

intervals is ≥ 1/k
O( β+ǫ

β2ǫ2
)
. Now, a similar analysis as in the

previous section gives us that for the correct guess of the
good components in Q, we find a clustering of cost at most
(1 + ǫ)OPT.


