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Abstract—Given data drawn from a mixture of multivariate
Gaussians, a basic problem is to accurately estimate the
mixture parameters. We give an algorithm for this problem
that has running time and data requirements polynomial in
the dimension and the inverse of the desired accuracy, with
provably minimal assumptions on the Gaussians. As a simple
consequence of our learning algorithm, we we give the first
polynomial time algorithm for proper density estimation for
mixtures of k Gaussians that needs no assumptions on the
mixture. It was open whether proper density estimation was
even statistically possible (with no assumptions) given only
polynomially many samples, let alone whether it could be
computationally efficient.

The building blocks of our algorithm are based on the work
(Kalai et al, STOC 2010) [17] that gives an efficient algorithm
for learning mixtures of two Gaussians by considering a
series of projections down to one dimension, and applying the
method of moments to each univariate projection. A major
technical hurdle in [17] is showing that one can efficiently
learn univariate mixtures of two Gaussians. In contrast, because
pathological scenarios can arise when considering projections
of mixtures of more than two Gaussians, the bulk of the work
in this paper concerns how to leverage a weaker algorithm for
learning univariate mixtures (of many Gaussians) to learn in
high dimensions. Our algorithm employs hierarchical clustering
and rescaling, together with methods for backtracking and
recovering from the failures that can occur in our univariate
algorithm.

Finally, while the running time and data requirements of our
algorithm depend exponentially on the number of Gaussians
in the mixture, we prove that such a dependence is necessary.
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I. INTRODUCTION

Given access to random samples generated from a mixture
of (multivariate) Gaussians, the algorithmic problem of
learning the parameters of the underlying distribution is of
fundamental importance in physics, biology, geology, social
sciences – any area in which such finite mixture models
arise (see [23], [30]). Starting with Dasgupta [9], a series
of work in theoretical computer science has sought to find
(or disprove the existence of) an efficient algorithm for this
task [2], [11], [32], [1], [5], [3]. In this paper, we settle this
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problem: We give an algorithm for the problem of accurately
estimating the parameters of the mixture which has running
time and data requirements polynomial in the dimension
and the inverse of the desired accuracy, with provably
minimal assumptions on the Gaussians (specifically, that the
mixing weights and the statistical distance between each
pair of components are each bounded away from zero).
We give a more precise definition for the learning problem
in Section I-B. In fact, our estimate (on a component
by component basis) converges at in inverse polynomial
rate in a statistical sense to the true components of the
mixture, and such statistical guarantees are much stronger
than additive guarantees on the accuracy of the recovered
parameters. These statistical guarantees are invariant under
affine transformations and hence give guarantees even when
an affine transformation is applied to the data before it is
given to us.

As a simple consequence of our learning algorithm, we
give the first polynomial time algorithm for proper density
estimation for mixtures of k Gaussians without any assump-
tions on the mixture. It was open whether such an algorithm
was even information theoretically possible.

In the remainder of this section, we briefly summarize
previous work on this problem, formally state our main
result, and then discuss the differences between learning
mixtures of two Gaussians, and mixtures of many Gaussians.
Additionally, we give a high-level outline of the main struc-
ture of our algorithm. We first define a Gaussian Mixture
Model (GMM).

Consider a set of k different multinormal distributions,
where each component is characterized by a mean µi ∈ Rn,
and covariance matrix Σi ∈ Rn×n. Given a vector of k
nonnegative weights ~w, summing to one, we define the
associated Gaussian Mixture Model (GMM) to be the distri-
bution that results from choosing a component i according to
the distribution ~w, and then taking a sample from N (µi,Σi).

A. A Brief History

The most popular solution for recovering reasonable es-
timates of the components of GMMs in practice is the EM
algorithm given by Dempster, Laird and Rubin [12]. This
algorithm is a local-search heuristic that converges to a



set of parameters that locally maximizes the probability of
generated the observed samples. However, the EM algorithm
is a heuristic, and makes no guarantees about converging to
an estimate that is close to the true parameters. Worse still,
the EM algorithm (even for univariate mixtures of just two
Gaussians) has been observed to converge very slowly (see
Redner and Walker for a thorough treatment [26]).

In order to even hope for an algorithm (not necessarily
even polynomial time), we would need a uniqueness prop-
erty – that two distinct mixtures of Gaussians must have
different probability density functions. Teicher [29] demon-
strated that a mixture of Gaussians can be uniquely identified
(up to a relabeling of the components) by considering the
probability density function at points sufficiently far from the
centers (in the tails). However, such a result sheds little light
on the rate of convergence of an estimator: If distinguishing
Gaussian mixtures really required analyzing the tails of the
distribution, then we would require an enormous number of
data samples!

Dasgupta [9] introduced theoretical computer science to
the algorithmic problem of provably recovering good es-
timates for the parameters in polynomial time (and poly-
nomial sample complexity). His technique is based on
projecting data down to a randomly chosen low-dimensional
subspace and finding an accurate clustering from the low-
dimensional data. Given enough sample points that are all
accurately clustered, the empirical means and co-variances
of each cluster will be a good estimate for the actual
parameters of the corresponding component. Arora and
Kannan [2] extended these ideas to work in the much
more general setting in which the co-variances of each
Gaussian component could be arbitrary, and not necessarily
almost spherical as in [9]. Yet both of these techniques are
based on a concentration of measure phenomenon which
critically needs the assumption that the centers of the
components before a random projection are separated by
at least Ω(n1/4) times the largest variance. Vempala and
Wong [32] and Achlioptas and McSherry [1] introduced
the use of spectral techniques, and were able to overcome
this barrier by choosing a subspace on which to project
based on large principle components rather than choosing
a subspace randomly. Brubaker and Vempala [5] later gave
the first affine-invariant algorithm for learning mixtures of
Gaussians, again based on clustering.

