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Abstract—Much of the literature on rational cryptography
focuses on analyzing the strategic properties of cryptographic
protocols. However, due to the presence of computationally-
bounded players and the asymptotic nature of cryptographic
security, a definition of sequential rationality for this setting has
thus far eluded researchers.

We propose a new framework for overcoming these obstacles,
and provide the first definitions of computational solution con-
cepts that guarantee sequential rationality. We argue that natural
computational variants of subgame perfection are too strong
for cryptographic protocols. As an alternative, we introduce
a weakening called threat-free Nash equilibrium that is more
permissive but still eliminates the undesirable ‘“‘empty threats”
of non-sequential solution concepts.

To demonstrate the applicability of our framework, we revisit
the problem of implementing a mediator for correlated equilibria
(Dodis-Halevi-Rabin, Crypto’00), and propose a variant of their
protocol that is sequentially rational for a non-trivial class of
correlated equilibria. OQur treatment provides a better under-
standing of the conditions under which mediators in a correlated
equilibrium can be replaced by a stable protocol.

Index Terms—game theory; cryptography;

1. INTRODUCTION

A recent line of research has considered replacing the
traditional cryptographic modeling of adversaries with a game-
theoretic one. Rather than assuming arbitrary malicious behav-
ior, participants are viewed as being self-interested, rational
entities that wish to maximize their own profit, and that would
deviate from a protocol’s prescribed instructions if and only
if it is in their best interest to do so.

Such game theoretic modeling is expected to facilitate the
task of protocol design, since rational behavior may be easier
to handle than malicious behavior. It also has the advantage
of being more realistic in that it does not assume that some
of the parties honestly follow the protocol’s instructions, as is
frequently done in cryptography.

The interplay between cryptography and game theory can
also be beneficial to the latter. For instance, using tools from
secure computation, it has been shown how to transform games
in the mediated model into games in the unmediated model.

But regardless of whether one analyzes cryptographic pro-
tocols from a game theoretic perspective or whether one uses
protocols to enhance game theory, it is clear that the results
are meaningful only if one provides an adequate framework
for such analyses.
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A. Computational Nash Equilibrium

Applying game-theoretic reasoning in a cryptographic con-
text consists of modeling interaction as a game, and designing
a protocol that is in equilibrium. The game specifies the model
of interaction, as well as the utilities of the various players
as a function of the game’s outcome. The protocol lays out
a specific plan of action for each player, with the goal of
realizing some pre-specified task. Once a protocol has been
shown to be in equilibrium, rational players are expected to
follow it, thus reaching the desired outcome.

A key difficulty in applying game-theoretic reasoning to the
analysis of cryptographic protocols stems from the latter’s use
of computational infeasibility. Whereas game theory places no
bounds on the computational ability of players, in cryptogra-
phy it is typically assumed that players are computationally
bounded. Thus, in order to retain the meaningfulness of
cryptographic protocols, it is imperative to restrict the set of
strategies that are available to protocol participants. This gives
rise to a natural analog of Nash equilibrium (NE), referred to
as computational Nash equilibrium (CNE): any polynomial-
time computable deviation of a player from the specified
protocol can improve her utility by only a negligible amount
(assuming other players stick to the prescribed strategy).

Consider, for example, the following (two-stage, zero-sum)
game (related to a game studied by Ben-Sasson et al. [3] and
Fortnow and Santhanam [6]), which postulates the existence
of a one-way permutation f : {0,1}" — {0,1}".

Example 1.1: (One-way permutation game):

1) Py chooses some = € {0,1}", and sends f(x).

2) P, sends a message z € {0,1}".

3) P wins (gets payoff 1) if z = = (and gets -1 otherwise).
In classical game theory, in all NE of this game P» wins, since
there always exists some z such that z = x. However, in the
computational setting, the following is a CNE: both players
choose their messages uniformly at random (resulting in an
expected loss for P). This is true because if P> chooses z at
random, then P; can never improve his payoff by not choosing
at random. If P; chooses x at random, then by the definition of
a one-way permutation, any computationally-bounded strategy
o9 of P will be able to guess the value of z with at most
negligible (in n) probability. Thus, the expected utility of P»
using o4 is negligible, and so he loses at most that much by
sticking to his CNE strategy (i.e. picking some z at random).



B. Computational Subgame Perfection

The notion of CNE serves as a first stepping stone towards a
game-theoretic treatment of cryptographic protocols. However,
protocols are typically interactive, and CNE does not take their
sequential nature into consideration.

In traditional game theory interaction is modeled via exten-
sive games. The most basic equilibrium notion in this setting
is subgame perfect equilibrium (SPE), which requires players’
strategies to be in NE at any point of the interaction, regardless
of the history of prior actions taken by other players. Basically,
this ensures that players will not reconsider their actions as a
result of reaching certain histories (a.k.a. “empty threats”).

As already noted in previous works (cf. [16], [19], [23]), it is
not at all clear how to adapt SPE to the computational setting.
A natural approach would be to require the strategies to be
CNE at every possible history. However, if we condition on the
history, then this means that different machines can and will
do much better than the prescribed equilibrium strategy. For
example, in the one-way permutation game of Example 1.1,
given any message history, a machine M can simply have the
correct inverse hardwired.

Although this requirement can be relaxed to ask that the
prescribed strategy should be better than any other fixed
machine on all inputs, this again may be too strong, since
a fixed machine can always do better on some histories.
Therefore, it seems that we must accept the following: for
any machine M, with high probability over possible message
histories, the prescribed strategy does at least as well as M.
However, it turns out that this approach also fails to capture
our intuitive understanding of a computational SPE (CSPE).
Consider the following (two-stage) variant of the one-way
permutation game from Example 1.1:

Example 1.2: (Modified one-way permutation game):

1) Py chooses some x € {0,1}", and sends f(z).

2) P, sends a message z € {0,1}".

3) If exactly one of P; and P, send message 0, both players
get payoff —2. If both players send message 0, both
players get payoff +2. Otherwise, P, wins (with payoff
+1) if and only if z = z, and the non-winning player
loses (with payoff —1).

Using a similar argument to the one applied in Section I-A,
it can be shown that the strategies in which both players
choose a message uniformly at random from {0,1}" \ {0}
satisfy the above “probabilistic” variant of CSPE. However,
this equilibrium does not match our intuitive understanding
of SPE: P, will prefer to send message 0 regardless of P’s
strategy, knowing that P, will then respond with 0 as well.
The threat of playing uniformly from all other messages is
empty, and hence should not be admitted by the definition. !
The examples above are rather simple, so it is reasonable
to expect that issues arising in their analyses are inherent in
many other cryptographic protocols. This raises the question

'We note that a simple change to the payoffs yields a game whose empty
threat is more “typical”: For the case in which both players send message 0,
let Py’s payoff be —3/2.

of whether a computational variant of SPE is at all attainable
in a cryptographic setting.

At the heart of this question is the fact that essentially
any cryptographic protocol carries some small (but positive)
probability of being broken. This means that, while there may
be a polynomial-time TM that can “perform well” on the
average message history, there is no single TM that will do
better than all other TMs on every history (as for any history
there exists some TM that has the corresponding ‘“‘secret
information” hardwired).

This state of affairs calls for an alternative approach. While
such an approach should be meaningful enough to express
strategic considerations in an interactive setting, it should also
be sufficiently weak to be realizable. As demonstrated above,
any approach for tackling this challenge should explicitly ad-
dress the associated probability of error and take asymptotics
into consideration.

II. OUR RESULTS

We propose a new framework for guaranteeing sequential
rationality in a computational setting. Our starting point is
a weakening of subgame perfection, called threat-free Nash
equilibrium, that is more permissive, but still eliminates the
undesirable empty threats of non-sequential solution concepts.

To cast our new solution concept into the computational
setting, we develop a methodology that enables us to “trans-
late” arguments that involve computational infeasibility into a
purely game theoretic language. This translation enables us to
argue about game theoretic concepts directly, abstracting away
complications that are related to computation.

In order to demonstrate the applicability of our framework,
we revisit the problem of implementing a mediator for corre-
lated equilibria [5], and propose a protocol that is sequentially
rational for a non-trivial class of correlated equilibria (see
Section II-C for details).

We emphasize that this version of the paper is a summary
of [11], and we strongly recommend that the interested reader
turn to the latter for proofs and more elaborate discussions.

A. Threat-Free Nash Equilibria

We introduce threat-free Nash equilibria (TFNE), a weaken-
ing of subgame perfection whose objective is to capture strate-
gic considerations in an interactive setting. Loosely speaking,
a pair of strategies in an extensive game is a TFNE if it is a
NE, and if in addition no player is facing an empty threat at
any history.

The problem of empty threats is the following: in a NE
of an extensive game, it is possible that a player plays sub-
optimally at a history that is reached with probability 0. The
other player may strategically choose to deviate from his
prescribed strategy and arrive at that history, knowing that
this will cause the first player to play an optimal response
rather than the prescribed one. In an SPE this problem is
eliminated by requiring that no player can play sub-optimally
at any history, and so no other player will strategically deviate
and take advantage of this.



The main observation leading to the definition of TFNE is
that the above requirement may be too strong a condition to
eliminate such instability: if an optimal response of a player
decreases the utility of the other, then this other player would
not want to strategically deviate. By explicitly ruling out this
possibility, the instability caused by empty threats is elimi-
nated, despite the equilibrium notion being more permissive
than subgame perfection.

To make this precise, we give the first formal definition of an
empty threat in extensive games. The definition is regressive:
Roughly speaking, a player ¢ is facing a threat at a history if
there is some deviation at that history, along with a threat-free
continuation from that history onwards, so that ¢ increases
his overall expected payoff when the players play this new
deviation and continuation.

We note that the notion of TFNE is strong enough to
eliminate the undesirable strategy of playing randomly in the
modified OWP game from Example 1.2 — in the full version
[11] we show that in any computational TFNE of this game
the second player outputs O after history O.

B. Strategy-Filters and Tractable Strategies

To cast the definition of TFNE into a computational setting,
we map the given protocol into a sequence of extensive games
using strategy-filters that map computable strategies into their
“strategic representation” (the strategic representation corre-
sponds to the strategy effectively played by a given interactive
Turing machine). We can then apply pure game theoretic
solution concepts, and in particular our newly introduced
concept of TFENE, to understand the strategic behavior of
players.

Similarly to the definition of CNE, the computational treat-
ment departs from the traditional game theoretic treatment
in two crucial ways. First of all, our definition is framed
asymptotically (in order to capture computational infeasibil-
ity), whereas traditional game-theory is framed for finitely
sized games. Second, it allows for a certain error probability.
This is an artifact of the (typically negligible) probability with
which the security of essentially any cryptographic scheme
can be broken.

Given a cryptographic protocol, we consider a correspond-
ing sequence of extensive games. The sequence is indexed by
a security parameter k and an error parameter . For each
game, we “constrain” the strategies available to players to be
a subset of those that can be generated by PPT players in the
protocol. Intuitively, the game indexed by (k, €) contains those
strategies that run in time polynomial in k& and “break crypto”
with probability at most . We also require that strategy-filters
be PPT-covering: that for any polynomially-small €, every PPT
is eventually a legal strategy, far enough into the sequence of
extensive games.

Using this framework we formalize computational threat-
free Nash equilibrium (CTFNE). To the best of our knowl-
edge this is the first attempt at analyzing sequential strategic
reasoning in the presence of computational infeasibility.

C. Applications

Our treatment provides a powerful tool for arguing about
the strategic behavior of players in a cryptographic protocol.
It also enables us to isolate sequential strategic considerations
that are suitable for use in cryptographic protocols (so that the
solution concept is not too weak and not too strong).

We revisit the general problem of implementing a mediator
for correlated equilibria [5], and propose a protocol that
is sequentially rational for a non-trivial class of correlated
equilibria. In particular, our protocol is in a CTENE for
correlated equilibria that are convex combinations of Nash
equilibria and that are “undominated”: There does not exist
any convex combination of Nash equilibria for which both
players get a strictly higher expected payoff.

Our treatment explores the conditions under which medi-
ators in a correlated equilibrium can be replaced by a stable
protocol, and sheds light on some structural properties of such
equilibria.