The above approaches for provably learning good es-
timates each require at the very least that the statistical
overlap (i.e. one minus the statistical distance) between each
pair of components is sub-constant. Yet the range in which
our learning algorithms will work only requires that the
statistical overlap be bounded away from one. Recently,
Felman et al [13] gave a polynomial time algorithm for the
related problem of density estimation (without any separa-
tion condition) for the special case of axis-aligned GMMs
(GMMs where each component has principle coordinates

aligned with the coordinate axes).
Belkin and Sinha [3] showed that one can efficiently learn

each component in the special case that all components
are identical spherical Gaussians. Belkin and Sinha [4]
also recently gave an algorithm for learning mixtures of
k Gaussians that only requires the desired precision to be
polynomially smaller than the smallest additive gap in the
parameters. Most similar to the present work is the recent
work of Kalai et al [17], which gives a learning algorithm
for the case of mixtures of two Gaussians with no separation
assumptions.

B. Main Results

In this section we state our main results. We first consider
what it means to “accurately recover the mixture com-
ponents.” We denote D(F, F ′) as the statistical distance
between F and F ′. We provide a formal definition of
statistical distance in Section II-A.

Definition 1. Given two n-dimensional GMMs of k Gaus-
sians, F =

∑
i wiN (µi,Σi) and F̂ =

∑
i ŵiN (µ̂i, Σ̂i), we

call F̂ an ε-close estimate for F if there is permutation
function π : [k]→ [k] such that for all i ∈ [k]
• |wi − ŵπ(i)| ≤ ε
• D(N (µi,Σi),N (µ̂π(i), Σ̂π(i))) ≤ ε,

Note that the above definition of an ε-close estimate
is affine invariant. This is more natural than defining a
good estimate in terms of additive errors in the parameters,
since in general, even estimating the mean of an arbitrary
Gaussian to some fixed additive precision is impossible
without restrictions on the covariance, as scaling the data
will scale the error as well.

Before discussing our results, we first state three obvious
lower bounds for learning an ε-close estimate of a GMM
F =

∑k
i=1 wiFi. These examples will motivate our defintion

of ε-statistically learnable.
1) Permuting the order of the components does not change

the resulting density, so we can only hope to recover
the parameter set, {(w1, µ1,Σ1), . . . , (wk, µk,Σk)}.

2) We require at least Ω(1/mini(wi)) samples to esti-
mate the parameters, since we need at least this many
samples to ensure that we have seen, with reasonable
probability, even just one sample from each component.

3) If Fi = Fj , then it is impossible to accurately estimate
wi, and in general we require at least Ω(1/D(Fi, Fj))
samples to estimate wi, where D(Fi, Fj) denotes the
statistical distance between the two distributions.

Definition 2. We call a GMM F =
∑
i wiFi ε-statistically

learnable if mini wi ≥ ε and mini 6=j D(Fi, Fj) ≥ ε.

Given just this provably necessary condition that F be ε-
statistically learnable, we will be able to efficiently learn an
ε-close estimate to F . We can now state our main theorem:



Theorem 1. Given any n dimensional mixture of k Gaus-
sians F that is ε-statistically learnable, there is an algorithm
that, with probability at least 1 − δ, outputs an ε-close
estimate F̂ and the running time and data requirements of
our algorithm (for any fixed k) are polynomial in n, 1

ε , and
1
δ .

Throughout this paper, we favor clarity of proof and
exposition above optimization of runtime. Since our main
goal is show that these problems can be solved in polynomial
time, we make very little effort to optimize the exponent.
Our algorithms are polynomial in the dimension, the inverse
of the success probability, and the inverse of the target
accuracy for any fixed number of k Gaussians. However, the
dependence on k is severe: the degree of our polynomials
is Θ(k3). Note that the exponent in the result due to Belkin
and Sinha [4] is only guaranteed to be bounded for bounded
k. In Section VI, we give a natural construction of two
GMMs F, F ′ of k components that are each 1/k-statistically
learnable, for which F is not even a 1/4-close estimate of F ′

and yet D(F, F ′) ≤ e−k. We would require an exponential
in k number of samples to even distinguish the two mixtures
in this example from each other. This demonstrates that
exponential dependence on k is inevitable when learning
mixtures of k Gaussians. We give a formal statement in
Theorem 14.

C. Applications

We can leverage our main theorem to show that we can
efficiently perform proper density estimation for arbitrary
GMMs. By proper density estimation, we will require that
our algorithm returns an estimate distribution that is a mix-
ture of at most k Gaussians, in addition to the guarantee that
our estimate distribution be statistically close as a mixture to
to the true mixture. For density estimation—as opposed to
parameter recovery—we do not need the components in our
estimate to be close to the actual components. For example,
if one component Fi in the mixture has negligible mixing
weight, then our estimate can be statistically close as a
distribution to the true distribution even if no component
in our estimate is statistically close to Fi. Similarly, if
two components Fi and Fj are only negligibly statistically
different from each other, in our estimate we can merge these
two components into a single component and our estimate
can still be statistically close to the true mixture.

For these reasons, we can perform density estimation
efficiently without the restriction that F be ε-statistically
learnable, which was required as an assumption for the
learning algorithm in Theorem 1.

Corollary 2. For any n ≥ 1, ε, δ > 0, and any n-
dimensional GMM F =

∑k
i=1 wiFi, given access to inde-

pendent samples from F , there is an algorithm that outputs
F̂ =

∑k
i=1 ŵiF̂i such that with probability at least 1 − δ

over the randomization in the algorithm and in selecting the

samples, D(F, F̂ ) ≤ ε. Additionally, the running time and
data requirements of our algorithm (for any fixed k) are
polynomial in n, 1

ε , and 1
δ .