Finally, we prove a general theorem that identifies sufficient
conditions for a TFNE in extensive games. Namely, we show
that if an undominated NE has the additional property that no
player can harm the other by a unilateral deviation, then that
NE must also be threat-free.

D. Related Work

This paper contributes to the growing literature on rational
cryptography. Many of the papers in this line of research,
such as [5], [14], [15], [1], [9], [20], [21], [16], [18], [19],
[17], [23], [22], [2], [10], explore various solution concepts for
cryptographic protocols viewed as games (often in the context
of rational secret-sharing). Aside from the works of Lepinski et
al. [15], [20], Ong et al. [23], and Gradwohl [10], who work in
a different model?, all prior literature has considered solution
concepts that are non-sequential. More specifically, they all
use variants of NE such as strict NE, NE with stability to
trembles, and everlasting equilibrium.

An additional related work is that of Halpern and Pass
[13], in which the authors present a general framework for
game theory in a setting with computational cost. While their
approach to computational limitations is more general than
ours, they only address NE. Finally, Fortnow and Santhanam
[6] study a different framework for games with computational
limits, but also only in the context of NE.

E. Future Work

One potential application of our new definition is an analysis
of rational secret-sharing protocols. For some ideas about why
known gradual release protocols satisfy a solution concept that
is related to but slightly weaker than CTFNE, see the full
version of this paper [11].

There are numerous other compelling problems left for
future work. The first problem is to extend our definition
to games with simultaneous moves. While we do offer a

’More specifically, [15], [20] make strong physical assumptions, [23]
assume the existence of a fraction of honest (non-rational) players, and [23],
[10] work in an information-theoretic setting.



partial extension tailored to the problem of implementing a
mediator, the problem of defining CTFNE for general games
with simultaneous moves is open. Such a definition would
be particularly useful for a sequential analysis of protocols
with a simultaneous channel. Another natural extension of
the definition is to multiple players, as opposed to 2. Such
an extension comes with its own challenges, particularly with
regard to the possibility of collusion. A third extension is to
incorporate the threat-freeness property with stronger variants
of NE, such as stability with respect to trembles, strict NE,
or survival of iterated elimination of dominated strategies.
Finally, we would like to find more applications for our
definition. One particularly interesting problem is to extend
our results on the implementation of mediators to a larger
class of correlated equilibria.

III. GAME THEORY DEFINITIONS
A. Extensive Games

Informally, a game in extensive form can be described as
a game tree in which each node is owned by some player
and edges are labeled by legal actions. The game begins at
the root, and at each step follows the edge labeled by the
action chosen by the current node’s owner. Utilities of players
are given at the leaves of the tree. More formally, we have
the following standard definition of extensive games (see, for
example, Osborne and Rubinstein [24]):

Definition 3.1 (Extensive game): A 2-person extensive

game is a tuple I' = (H, P, A,u) where

o H is a set of (finite) history sequences such that the empty
word € € H. A history h € H is terminal if {a : (h,a) €
H} = (. The set of terminal histories is denoted Z.

e P:(H\Z)— {1,2} is a function that assigns a “next”
player to every non-terminal history.

o A is a function that, for every non-terminal history h €
H\ Z, assigns a finite set A(h) = {a : (h,a) € H} of
available actions to player P(h).

o u = (u1,u2) is a pair of payoff functions u; : Z — R.

Definition 3.2 (Behavioral strategy): Behavioral
strategies of players in an extensive game are collections
o; = (Ji(h))h:P(h):i of independent probability measures,
where o;(h) is a probability measure over A(h).

For any extensive game I" = (H, P, A, u), any player ¢, and
any history h satisfying P(h) = 4, we denote by X;(h) the
set of all probability measures over A(h). We denote by %,
the set of all strategies o; of player ¢ in I'. For each profile
o = (01,02) of strategies, define the outcome O(c) to be
the probability distribution over terminal histories that results
when each player ¢ follows strategy o;.

B. Nash Equilibrium

Each profile of strategies yields a distribution over out-
comes, and we are interested in profiles that guarantee the
players some sort of optimal outcomes. There are many
solution concepts that capture various meanings of “optimal”,
and one of the most basic is the Nash equilibrium (NE).

Definition 3.3 (Nash equilibrium (NE)): An e-Nash
equilibrium of an extensive game I' = (H,P,A,u) is a
profile o* of strategies such that for each player i,

Elu; (0(0")] 2 E [ui (007 ,00))] — ¢

for every strategy o; of player i. It is a NE if the above holds
for € <0 and a strict NE if it holds for some € < Q.

One of the premises behind the stability of profiles that are
in an e-NE is that players will not bother to deviate for a mere
gain of €. For applications in cryptography we will generally
have ¢ be some negligible function, and this corresponds to
our understanding that we do not care about negligible gains.

C. Constrained Games

In the standard game theory literature, where there are no
computational constraints on the players, the available strate-
gies o; of player i are all possible collections (o(h))y. p(n)—;»
where o;(h) is an arbitrary distribution over A(h). In our
setting, however, we will only consider strategies that can be
implemented by computationally bounded ITMs. This requires
being able to constrain players’ strategies to a strict subset of
the possible strategies. Given a pair T' = (T, T5) of such sets
we can then define a constrained version of a game, in which
only strategies that belong to these sets are considered.

Definition 3.4 (Constrained game): Let I' = (H, P, A, u)
be an extensive game, and let T = (T1,T3) where T; C
®n.p(ny—i Zi(h) for each i € {1,2}. The T-constrained
version of I' is the game in which the only allowed strategies
for player i belong to T;.

This definition enables us to capture restrictions that might
result from requiring strategies to be implementable by poly-
nomial time ITMs. NE of constrained games are defined
similarly to regular NE, except that players’ strategies and
deviations must be from the constraint sets.

IV. THREAT-FREE NASH EQUILIBRIUM

Our starting point is the inadequacy of subgame perfec-
tion in capturing sequential rationality in a computational
context. As argued in Section I-B, it is unreasonable to
require computationally-bounded players to play optimally at
every node of a game. In particular, in cryptographic settings
this requires breaking the security of the protocol, which is
assumed impossible under the computational constraints.

A possible idea might be to require that players “play
optimally at every node of the game, under their computa-
tional constraints.” However, this idea cannot be interpreted
in a sensible way. Computational constraints must be de-
fined “globally,” and thus the notion of playing optimally
under some computational constraint on a particular history is
senseless. In particular, for any history of some cryptographic
protocol, there is a small machine that plays optimally on this
specific history wunconditionally (and breaks ‘“cryptographic
challenges” appearing in this history, by having the solutions
hardwired). This machine is efficient, and so meets essentially
any computational constraint. So, while under computational
constraints every machine fails on cryptographic challenges



in most histories, for every history there is a machine that
succeeds. We thus assume that a player chooses his machine
before the game starts, and cannot change his machine later.

A. A New Solution Concept

In light of the above discussion, it seems like the solution
concept we are looking for has to reconciliate between the
following seemingly conflicting properties:

1) It implies an optimal strategy for the players under their
computational constraints, which implies non-optimal
play on certain histories.

2) It does not allow empty threats, thus implying “sequen-
tial rationality.”

The crucial observation behind our definition is that in order
to rule out empty threats, one does not necessarily need to
require that players play optimally at every node, because not
every non-optimal play carries a threat to other players. In fact,
in a typical cryptographic protocol, the security of each player
is building on other players not playing optimally (because
playing optimally would mean breaking the security of the
protocol). Thus, a player’s “declaration” to play non-optimally
does not necessarily carry a threat: the other players may
even gain from it. More generally, even in non-cryptographic
protocols, at least in 2-player perfect information games,
we can use the following observation: in any computational
challenge, either a player gains from the other not playing
optimally, or, if he does not gain, he can avoid introducing
that computational challenge to the other player.

Following the above observation, we introduce a new solu-
tion concept for extensive games. The new solution concept
requires that players be in NE, and moreover, that no player
impose an empty threat on the other. At the same time, it
does not require players to play optimally at every node. In
other words, players may (declare to) play non-optimally on
non-equilibrium support, yet this declaration of non-optimal
play does not carry an empty threat. We call our new solution
concept TFNE, for threat-free Nash equilibrium.

To make the above precise, we introduce a formal definition
of an empty threat. An empty threat occurs when a player
threatens to play “non-rationally” on some history in order
to coerce the other player to avoid this history. Crucially,
empty threats are such that, had the threatened not believed
the threat, had he deviated accordingly, and had the threatening
player played “rationally”, the threatened player would have
benefitted. To rephrase our intuition: a player faces an empty
threat with respect to some strategy profile if by deviating
from his prescribed strategy, and having the other player
react “rationally”, he improves his payoff (in comparison with
sticking to the prescribed strategy and having the other player
react “rationally” from then on.)

But what does it mean for the other player to react “ra-
tionally”? The other player may assume, recursively, that the
first player will play a best response, and will not carry out
empty threats against him, and so on, leading to a regressive
definition.

B. Vanilla Version

Before giving the general definition of TFNE that we will
use, we present a simpler version that has no slackness param-
eter and that works for games without constrained strategies.

For a player i and a history h, two strategies o; and m; are
equivalent for player i on h if P(h) =i and o;(h) = m;(h),
or P(h) # i. Two strategies differ only on the subgame h
if they are equivalent on every non-terminal history that does
not have h as a prefix. Formally, they are equivalent on every
history in H\ {h' € H : k' = h o h” for some h"}. For a
history h € H a strategy o and a distribution 7 = 7(h) on
A(h), define the set Cont(h, o, T) as

{7r : (m differs from o only on h) & (7(h) = T(h))}

We now proceed to define a threat. For simplicity, we will do
so for generic games, in which each player’s possible payoffs
are distinct. For such games, the set Cont(h,o,7) always
contains exactly one “threat-free” element (defined below).

Definition 4.1 (Threat): Let " = (H, P, A, u) be an exten-
sive game with distinct payoffs. Let o be a strategy profile, and
let h € H. Player i = P(h) is facing a threat at history h with
respect to o if there exists a distribution T = 7(h) over A(h)
such that the unique m € Cont(h, o, 7) and 7’ € Cont(h,o,0)
that are threat-free on h satisfy

E[ui (O(m))] > E [ui (O("))],

where strategy T is said to be threat free on h if for all ' # €
satisfying h o h' € H player P(ho h') is not facing a threat
at h o h/ with respect to .

Note that if % is such that for all @ € A(h) it holds that
hoa € Z, then any profile 7 is threat free on h.

Definition 4.2 (Threat-free Nash equilibrium): Let I' =
(H, P, A,u) be an extensive game. A strategy profile o* is
said to be in threat-free Nash equilibrium (TFNE) if:

1) o isa NE of I, and
2) for any h € H, player P(h) is not facing a threat at
history h with respect to o*.

Note that in every profile that is in a TFNE, the effective
play matches some SPE profile (more precisely, there is
an SPE profile that yields the exact same distribution on
outcomes). This and other properties of threats and TFNE are
formalized in the companion paper to this work [12].

In the definition of a threat we used the fact that
Cont(h,o,7) and Cont(h,o,0) each contain exactly one
profile that is threat-free on h. To show that this must be the
case, we have the following proposition (see full version [11]
for a proof), which is not unlike the fact that generic games
have unique subgame perfect equilibria.

Proposition 4.3: For any extensive game I' = (H, P, A, u),
strategy profile o, player i, history h € H\ Z with P(h) =1,
and distribution T over A(h), the set Cont(h,o,T) contains
exactly one profile that is threat-free on h.



C. Round-Parameterized Version

We will use our general definition of TFNE in games that
are induced by cryptographic protocols. We assume that in
these games players alternate moves, and thus there is a natural
notion of the “rounds” in the game: Player ¢ makes a move in
round 1, then player —¢ makes a move in round 2, and so on
until the end of the game.

For the general definition, we introduce a few modifications
to vanilla version:

« We add a slackness parameter €. This is necessary for our
applications in order to handle the probability of error
inherent in almost all cryptographic protocols.

« We allow players to be threatened at rounds, rather than
just specific histories. This is needed because when we
add the slackness parameter, a player might be threatened
at a set of histories, where the weight of each individual
threat does not exceed the slackness parameter, but the
overall weight does.

« Finally, for a player to be threatened, we require that he
improve on all threat-free continuations 7. The reason we
need this is that in the general case, there may be more
than one 7 that is threat-free. If a player deviates from his
prescribed behavior, he cannot choose which (threat-free)
continuation will be played.