The above algorithm depends exponentially on k3 because
it uses the algorithm in Theorem 1 as a subroutine. Yet
the problem of learning an ε-close estimate is harder than
performing density estimation. In fact, our lower bound for
algorithms which learn an ε-close estimate is not a lower
bound for density estimation - if there are two mixtures of
k Gaussians, F and F ′, for which D(F, F ′) is exponentially
small (in k) either one is a good statistical estimate as
a distribution for the other. It remains a very interesting
open problem to understand if proper density estimation for
mixtures of k Gaussians can be performed in poly(n, k, 1

ε )
samples (with no assumptions on the mixture).

The second corollary that we obtain from Theorem 1 is
for clustering. To define the problem of clustering, suppose
that during the data sampling process, for each sample point
xi ∈ Rn, a hidden label yi ∈ {1, . . . , k} called the ground
truth is generated based upon which component the point
was sampled from. A clustering algorithm takes as input m
points and outputs a classifier C : Rn → {1, . . . , k}. The
error of a classifier is the minimum, over all label permuta-
tions, of the probability that the permuted label agrees with
the ground truth. Given the mixture parameters, it is easy to
see that the optimal clustering algorithm will simply assign
a label to each point based on which component has the
largest posterior probability. We also obtain the following
corollary:

Corollary 3. For any n ≥ 1, ε, δ > 0, and any n-
dimensional GMM F =

∑k
i=1 wiFi, given access to in-

dependent samples from an ε-statistically learnable mixture
F of k Gaussians, there is an algorithm that outputs a
classifier C such that with probability at least 1−δ over the
randomization in the algorithm and in selecting the samples,
the error of C is at most ε larger than the error of the
optimal classifier COPT . Additionally, the running time and
data requirements of our algorithm (for any fixed k) are
polynomial in n, 1

ε , and 1
δ .

We will not describe the proofs of these corollaries in
detail, because the proofs follow from the main theorem
in a nearly identical manner to which the corresponding
corollaries for mixtures of two Gaussians in [17] followed
from the main theorem of [17]. Rather, our emphasis in this
paper is on the problem of learning an ε-close estimate, and
we use these corollaries to support the claim that the goal
of learning an ε-close estimate is a strong goal that contains
many other well-studied learning results as corollaries.

D. Hurdles to Moving Beyond Two Gaussians
This work leverages several key ideas initially presented

in [17] which gave an efficient algorithm for learning mix-
tures of two Gaussians, with provably minimal assumptions.



Figure 1. A challenging mixture of three Gaussians to learn: A
projection onto a randomly chosen direction usually looks like a
mixture of two Gaussians.

Nevertheless, additional high-level insights and technical
details were required to extend the previous work to give an
efficient learning algorithm for mixtures of many Gaussians,
again with provably minimal assumptions. In this section
we briefly summarize the algorithm for learning mixtures of
two Gaussians given in [17], and then describe the hurdles
to extending it to the general case. This discussion will
provide insights and motivate the high-level structure of the
algorithm presented in this paper, as well as clarify which
components of the proof are new, and which are straight-
forward adaptations of ideas from [17].

Throughout this discussion, it will be helpful to refer to
parameters ε1, ε2, ε3, which are polynomially related to each
other, and satisfy ε1 << ε2 << ε3.

There are three key components to the proof that mixtures
of two Gaussians can be learned efficiently: the 1-d Learn-
ability Lemma, the Random Projection Lemma, and the
Parameter Recovery Lemma. The 1-d Learnability Lemma
states that given a mixture of two univariate Gaussians
whose two components have nonnegligible statistical dis-
tance, one can efficiently recover accurate estimates of the
parameters of the mixture. It is worth noting that in the
univariate case, saying that the statistical distance between
two Gaussians is non-negligible is ”usually” equivalent to
saying that the two sets of parameters are non-negligibly
different, i.e. |µ− µ′|+ |σ2 − σ′2| is non-negligible .

The Random Projection Lemma states that given an n-
dimensional ε-statistically learnable mixture of two Gaus-
sians which is in isotropic position, (with high probability
over the choice of a random unit vector r) the projection
of the mixture onto r will yield a univariate mixture of two
Gaussians that have nonnegligible statistical distance (say
ε3). Let Pr[F ] denote the projection of the mixture F onto
the direction r.

The final component—the Parameter Recovery Lemma—
states that, given a Gaussian G in n dimensions, if one has

extremely accurate estimates (say to within some ε1) of the
mean and variance of G projected onto n2 sufficiently dis-
tinct directions (directions that differ by at least ε2 >> ε1)
one can accurately recover the multi-dimensional parameters
of G.

Given these three pieces, the high-level algorithm for
learning mixtures of two Gaussians is straight-forward:

1) Pick a random unit vector r.
2) Pick n2 vectors r1, . . . , rn2 , that are “close” to r, say
|ri − r| ≈ ε2.

3) For each i = 1, . . . , n2, learn extremely accu-
rate (to accuracy ε1 << ε2) univariate parameters
wi, µi, σi, µ

′
i, σ
′
i for the projection of the mixture onto

the vector ri.
4) Since |ri − rj | ≈ ε2, the parameters of Pri

[F1] and
Prj

[F1] must be very close - i.e. much closer than
ε3. By the Random Projection Lemma, |µi − µ′i| +
|σ2
i − σ′i

2| >> ε3 so we can accurately match up
which estimate parameters across different projections
come from the same component. We can then apply
the Parameter Recovery Lemma to obtain accurate
multidimensional estimates of the parameters of each
component.

Some of the above ideas are immediately applicable to
the problem of learning mixtures of many Gaussians: we
can clearly use the Parameter Recovery Lemma without
modification. Additionally, we prove a generalization of the
1-d Learnability Lemma for mixtures of many Gaussians,
provided each pair of components has non-negligible statis-
tical distance (which, while technically tedious, employs the
key idea from [17] of “deconvolving” by a suitably chosen
Gaussian). Given this extension, if we were given a mixture
of k Gaussians in isotropic position, and were guaranteed
that the projection onto some vector r resulted in a univariate
mixture of Gaussians for which all pairs of components
either had reasonably different means or reasonably different
variances, then we could piece together the parts more-
or-less as in the case of mixtures of two Gaussians. For
example, this would be the case if we assumed the desired
precision was polynomially smaller than the additive gap in
parameters.

Unfortunately, however, the Random Projection Lemma,
ceases to hold in the general setting of mixtures of more
than two Gaussians. There are simple mixtures that are ε-
statistically learnable and are in isotropic position, but with
high probability, the projection onto a randomly chosen unit
vector r yields a distribution that is extremely close to a
univariate mixture of two Gaussians. See Figure 1.

How can we recover an n-dimensional estimate that is a
mixture of k Gaussians if, in all univariate projections, we
see what appears to be a mixture of k′ < k components?



II. ALGORITHM OUTLINE AND DEFINITIONS

In this section, we explain the high-level structure of our
algorithm. Our algorithm uses a similar approach to [17],
in which the method of moments is applied to a series
of univariate projections of the mixtures, from which the
high-dimensional parameters are then reconstructed. This
approach, however, is used many times within a larger
recursive scheme that uses hierarchical clustering, and at
intermediate stages of our algorithm an estimate mixture of
k′ ≤ k Gaussians is maintained.

How can an estimate mixture that has the wrong number
of components be useful as an intermediate step?

We will say that a component F̂i in our estimate is
additively close to some set of components in the true
mixture if it is additively close (in terms of parameter
distance) to each component in the set, and additionally
mixing weight ŵi of F̂i is close to the aggregate mixing
weight of all the components in the set. At an intermediate
stage, our estimate will be additively close to some partition
(into k′ sets) of the components in the true mixture.

How do we make progress when one component in the
estimate mixture corresponds to a set of more than one
component in the true mixture?

We show that the only way in which we end up with
several of the original components corresponding to one
of the recovered estimated components is if this estimate
component has an extremely small variance in some di-
rection — i.e. the minimum eigenvalue of the covariance
matrix is extremely small. But in this case we can use this
estimate productively: By projecting the samples onto the
corresponding eigenvector, we will be able to accurately
cluster the sample points in a manner consistent with some
partition of the original clusters. Thus (with high probability)
each cluster will now consist of samples that come from
some mixture of k′′ < k components. We note that our
algorithm actually works given just an upper bound on
the number of components, and so we can now apply our
algorithm recursively to each of the clusters.

Eventually we reach a base case in which the set of sample
points given to our algorithm has been generated by a single
Gaussian, and we can detect this condition. In this case
the empirical mean and empirical co-variance of the sample
points will be a statistically good estimate to the underlying
Gaussian that generated the samples.

To illustrate the approach, consider the toy example of
the mixture of three Gaussians given in Figure 1. In this
example, we will need to learn an intermediate mixture of
two Gaussians. This is because we cannot distinguish the
two dark/skinny Gaussians at the current scale. We need to
cluster out the samples generated by these two Gaussians, so

that we can focus on just these two components and choose
the right scale at which to distinguish between them.

In order to cluster out these two Gaussians, we need to
first learn a direction in which the two Gaussians have small
variance. This is precisely why we first learn an estimate
mixture of two Gaussians (that is additively close to the true
mixtures) – we can use this estimate to find a direction to
project onto so that we can cluster out these two components.

A. Definitions

Definition 3. Given two probability distributions f(x), g(x)
on <n we can define the statistical distance between these
distributions as

D(f(x), g(x)) =
1
2

∫
<n

|f(x)− g(x)|dx

We will also be interested in a related notion of the
parameter distance between two univariate Gaussians:

Definition 4. Given two univariate Gaussians, F1 =
N (µ1, σ

2
1), F2 = N (µ2, σ

2
2) we define the parameter dis-

tance as

Dp(F1, F2) = |µ1 − µ2|+ |σ2
1 − σ2

2 |

In general, the parameter distance and the statistical
distance between two univariate Gaussians can be unrelated.
There are pairs of univariate Gaussians with arbitrarily small
parameter distance, and yet statistical distance close to 1,
and there are pairs of univariate Gaussians with arbitrarily
small statistical distance, and yet arbitrarily large parameter
distances. But these scenarios can only occur if the variances
can be arbitrarily small or arbitrarily large. In many instances
in this paper, we will have reasonable upper and lower
bounds on the variances and this will allow us to move back
and forth from statistical distance and parameter distance.

As we noted, there are simple examples of an ε-
statistically learnable mixture of three Gaussians which as
a distribution is in isotropic position, but for which with
overwhelming probability in a projection onto a randomly
chosen direction r, there will be some pair of univariate
Gaussians that are arbitrarily close in parameter distance. In
such a case, we must relax the goal of returning an accurate
estimate which is a mixture of three Gaussians – Instead, our
univariate algorithm will return a mixture which has only
two components but is still in some sense a good estimate
for the parameters of the projected mixture. To formalize this
notion, we introduce what we call an ε-correct sub-division.