The definitions below make use of the notion of a round R
strategy of player ¢: This is simply a function mapping every
history & that reaches round R to a distribution over A(h).

For a round R € N we let o;(R) represent player ¢’s round
R strategy implied by 0. Let o(R) = (01(R), 02(R)), and let

def

Cont(a(1),...,0(R)) X {77 eT:1(S) = a(S) VS < R}.

Definition 4.4 (c-threat): Let I' = (H,P,A,u) be an
extensive game with constraints T = (T1,T3). Let ¢ > 0, let
o €T be a strategy profile, and let R € N. Player i = P(R)
is facing an e-threat at round R with respect to o if there
exists a round R strategy T = 7(R) for player i such that

(i) the set Cont(o(1),...,0(R-1),7(R)) is non-empty, and
(ii) for all # € Cont(c(1),...,0(R—1),7(R)) and ©' €
Cont(o(1),...,0(R)) that are e-threat-free on R

E[ui (O(m))] > E [us (O("))] + ¢,

where strategy m said to be e-threat-free on R if for all rounds
S > R it holds that player P(S) is not facing an e-threat at
round S with respect to .

Note that if R is the last round of the game, then any profile
m € T is e-threat-free on R. Using Definition 4.4, we can now
define an e-TFNE.

Definition 4.5 (c-threat-free Nash equilibrium): Let
I' = (H,P,Au) be an extensive game with constraints
T = (T1,T»). A strategy profile o* € T is said to be in
e-threat-free Nash equilibrium (¢-TFNE) if:
1) o* is an e-NE of T, and
2) for any round R of T, player P(R) is not facing an
e-threat at round R with respect to c*.

As is the case for Definition 4.1, Definition 4.4 (and hence
Definition 4.5) would not be (semantically) well-defined if
either one of the sets Cont(c(1),...,0(R —1),7(R)) or
Cont(o(1),...,0(R)) would not contain at least one profile
m that is e-threat-free on R. The following proposition (whose
proof is deferred to [11]) shows that this can never be the case.

Proposition 4.6: Ler I' = (H,P,A,u) be an extensive
game with constraints T = (T1,Ts). Let ¢ > 0, let c € T
be a strategy profile, and let R be a round of I'. For any
round R strategy T = T(R) for player i = P(R), if the set
Cont(o(1),...,0(R—1),7(R)) is nonempty then it contains
at least one profile  that is e-threat-free on R.

V. THE COMPUTATIONAL SETTING

In the following we explain how to use the notion of TFNE
for cryptographic protocols. In Section V-A we describe how
to view a cryptographic protocol as a sequence of extensive
games. In Section V-B we show how to translate the behavior
of an interactive TM to a sequence of strategies. In Section
V-C we show how to express computational hardness in a
game-theoretic setting. Finally, in Section V-D we give our
definition of computational TFNE.

A. Protocols as Sequences of Games

When placing cryptographic protocols in the framework of
extensive games, the possible messages of players in a protocol
correspond to the available actions in the game tree, and the
prescribed instructions correspond to a strategy in the game.

The protocol is parameterized by a security parameter
k € N. The set of possible messages in the protocol, as
well as its prescribed instructions, typically depend on this
k. Assigning for each k and each party a payoff for every
outcome, a protocol naturally induces a sequence I'*) =
(H®), PF)AF) 4(k)) of extensive games, where:

o H) s the set of possible transcripts of the protocol (se-
quences of messages exchanged between the parties). A
history h € H*) is terminal if the prescribed instructions
of the protocol instruct the player whose turn it is to play
next to halt on input h.

o PR (H®)\ Z(F)) 5 {1,2} is a function that assigns
a “next” player to every non-terminal history.

o A% is a function that assigns to every non-terminal
history h € H®)\ Z(*) a set A®)(h) = {m : (hom) €
H®)} of possible protocol messages to player P*)(h).3

o ulf) = (ugk), uék)) is a vector of payoff functions ufk
Z®) 5 R,

A sequence I' = {T")}, .y of games defined as above is
referred to as a computational game.

B. Strategic Representation of Interactive Machines
Protocols are defined in terms of interactive Turing ma-

chines (ITMs). (See [8].) Thus, the prescribed behavior for

3We can interpret “disallowed” messages in the protocol as abort, and define
“abort” as a possible protocol message. This will imply that every execution
of the protocol corresponds to some history in the game.



each player is defined via an ITM, and any possible deviation
of this player corresponds to choosing a different ITM. In order
to argue about the protocol in a game-theoretic manner we
formalize, using game-theoretic notions, the strategic behavior
implied by ITMs. We believe this formalization is necessary
for our treatment or any game-theoretic analysis of ITMs,
in particular because, to the best of our knowledge, it has
never been done before. The full formalization is deferred
to [11], and has the following (informally stated) conclusion:
The strategic behavior of an ITM for player ¢ in a protocol
may be seen as a collection of independent distributions on
actions, one for each of player 7’s histories that are reached
with positive probability given the ITM of player ¢ and some
strategy profile of the other players. We refer to this collection
as the behavioral reduced strategy induced by the ITM.

C. Computational Hardness in the Game-Theoretic Setting

The security of cryptographic protocols stems from the
assumption on the limitation of the computational power of
the players. In our strategic analysis of games, we also expect
to deduce the (sequential) equilibrium from this limitation.
However, because protocols are parameterized by a security
parameter, a strategic analysis of protocols requires dealing
with a sequence of games rather than a single game. While
relating to the sequence of games is crucial in order to express
computational hardness (as this hardness is defined in an
asymptotic manner), this raises a new difficulty: How do we
extend the definition of TFNE to sequences of games?

Our approach insists on analyzing empty threats for indi-
vidual games. Thus, our solution concept reflects a hybrid
approach that relates to a protocol both as a family of
individual, extensive games and as a sequence of normal-
form games. To eliminate empty threats one must relate to
the interactive aspect of each individual game (as this is the
setting where threats are defined). In order to claim players are
playing optimally under their computational constraints, one
must think of the protocol as a sequence of one-shot games
(because computational hardness is meaningful only when
players are required to choose their machines in advance, and
as the traditional notion of hardness is stated asymptotically).