Definition 5. Given a GMM of k Gaussians, F =∑
i wiN (µi, σ2

i ) and a GMM of k′ ≤ k Gaussians F̂ =∑
i ŵiN (µ̂i, σ̂2

i ), we call F̂ an ε-correct subdivision of F
if there is a function π : [k]→ [k′] that is onto and
• ∀j∈[k′]|

∑
i|π(i)=j wi − ŵj | ≤ ε

• ∀i∈[k]Dp(Fi, F̂π(i)) ≤ ε



When considering high-dimensional mixtures, we replace
the above parameter distance by ‖µi − µ̂π(i)‖ + ‖Σi −
Σ̂π(i)‖F ≤ ε, where ‖‖F denotes the Frobenius norm.

Notationally, we will write (F̂ , π) ∈ Dε(F ) as shorthand
for the statement that F̂ is an ε-correct subdivision for F
and π is the (onto) function from k to k′ that groups F into
F̂ as above.

Note that this definition, unlike the definition for an
ε-close estimate, uses parameter distance as opposed to
statistical distance.

III. A ROBUST UNIVARIATE ALGORITHM

In this section, we give a learning algorithm for univariate
mixtures of Gaussians that will be the building block for
our learning algorithm in n-dimensions. Unlike in the case
of [17], the input to our univariate algorithm will not
necessarily be a mixture of Gaussians for which all pairwise
parameter distances are reasonably large. Instead, it could
happen that we are given a mixture of (say) three Gaussians
so that some pair has arbitrarily small parameter distance.

In the case in which we are guaranteed that all pairwise
parameter distances are reasonably large, we can iterate
the technical ideas in [17] to give an inductive proof that
a simple brute force search algorithm will return a good
estimate with the correct number of components. We call this
algorithm the BASIC UNIVARIATE ALGORITHM. From this,
we build a GENERAL UNIVARIATE ALGORITHM that will
return a good estimate regardless of the parameter distances,
although in order to do so we will need to relax the notion
of a good estimate to something weaker: the algorithm will
return an ε-correct subdivision, and in this case the algorithm
can return an estimate with strictly fewer components as
long as this estimate is consistent with some partition of the
original mixture.

A. Polynomially Robust Identifiability

In this section, we show that we can efficiently learn the
parameters of univariate mixtures of Gaussians, provided
that the components of the mixture have nonnegligible
pairwise parameter distances. We emphasize again that this
algorithm will return the correct number of components,
because it is run with precision fine enough that all pairs
of components look different. We refer to this algorithm as
the BASIC UNIVARIATE ALGORITHM. Such an algorithm
will follow easily from Theorem 4—the polynomially robust
identifiability of univariate mixtures. Throughout this section
we will consider two univariate mixtures of Gaussians:

F (x) =
n∑
i=1

wiN (µi, σ2
i , x), F ′(x) =

k∑
i=1

w′iN (µ′i, σ
′2
i , x).

Definition 6. We will call the pair F, F ′ ε-standard if
σ2
i , σ
′2
i ≤ 1 and if ε satisfies:

• wi, w
′
i ∈ [ε, 1]

• |µi|, |µ′i| ≤ 1
ε

• |µi−µj |+ |σ2
i −σ2

j | ≥ ε and |µ′i−µ′j |+ |σ′2i −σ′2j | ≥ ε
for all i 6= j

• ε ≤ minπ
∑
i

(
|wi − w′π(i)|+ |µi − µ

′
π(i)|+ |σ

2
i − σ′2π(i)|

)
,

where the minimization is taken over all mappings
π : {1, . . . , n} → {1, . . . , k}.

Let Mi[F ] = Ex∼F [xi] i.e. Mi[F ] is the ith raw moment
of the distribution F .

Theorem 4. There is a constant c > 0 such that, for any
ε-standard F, F ′ and any ε < c,

max
i≤2(n+k−1)

|Mi(F )−Mi(F ′)| ≥ εO(k)

We note that it is known that there are distinct mixtures
of k Gaussians that can match exactly on the first linearly
(in k) many raw moments.

Given the polynomially robust identifiability guaranteed
by the above theorem, and simple concentration bounds
on the ith sample moment, it is easy to see that a brute-
force search over a set of candidate parameter sets will
yield an efficient algorithm that recovers the parameters
for a univariate mixture of Gaussians whose components
have pairwise parameter distance at least ε: roughly, the
BASIC UNIVARIATE ALGORITHM will take a polynomial
number of samples, compute the first 4k−2 sample moments
empirically, and compare those with the first 4k−2 moments
(which are computed analytically) of each of the candidate
parameter sets in a grid search. The algorithm then returns
the parameter set whose moments most closely match the
empirical moments. Theorem 4 guarantees that if the first
4k − 2 sample moments very closely match those of the
chosen parameter set, then the parameter set must be nearly
accurate. To conclude the proof, we argue that a polynomial-
sized set of candidate parameters suffices to guarantee that
at least one set of parameters will yield analytic moments
very close to the emprical moments. We state the corollary
below, and defer the details of the algorithm and the proof
of its correctness to the full version of our paper.

Corollary 5. Suppose we are given access to independent
samples from a GMM

∑k
i=1 wiN (µi, σ2

i , x) with mean 0
and variance in the interval [1/2, 2], where wi ≥ ε, and
|µi − µj | + |σ2

i − σ2
j | ≥ ε. There is an algorithm that, for

any fixed k, has runtime and sample complexity at most
poly( 1

ε ,
1
δ ) and with probability at least 1 − δ will output

mixture parameters ŵi, µ̂i, σ̂i
2, so that there is a permutation

π : [k]→ [k] and for each i = 1, . . . , k:

|wi − ŵπ(i)| ≤ ε, |µi − µ̂π(i)| ≤ ε, |σ2
i − σ̂2

π(i)| ≤ ε

B. The GENERAL UNIVARIATE ALGORITHM

In this section we seek to extend the BASIC UNIVARIATE
ALGORITHM of Corollary 5 to the general setting of a



univariate mixture of k Gaussians without any requirements
that the components have significant pair-wise parameter dis-
tance. In particular, given some target accuracy ε, and access
to independent samples from a mixture F of k univariate
Gaussians, we want to efficiently compute a mixture F ′ of
k′ ≤ k Gaussians that is an ε-correct subdivision of F.

We say that a mixture is in near isotropic position if the
mean is zero and the variance is between 1

2 and 2.

Proposition 6. There is an algorithm which, given ε, δ > 0,
and access to a GMM of at most k Gaussians, F =∑
i wiN (µi, σ2

i ) that is in near isotropic position and sat-
isfies wi ≥ ε (for any fixed k) has runtime and sample
complexity at most poly( 1

ε ,
1
δ ) and with probability at least

1− δ will output a GMM of k′ ≤ k Gaussians F̂ that is an
ε-correct subdivision of F .

The critical insight in building up such a GENERAL
UNIVARIATE ALGORITHM is that if two components are
actually close enough (in statistical distance), then because
the BASIC UNIVARIATE ALGORITHM only requires a poly-
nomial number of samples, these two components will look
(to our algorithm) as if they were a single Gaussian. So
given a target precision ε1 for the BASIC UNIVARIATE
ALGORITHM, there is some window that describes whether
or not the algorithm will work correctly: If all pairwise
parameter distances are either sufficiently large or suffi-
ciently small, then the BASIC UNIVARIATE ALGORITHM
will behave as if it were given sample access to a mixture
that actually does meet the requirements of the algorithm.
Groups of components for which all pairs are very close
in parameter distance will look roughly the same as if we
were to replace the entire group with a singe, appropriately
chosen Gaussian. And all pairs of groups will be sufficiently
different in parameter distance that the BASIC UNIVARIATE
ALGORITHM will be able to tell them apart.

However, when there is some parameter distance that
falls inside the BASIC UNIVARIATE ALGORITHM’s win-
dow, we are not guaranteed that the BASIC UNIVARIATE
ALGORITHM will fail safely. The idea, then, is to use
many disjoint windows (each of which corresponds to
running the BASIC UNIVARIATE ALGORITHM with some
target precision). If we choose enough such windows, each
pairwise parameter distance can only corrupt a single run of
the BASIC UNIVARIATE ALGORITHM so a majority of the
computations will be correct. We defer the algorithm and
proof of correctness to the full version of our paper.

IV. PARTITION PURSUIT

In this section we demonstrate how to use the GEN-
ERAL UNIVARIATE ALGORITHM to obtain good additive
approximations in n-dimensions. Roughly, we will project
the n-dimensional mixture F onto many close-by directions,
and run the GENERAL UNIVARIATE ALGORITHM on each
projection. This is also how the algorithm in [17] is able to

recover good additive estimates in n-dimensions. However
we will have to cope with the additional complication
that our univariate algorithm (the GENERAL UNIVARIATE
ALGORITHM) does not necessarily return an estimate that
is a mixture of k Gaussians.

We explain in detail how the algorithm in [17] is able to
obtain additive approximation guarantees in n-dimensions,
building on a univariate algorithm for learning mixtures
of two Gaussians: Let Pr[F ] denote the univariate mixture
that results from projecting F onto direction r. Let ε3 >>
ε2 >> ε1. Given any ε-statistically learnable mixture of
two Gaussians in n-dimensions that is in isotropic position,
with high probability the parameter distance between the two
univariate Gaussians in Pr[F ] that result from projecting on
a randomly chosen direction r will be at least ε3.

Then given such a direction r, we can choose n2 different
directions rx,y each of which are ε2-close to r (i.e. ‖r −
rx,y‖ ≈ ε2). We can bound how much the mean and variance
of a component in Pu[F ] can change as we vary the direction
u from r to rx,y , and this will imply that for ε2 << ε3,
we can consistently pair up estimates recovered from each
projection, so that for each component we have n2 different
estimates of the projected mean and variance corresponding
to the n2 different directions. Each of these estimates are
accurate to within ε1 (i.e. this is the target precision that is
given to the univariate algorithm).

Note that Pr[N (µ,Σ)] = N (rTµ, rTΣr) and so for
any Gaussian, an estimate for the projected mean and the
projected variance on a direction r gives a linear constraint
on the mean vector µ and the co-variance matrix Σ. Taking
the union of these linear constraints on µ and Σ for each
of the n2 directions, we obtain a system of constraints for
µ and Σ which has condition number poly( 1

ε2
, n) [17]. As

a result, if ε1 << ε2 then the precision is much finer than
the condition number of the system of linear constraints on
µ,Σ and we can back-solve to obtain additively accurate
estimates for µ and Σ in n-dimensions. We can directly use
the bound on the condition number given in [17]:

Lemma 7. [17] Let ε2, ε1 > 0. Suppose |m0−µ · r|,|mij −
µ · rij |, |v0 − rTΣr|,|vij − (rij)TΣrij | are all at most ε1.
Then there is an algorithm that outputs µ̂ ∈ Rn and Σ̂ ∈
Rn×n such that ‖µ̂ − µ‖ < ε1

√
n

ε2
, and ‖Σ̂ − Σ‖F ≤ 6nε1

ε22
.

Furthermore, Σ̂ � 0 and Σ̂ is symmetric.

The algorithm to which this lemma refers is given [17]
and in the full version of our paper.

However, the GENERAL UNIVARIATE ALGORITHM does
not always return a mixture of k Gaussians, and can in fact
return a mixture F̂u of k′ < k Gaussians provided that
this mixture is still an ε1-correct subdivision of Pu[F ] (for
some direction u). But then what happens if we consider two
close-by directions, u and v and the number of Gaussians in
the estimate F̂u is different from the number of Gaussians



in the estimate F̂ v?
The key insight is that if we choose some direction r,

and close-by directions rx,y , we can ensure that if we see a
different number of components in some close by direction,
we will see strictly more. In such a case, if on some direction
v we see strictly more components than for direction u, we
can just restart our algorithm on direction v, throwing out
all information we have observed so afar. But we have made
progress because we have seen more components.