1) Strategy-filters: When considering computational games
I' = {T'®)} N, the computational bounds on the players will
be expressed by restricting the space of available strategies for
the players. The available sequences of reduced strategies for
the players will be exactly those that can be played by the
ITMs that meet the computational bound on the players. In
our case we will consider PPT ITMs.

While on the one hand every PPT ITM fails on crypto-
graphic challenges for large enough values of the security
parameter k (under appropriate assumptions), on the other
hand, PPT ITMs can have arbitrarily large size and thus arbi-
trarily much information hardwired, and so for every k there
is a PPT ITM that breaks the cryptographic challenges with
security parameter k. In our analysis, we would like to “filter”
machines according to their ability to break cryptographic
challenges for specific k’s, and allow using them only in games

that correspond to large enough k’s, where these machines
fail (and in particular, cannot use hard-wiring to solve the
cryptographic challenges).

To this end, we define the notion of strategy-filter. For each
value k of the security parameter and value ¢, a strategy-filter
maps the ITM M to either L or to its strategic representation,
according to whether M (1%) violates level of security ¢ or
does not (respectively).

Definition 5.1 (Strategy-filter): Let T = {T'®F)},cy be a
computational game and let i be a player. A strategy-filter is a
sequence F; = {Fi(k) : Mx[0,1] — Egk)U{J_}}keN such that
Sor every ITM M, every k € N and every € € |0, lg, it holds
that either FZ-(M(M7 e) =1, or Fi(k)(M, g) = oik)

O'z(k) is the strategic representation of the machine M (1% .).

A strategy-filter is meaningful if it allows us to reason about
all reduced strategies that are considered to be feasible, in our
case PPT implementable reduced strategies, and in particular

does not filter them out.

Definition 5.2 (PPT-covering filter): A strategy-filter F;
is said to be PPT-covering if for every PPT ITM M and
any positive polynomial p(-) there exists ko such that for all
k > ko, it holds that F™ (M, 1/p(k)) # L.

Typically, protocols have the following security guarantee
(under computational assumptions): for every ¢, every PPT
ITM M of P; and every polynomial p(-), there exists ko such
that for any k > ko, the ITM M does not break level of
security 1/p(k) in the protocol with security parameter k. Such
a protocol will naturally have a PPT-covering filter, where if
F, k)(]w, €) # L then the reduced strategy FZ-UC)(M7 ¢) “does
not break level of security ¢ in the game T'(*)

2) Tractable Reduced Strategies: As reflected above, the
asymptotic nature of defining security does not determine
any level of security for any k. Rather, it dictates that any
PPT ITM “eventually fails in violating 1/p(k) security” for
any p(-) (where “eventually” means for large enough k).
Thus, we follow the same approach in our game theoretic
analysis: roughly speaking, our solution concept requires that
e-security will imply e-stability for any £ (rather than requiring
a particular level of stability for each k). More formally,
we require that for any k and any e, the game induced by
the protocol with security parameter k£ be in e-TFNE, given
that the available strategies for the players are those that do
not break level of security . Thus, for any pair (k,e) we
will consider the game I'*) with available reduced strategies
restricted to those that guarantee e-security. The following
definition derives from a PPT-covering filter, for each such
game, the set of available reduced strategies for each player.

Definition 5.3 (Tractable reduced strategies): Let F; be
a PPT-covering filter. For every k € N and ¢ € [0,1] we
define the set Tf’;)(FZ) of (k,e)-tractable reduced strategies
for player i € {1,2} as

(F*)(M,£)|M is a PPT ITM and F*) (M, e) # L}.

, where

Whenever F; will be understood from the context, we will
write TZU;) to mean TZU;) (F).



D. Computational TFNE

We can now define our computational variant of TFNE.
Roughly, the definition requires that there exist a family of
PPT compatible constraints such that for any £ and any ¢, the
strategies played by the machines on input security parameter
k are in e-TFNE in the game indexed by (k,¢).

Definition 5.4 (Computational TFNE): Let I" be a com-
putational game. A pair of PPT machines (M1, Ms) is said to
be in a computational threat-free Nash equilibrium (CTFNE)
of T if there exists a pair of PPT-covering filters (F1, F») such
that for every k, e for which F'1<k>(M17 ¢) and F2(k)(M27 €) are
tractable the profile (Fl(k) (M, e), Fg(k) (Ms, €)) constitutes an

e-TFNE in the (T\¥), T{®)

W Ty -constrained version of TR,

VI. CORRELATED EQUILIBRIA WITHOUT A MEDIATOR

In one of the first papers to consider the intersection
between game theory and cryptography, Dodis, Halevi and
Rabin proposed an appealing methodology for implementing
a correlated equilibrium in a 2-player normal-form game
without making use of a mediator [5]. Under standard hardness
assumptions, they showed that for any 2-players normal-form
game ' and any correlated equilibrium o for I, there exists a
new 2-player extensive-form “extended game” IV and a CNE
o’ for TV, such that o and ¢’ achieve the same payoffs for the
players. However, as already pointed out by Dodis et al., their
protocol lacks a satisfactory analysis of its sequential nature -
the resulted “extended game” is an extensive-form game, while
the solution concept they use, CNE, is not strong enough for
these games.

In the following, we extend the definition of CTFNE to
allow handling this setting (that is, we define CTFNE for
extensive games with simultaneous moves at the leaves), give
some justification for our new definition, and then provide a
new protocol for removing the mediator that achieves CTFNE
in a wide class of correlated equilibria that are in the convex
hull of Nash equilibria (see definition below).

A. TFNE for Games with Simultaneous Moves at the Leaves

For a formal definition of extensive game with simultaneous
moves see Osborne and Rubinstein [24]. In order to adjust
our definition for extensive games with simultaneous moves,
we notice that when a player deviates on a history with a
simultaneous move, he cannot expect the other to react to this
deviation (because they both play at the same time). However,
in order to argue that a profile is rational, we still need to
require that for every simultaneous move in the equilibrium
support, each player is playing a “best response” given the
other player’s prescribed behavior. This means the prescribed
behavior for the players should form some kind of equilibrium
for normal-form games. In our case, the prescribed behavior
will form a NE. The question of what should a CTFNE profile
prescribe in off-equilibrium-support histories is more delicate:
Clearly, in order to claim that the profile is “rational”, again
we need some kind of equilibrium for normal-form games.
But in this case one can argue that after one player deviated,

the other player cannot assume the deviating player will play
his prescribed behavior in the simultaneous move (as he is
already not following his prescribed behavior). However, we
argue that it is in fact still rational to assume the deviating
player will play his prescribed behavior. The justification for
this claim is essentially the same as the justification for the
rationality of NE. Once there is a prescribed behavior that is a
NE, each player knows the other has no incentive to deviate,
and so he also has no incentive to deviate.

Thus, our new definition of TFNE for extensive games
with simultaneous moves at the leaves (abbreviated GSML),
is essentially the same as the original definition, except that (i)
we require a profile in TFNE to prescribe a NE in any terminal
leaf, and (ii) in the definition of a threat we do not allow a
player to assume the other will deviate from his strategy in
any NE. In order to formally modify our definition of TFNE
to achieve (ii), essentially we would need to define the only
threat-free continuation on a leaf to be the one that assigns to
the players the actions in the prescribed NE (which expresses
the idea that a player is not allowed to assume the other will
deviate from his strategy in any NE).

However, we adopt an equivalent, simpler convention. Given
a GSML T' and a profile o that assigns a NE at every
simultaneous move, we look at a slightly modified game I'":
All simultaneous moves are removed, and instead at each
leaf where a simultaneous move was removed each player is
assigned his expected payoff in the corresponding NE for that
leaf. Note that the modified game is now a regular extensive
game with no simultaneous moves. We then “prune” the profile
to remove all the distributions on actions on all simultaneous
leaves and denote the resulting profile ¢’. We say that o is
a TFNE in T if ¢’ is a TENE in I'. We call TV and ¢’ the
pruned representation of I' and o.

The definition of CTENE for GSML is derived from the
above definition of TFNE for GSML, similarly to the deriva-
tion of CTENE from TFNE in the non-simultaneous case.

It seems that for general GSML’s our definition is too strong,
because in certain cases it is computationally intractable to
compute the assigned NE in every leaf. While we do not yet
know how to relax our definition to apply to these cases, we
believe our definition, when met, is sufficient.

B. Our Protocol

For a non-trivial class of correlated equilibria, we show how
to modify the DHR protocol to achieve CTFNE. Our basic
idea is to use Nash equilibria as “punishments” for aborting
players. That is, if there is a NE that assigns to a player a
payoff at most his expected payoff when not aborting, then
assigning this NE in case he aborts serves as a punishment
and yields that the player has no incentive to abort. In the
following we characterize a family of correlated equilibria for
which we can use the aforementioned punishing technique,
and prove that for this family we can remove the mediator
while achieving CTFNE.

We say that a correlated equilibrium 7 is a convex combi-
nation of Nash equilibria if 7 is induced by a distribution on



(possibly mixed) Nash equilibria. (The set of such distributions
is sometimes referred to as the convex hull of Nash equilibria.)
Note that any such distribution is a correlated equilibrium
(CE), but the converse is not true.

Let 7 be a correlated equilibrium for a two-player game I’
that is a convex combination of a set /N of NEs. We say that
7 is weakly Pareto optimal if there does not exist a different
CE p in the convex hull of N for which both E[ui(O(p))] >
Elus (0(r))] and Elus (0(p))] > Elu(O(m)))-

We say that a distribution is samplable if there exists
a probabilistic TM that halts on every infinite randomness
vector, and can sample it. This is equivalent to requiring that
all probabilities can be expressed in binary (assuming we work
over {0, 1}). Note that every distribution can be approximated
arbitrarily accurately by a samplabale distribution.

Theorem 6.1: Assume there exists a non-interactive com-
putationally binding commitment scheme. Let m be a weakly
Pareto optimal correlated equilibrium for a two-player game
I' that is a samplable convex combination 11 of some set
of samplable Nash equilibria. Then there exists an extended
extensive game and a profile that achieves the same expected
payoffs as w and is a CTFNE.

Proof: Let II be as above. Since II is samplable, the
common denominator of all probabilities in II is a power
of two. Thus, we can assume II is a uniform distribution on
a sequence of Nash equilibria that may contain repetitions,
where the length of the sequence is a power of two. Let 2¢
be the length of that sequence, and let (mge, ..., m¢) be that
sequence. Note that the distribution 7 can now be generated
by first choosing uniformly at random a string r in {0, 1},
and then choosing a pair of actions according to 7.

Let 6% be the NE that assigns the worst payoff for P; (this
value represents the “severest punishment” for player ¢).

Our protocol embeds a 2-party string sampling protocol,
which is a simple generalization of the Blum coin flipping
protocol [4] whose security is defined in the real-ideal model.
(For more details on this model see [7].) The protocol consists
of simply running the Blum protocol concurrently for a fixed
number of times. It can be shown that this protocol too is
secure in the real-ideal model .

We denote the ITMs playing the strategies of Py, P, by
M, M>, respectively.

« Round 1: Player 1 chooses uniformly at random a string
r = (r,...,r;) from {0,1}%, and sends ¢ = (¢; =
com®)(r1), ..., ¢, = com®) (1)) to player 2 (player 1
also obtains (decomy,...,decom;), where decom; is a
legal decommitment with respect to ¢; and r;).

« Round 2: If Player 1 aborted, the assigned NE is 5.
Else, Player 2 chooses a uniformly random string r’ =
(r,...,r,) from {0,1}%, and sends 7’ to player 1.

« Round 3: If Player 2 aborted, the assigned NE is 72.
Else, Player 1 sends ((r1,decomy), ..., (re, decomy)).

o If Player 1 aborted, the assigned NE is 5'. Else, Player 2
verifies that decom; is a legal decommitment with respect
to ¢; and r; for 1 < i < £. If the verification fails (which

is equivalent to an abort of Player 1, as it means Player 1
sent an illegal message), the assigned NE is !. Else, the
assigned NE is m.q,» (Where @ is bitwise exclusive-or).