Suppose we reach a state in which in each (close by)
direction, we observe mixtures of k′ Gaussians. In each
projection, the set of Gaussians in our estimate corresponds
to a partition of the original mixture. Suppose every pair of
Gaussians in every projection has a large parameter distance
(say ε3) and if all directions are sufficiently close (say
ε2 << ε3), then the partitions (of the true components) to
which each estimate corresponds must be the same across
different directions. This is only true when the number of
Gaussians in each estimate is exactly the same. We can
finally apply the above bound on the condition number to
obtain a multidimensional mixture of k′ ≤ k Gaussians that
is an ε-correct sub-division for F - i.e. is close to some
partition of F .

We state our main proposition in this section, and defer
the algorithm and proof to the full version of our paper.

Proposition 8. Given access to an ε-statistically learnable
GMM F of at most k Gaussians which as a mixture is
in isotropic position, the PARTITION PURSUIT ALGORITHM
(for any fixed k) has runtime and sample complexity at most
poly( 1

ε ,
1
δ ) and with probability at least 1 − δ will output

an ε-correct sub-division F̂ and if F has more than one
component, F̂ also has more than one component.

V. CLUSTERING AND RECURSION

In this section, we give an efficient algorithm for learning
an estimate F̂ that is ε-close to the actual mixture F .
PARTITION PURSUIT assumes that the mixture F is in
isotropic position, and even though F is not necessarily
in isotropic position, we can first take enough samples to
compute a transformation that places the mixture F in nearly
isotropic position and then applying this transformation to
each sample from the oracle.

The main technical challenge in this section is actually
what to do when the mixture F̂ returned by PARTITION
PURSUIT is a good additive approximation to F (i.e. it is an
ε1-correct subdivision with ε1 << ε), but is not ε-close to the
mixture F . This can only happen if there is a component in
F that has a very small variance in some direction (because
otherwise additive guarantees yield statistical guarantees).
Consider for example, two univariate Gaussians N (0, γ) and
N (0, γ+ ε1). Even if ε1 is very small, if γ is much smaller,
then the statistical distance between these two Gaussians can
be arbitrarily close to 1.

The high-level idea is that if the estimate F̂ returned by
PARTITION PURSUIT is not ε-close to F (but F̂ is an ε1-
correct subdivision of F for ε1 << ε), then it must be the
case that some component F̂i of F̂ has a co-variance matrix
Σ̂i with the property that for some direction v, vT Σ̂iv is very
small. We can then use this direction v to make progress: If
we project the mixture F onto v, we will be able to cluster
accurately. There will be some partition of the components
in F into two disjoint, non-empty sets of components S, T
and some clustering scheme that can accurately clusters
points sampled from F into points that originated from a
component in S and points that originated from a component
in T . We show that we can accurately cluster enough points
sampled from F into sets of points that originated from
components in S and sets of points that originated from
components in T , so that we can then recursively run our
learning algorithm on each of the two sets of samples, which
now each correspond to samples from a mixture of strictly
fewer components.

The main technical challenge is in showing that if there is
some component of F̂ with a small enough variance in some
direction v, then we can accurately cluster points sampled
from F (obviously provided that F̂ is additively close to
F ). Given this, our main result follows almost immediately
from an inductive argument.

A. How to Cluster

Here we formalize the notion of a clustering scheme.
Additionally, we state the key lemmas that will be useful
in showing that if F̂ is not an ε-close estimate to F , we
can use F̂ to construct a good clustering scheme that makes
progress on our learning problem.

Definition 7. We will call A,B ⊂ <n a clustering scheme
if A ∩B = ∅

Definition 8. For A ⊂ <n, we will write P [Fi, A] to denote
Prx∼Fi [x ∈ A] - i.e. the probability that a randomly chosen
sample from Fi is in the set A.

The intuition is clearest in the case of mixtures of two
Gaussians: Suppose one of the components, say F̂1, had
small variance on direction v. If the entire mixture is in
isotropic position, then the variance of the mixture when
projected onto direction v is 1. This can only happen if
either the difference in projected means |vT (µ̂1 − µ̂2)| is a
constant or the variance of F̂2 on direction v is a constant.
In the first case, we can choose an interval around each
projected (estimate) mean vT µ̂1 and vT µ̂2 so that with high
probability, any point sampled from F1 is contained in the
interval around vT µ̂1 and similarly for F2.

If, instead, the variance of F2 when projected onto v
is a constant, then again a small interval around the point
vT µ̂1 will contain most samples from F1, but because the
maximum density of vTF2 is never large and the interval



around vT µ̂1 is very short, with high probability samples
from F2 will not be contained in the interval. This idea is
the basis of our clustering lemmas. Although there will be
additional complications when the mixture contains more
than two Gaussians, the intuition is close to the same.

Let (F̂ , π) ∈ Dε1(F ). Suppose also that F̂ is a mixture
of k′ components.

Lemma 9. Suppose that for some direction v, for all i:
vT Σ̂iv ≤ ε2, for ε1 ≤

√
ε2

2ε3
. If there is some bi-partition

S ⊂ [k′] s.t. ∀i∈S,j∈[k′]−S |vT µ̂i − vT µ̂j | ≥
3
√
ε2
ε3

then there
is a clustering scheme (A,B) (based only on F̂ ) so that
for all i ∈ S, j ∈ π−1(i), P [Fi, A] ≥ 1 − ε3 and for all
i /∈ S, j ∈ π−1(i), Pr[Fi, B] ≥ 1− ε3.