We now show that the pair (M7, M3) forms a CTENE for
the protocol above. Let the sequence of games induced by the
protocol be {f(k)} ren- Denote the pruned representation of
I'® by T®). Let ¥ 5(" be the strategies of Py, P, in the
protocol with security parameter k, and let U§k), aék) be their
pruned representations. Let o(F) = (ogk), (rék)). We prove that
{o(®)} is CTFNE in {I'*)}, which, by the discussion above,
implies that {¢(*)} is CTENE in {T'(*)},

First we define the functions F1(k> and F2(k>. For any k,
the function Fl(k) never maps to _L (this, roughly speaking,
reflects the fact that the protocol is secure against an all-
powerful player 1, which follows from the perfect binding of
the commitment scheme). For F, we use the following rule:

F{®(M,e) = L if and only if

Eluy” (00", o8] > Elus” (0(c™))] +,

where O’E\f? is the strategic representation of machine M and

Uik) is the strategic representation of machine M7, both with
security parameter k. In other words, P» cannot unilaterally
e-improve in the (Tl(i)7 T é?)—constrained version of T'(F).
The fact that F, is PPT-covering is straightforward. The
fact that F% is PPT covering follows from the security of the
commitment scheme — see the full version for details [11].
Next, we show that for all &k, for which Fl(k)(Ml,a) #1
and F{¥ (My,e) #1L the profile (F™ (M, e), F\P (My, €))
constitutes an e-TFNE in the T = (Tl(’kg),TQ,kg )-constrained
version of T(). Let k,e be as above, and let ¢ =
(01,02) = (Fl(k)(Mhe), FQ(k)(M275)). Suppose P; unilat-
erally e-improves in the T-constrained version of I'*), From
similar arguments as above we can assume P, never aborts.
But when P; never aborts the outcome is exactly m, as the
players are playing m,.q,, and ' is chosen uniformly at
random. Suppose now that P, unilaterally e-improves in the 7'
constrained version of T'(*®). However, this is a contradiction to
the constraints, that state that for any k& P, cannot unilaterally
e-improve in the (Tl(f?7 Téi))-constrained version of T'(%).
Next, we show that no player is e-threatened with respect
to o at any round of the T-constrained version of I'*). To
this end, suppose towards a contradiction that some player is
e-threatened with respect to o. We divide the proof into cases.
Case 1 - P, is facing an e-threat in round 3: In step 3

player 1 has exactly two options: He can (i) play honestly,
send ((r1,decomy),..., (r¢,decom;)) which he generated in
round 1, and receive E[u1(O(0))], or he can (ii) abort and
receive E[u1(O(G1))]. The value E[ui(O(G1))] is at most
E[u1(O(0))], and so P; cannot improve over E[u;(O(c))].
Hence player 1 is not facing an e-threat at round 3.

Case 2 — P, is facing an e-threat in round 2: We first
note that for any round 1 strategy for P, and round 2 strategy
for P, the round strategy of playing honestly in round 3 for
P is threat-free, since he cannot improve over that strategy



(again, since his only deviation is aborting, which gives him
the worst possible NE). Thus, if P; is e-threatened at round 2,
he has some round strategy that e-improves over E[u2(O(0))]
when P; plays in round 3 (and 1) according to the protocol.
This means that P unilaterally e-improves, which contradicts
the constraints (as well as the -NE).

Case 3 — P, is facing an e-threat in round 1: If P; is
e-threatened in round 1, he has some round 1 strategy 7(1)
for which every e-threat-free continuation e-improves over
every e-threat-free continuation of o(1). We will describe
an e-threat-free continuation of 7(1) and an e-threat-free
continuation of oy (1) that contradict this.

The e-threat-free continuation of o4 (1): We established in
case 2 that when P; plays honestly in round 1, if P, plays
honestly in round 2 he is not e-threatened. We also established
there that P; playing honestly in round 3 is always e-threat-
free. If follows that the continuation of both players playing
honestly in rounds 2 and 3 is an e-threat-free continuation of
01(1). On this profile P; receives E[u;(O(0))].

The e-threat-free continuation of 71(1): As we established
in case 2, playing honestly in round 3 is always e-threat-
free for P;. Now, note that there is no profile in which both
players improve simultaneously — because all leaves are Nash
equilibria, such a profile would be a distribution on Nash
equilibria that contradicts the Pareto-optimality of 7. Note also
that because P; receives the worst possible payoff when he
aborts, it follows that he improves also conditioned on not
aborting (as this can only help him). Thus, in any threat-
free continuation of 7(1), conditioned on P; not aborting in
round 1, P, again cannot improve over E[uz(O(0))], as this
again contradicts the Pareto-optimality of m. However, if P
plays honestly in round 2 and then P, plays honestly in round
3, then P, receives exactly E[uz(O(0))] conditioned on Py
not aborting in round 1. It follows that this continuation is
the best possible for P, and thus P, is not e-threatened in
round 2 of this continuation. It follows that this continuation
is e-threat-free. However, in this continuation P; receives
E[u1(O(0))] conditioned on not aborting, and thus receives
at most E[u;(O(0))] without the conditioning. [ |

VII. A GENERAL THEOREM

Definition 7.1 (Weakly Pareto optimal): A strategy pro-
file 0 € T of an extensive game I' = (H,P,A,u) with
constraints T' is weakly Pareto optimal if there does not exist
a strategy profile m1 € T for which both Elui(O(w))] >
E[u1(O(0))] and E[uz(O(m))] > E[u2(O(0))].

Definition 7.2 (¢s-safe): A strategy profile o = (01,02) €
T of an extensive game I' = (H, P, A,u) with constraints
T = (T1,T») is e-safe if for each player i,

E[u_; (0(0))] = E[u_; (O(d},0-:))] — ¢

for every strategy ol € T; of player 1.
We now have the following theorem and corollary, whose
proofs appears in the full version [11].

Theorem 7.3: Let I' = (H, P, A,u) be an extensive game
with constraints T = (T1,T3), and let 0 = (01,02) be a
weakly Pareto optimal e-NE of I' that is c-safe. Then o is an
e-TFNE of T'.

Corollary 7.4: Let I' = (H, P, A,u) be a zero-sum exten-
sive game with constraints T = (11, T»), and let o be an &-NE
of I'. Then o is an e-TFNE of T

The corollary follows from the observation that any e-NE
of a zero-sum game is both weakly Pareto optimal and e-safe.
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