This lemma corresponds to the first case in the above
thought exercise when there is some bi-partition of the
components so that all pairs of projected means across the
bi-partition are reasonably separated.

Lemma 10. Suppose there is some direction v and some
i ∈ [k′] such that: vT Σ̂iv ≤ εm, for εm >> ε1. If there is
some bi-partition S ⊂ [k′] s.t.

mini∈S vT Σ̂iv
max(maxj /∈S vT Σ̂jv, εm)

≥ 1
εt

(and εt << ε33) then there is a clustering scheme A,B such
that for all i ∈ S, j ∈ π−1(i), P [Fi, A] ≥ 1− ε3 and for all
i /∈ S, j ∈ π−1(i), Pr[Fi, B] ≥ 1− ε3.

This lemma corresponds to the second case, when there
is some bi-partition of the components so that one side of
the bi-partition has projected variances that are much larger
than the other. The proofs of these lemmas are given in the
full version of our paper.

B. Making Progress when there is a Small Variance
We state a lemma from [17] which formalizes the intuition

that if there is no component in F̂ has small variance in any
direction, then F̂ is a good statistical estimate to F :

Lemma 11. [17] Suppose ‖µ̂i−µi‖ ≤ ε1, ‖Σ̂i−Σi‖F ≤ ε1,
and |ŵi − wi| ≤ ε1, if either ‖Σ−1

i ‖2 ≤ 1
2εm

or ‖Σ̂−1
i ‖2 ≤

1
2εm

then D(F̂i, Fi)2 ≤ 2nε1
εm

+ ε21
2εm

.

Additionally, we argue that if we have an ε-statistically
learnable mixture of at least two components, that is in
isotropic position, then it must be the case that there
are at least two components whose parameters differ non-
negligibly on a random projection.

Lemma 12. [Isotropic Projection Lemma] Given a mixture
of k n-Dimensional Gaussians F =

∑
i wiFi which is

in isotropic position and is ε-statistically learnable, with
probability ≥ 1−δ over a randomly chosen direction u, there
is some pair of Gaussians Fi, Fj s.t. Dp(Pu[Fi], Pu[Fj ]) ≥
ε5δ2

50n2 .

The above two lemmas serve as the building blocks of the
following proposition, which, guarantees that our algorithm
will either accurately recover an estimate mixture, or will
be able to successfully partition the mixture and accurately
cluster the set of samples. We defer the proof of the above
lemma to the full version of our paper.

Proposition 13. Given access to an ε-statistically learnable
GMM F of at most k Gaussians which as a mixture is in
isotropic position, there is an algorithm that (for any fixed k)
has runtime and sample complexity at most poly( 1

ε ,
1
δ ) and

with probability at least 1− δ will output either an ε-close
statistical estimate F̂ for F , or returns a clustering scheme
A,B such that there is some bipartition S ⊂ [k] such that
for all i ∈ S, j ∈ π−1(i), P [Fi, A] ≥ 1 − ε3 and for all
i /∈ S, j ∈ π−1(i), Pr[Fi, B] ≥ 1− ε3. And also S, [k]− S
are both non-emtpy.

C. Recursion

Our learning algorithm will work recursively; given a set
of samples that come from a mixture of at most k′ Gaussian
components, we put the samples into isotropic position and
run the algorithm of Proposition 13, which will either return
an ε-close estimate, or a nontrivial clustering (A,B) of the
samples that respects some bipartition of the components
of the mixture. We will choose the parameters such that the
clustering error is so small that, with high probability, we can
recursively run the algorithm on subsamples from the two
clusters A and B. Each set of samples can then be viewed
as coming from a mixture of strictly fewer components than
the original set of samples. How do we know when we are
done? As a consequence of Lemma 12, if we put the mixture
into roughly isotropic position then project onto a random
vector, with high probability the GENERAL UNIVARIATE
ALGORITHM will return a single component if, and only if
the high-dimensional mixture actually consisted of a single
component.

Our main theorem now follows by induction on the
upper bound on the number of components in our mixture–
essentially verifying that the recursive structure of our algo-
rithm is correct. We defer the proof to the full version.

Theorem 1. Given an n dimensional mixture of k Gaussians
F that is ε-statistically learnable, there is an algorithm that,
with probability at least 1−δ, outputs an ε-close estimate F̂
and the running time and data requirements of our algorithm
(for any fixed k) are polynomial in n, 1

ε , and 1
δ .

VI. EXPONENTIAL DEPENDENCE ON k IS INEVITABLE

We also give a lower bound, showing that exponential
dependence on the number of components is necessary for
learning ε-close estimates, even for mixtures in just one
dimension. We show this by giving a simple construction
of two univariate distributions, D1, D2 that are 1/(2m)-
standard. Specifically, each distribution is a mixture of at



most m Gaussians, the weight of each component in each
mixture is at least 1/(2m), and the parameter distance be-
tween the distributions is at least 1/(2m), but ||D1−D2||1 ≤
e−m/30 for sufficiently large m. The construction hinges
on the inverse exponential (in k ≈

√
m) statistical distance

betweenN (0, 2), and a mixture of infinitely many Gaussians
of unit variance whose components are centered at multiples
of 1/k, where the weight assigned to the component centered
at i/k is given by N(0, 1, i/k). Verifying this claim is an
exercise in Fourier analysis. We then modify the example
slightly so that it meets the conditions of being 1/(4k2 +2)-
standard.

Theorem 14. There exists a pair D1, D2 of 1/(4k2 + 2)-
standard distributions that are each mixtures of k2 + 1
Gaussians such that

||D1 −D2||1 ≤ 11ke−k
2/24.
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