
Pseudorandom Generators for Regular Branching Programs

Mark Braverman∗, Anup Rao†, Ran Raz‡, and Amir Yehudayoff§
∗University of Toronto, Toronto, Canada. Email: mbraverm@cs.toronto.edu.
†University of Washington, Seattle, WA. Email: anuprao@cs.washington.edu.
‡Weizmann Institute of Science, Rehovot, Israel. Email: ran.raz@weizmann.ac.il.

§Technion, Haifa, Israel. Email: amir.yehudayoff@gmail.com.

Abstract—We give new pseudorandom generators for regular
read-once branching programs of small width. A branching
program is regular if the in-degree of every vertex in it
is either 0 or 2. For every width d and length n, our
pseudorandom generator uses a seed of length O((log d +
log logn + log(1/ε)) logn) to produce n bits that cannot be
distinguished from a uniformly random string by any regular
width d length n read-once branching program, except with
probability ε.

We also give a result for general read-once branching
programs, in the case that there are no vertices that are reached
with small probability. We show that if a (possibly non-regular)
branching program of length n and width d has the property
that every vertex in the program is traversed with probability
at least γ on a uniformly random input, then the error of the
generator above is at most 2ε/γ2.

Keywords-Pseudorandomness, branching programs, explicit
constructions.

I. INTRODUCTION

This paper is about quantifying how much additional
power access to randomness gives to space bounded com-
putation. The main question we wish to answer is whether
or not randomized logspace is the same as logspace. This
project has a long history [AKS87], [BNS89], [Nis92],
[Nis94], [NZ96], [SZ99], [RTV06] (to mention a few),
showing how randomized logspace machines can be sim-
ulated by deterministic ones. Savitch [Sav70] showed that
nondeterministic space S machines can be simulated in
deterministic space S2, implying in particular that RL ⊆ L2.
Subsequently Saks and Zhou showed that BPL ⊆ L3/2

[SZ99], which is currently the best known bound on the
power of randomization in this context.

One way to simulate randomized computations with deter-
ministic ones is to build a pseudorandom generator, namely,
an efficiently computable function g : {0, 1}s → {0, 1}n
that can stretch a short uniformly random seed of s bits into
n bits that cannot be distinguished from uniform ones by
small space machines. Once we have such a generator, we
can obtain a deterministic computation by carrying out the
computation for every fixed setting of the seed. If the seed

‡ Research supported by an ISF grant. Part of this work was done when
the author was visiting Microsoft Research New England.
§ Research supported by NSF Grant DMS-0835373.

is short enough, and the generator is efficient enough, this
simulation remains efficient.

The computation of a randomized Turing machine with
space S that uses R random bits can be modeled by a
branching program of width 2S and length R. Comple-
menting Savitch’s result above, Nisan [Nis92] showed that
there is a pseudorandom generator that can stretch O(log2 n)
bits to get n bits that are pseudorandom for branching
programs of width n and length n. Subsequently, there were
other constructions of pseudorandom generators, [NZ96],
[INW94], [RR99], but no better seed length for programs of
width n and length n was obtained. In fact, no better results
were known even for programs of width 3 and length n.

In this work, we give new pseudorandom generators for
regular branching programs. A branching program of width
d and length n is a directed graph with nd vertices, arranged
in the form of n layers containing d vertices each. Except
for vertices in the final layer, every vertex in the program
has two outgoing edges into the next layer, labeled 0 and 1.
The program has a designated start vertex in the first layer
and an accept vertex in the final layer. The program accepts
an input x ∈ {0, 1}n if and only if the path that starts at the
start vertex and picks the outgoing edge for the i’th layer
according to the input bit xi ends at the accept vertex. The
program is regular if every vertex has in-degree 2 (except for
vertices in the first layer that have in-degree 0). The main
result of this work is a pseudorandom generator with seed
length O((log d + log log n + log(1/ε)) log n) and error ε,
for regular branching programs of length n and width d.

We observe that regular programs are quite powerful:
Every circuit in NC1 can be simulated by a regular width
5 (multiple read) branching program of polynomial size, by
Barrington’s celebrated result [Bar89]. The restriction that
the random bits are read only once is natural if one views
the random bits as coin-flips (i.e., the previous bit is erased
once the coin is flipped again) rather than a random tape
that can be traversed back and forth. We note, however, that
our result does not give any derandomization result for NC1,
since Barrington’s reduction does not preserve the read-once
property.

Our result also gives a generalization of an ε-biased
distribution for arbitrary groups. An ε-biased distribution
is a distribution on bits Y1, . . . , Yn such that for every

g1, . . . , gn ∈ Z2, the distribution of
∑
i Yi · gi is ε-close

to the distribution of
∑
i Ui · gi, where U1, . . . , Un are

uniformly random bits and the sum is taken modulo 2.
Saks and Zuckerman showed that ε-biased distributions are
also pseudorandom for width 2 branching programs [SZ].
Today, we know of several explicit constructions of ε-
biased distributions using only O(log n) seed length [NN93],
[AGHP92], which have found a large number of applications
in computer science. Our distribution gives a generalization
of this object to arbitrary groups: for Y1, . . . , Yn as in our
construction, and a group G of size d, our construction
guarantees that tests of the form

∏
i g
Yi
i cannot distinguish

the Yi’s from being uniform.

A. Techniques

Our construction builds on the ideas of a line of pseudo-
random generators [Nis92], [NZ96], [INW94]. Indeed, the
construction of our generator is the same as in previous
works and our improvements come from a more careful
analysis. Previous works gave constructions of pseudo-
random generators based on the use of extractors. Here,
an extractor is an efficiently computable function Ext :
{0, 1}r × {0, 1}O(k+log(1/ε)) → {0, 1}r with the property
that if X is any random variable with min-entropy at least
r − k, and Y is a uniformly random string, the output
Ext(X,Y) is ε-close to being uniform.

Earlier works [Nis92], [NZ96], [INW94] gave the follow-
ing kind of pseudorandom generator for branching programs
of length n (assume for simplicity that n is a power of
2). For a parameter s, we define a sequence of generators1

G0, . . . , Glogn. Define G0 : {0, 1}s → {0, 1} as the function
outputting the first bit of the input. For every i > 0, define
Gi : {0, 1}i·s × {0, 1}s → {0, 1}2i

as

Gi(x, y) = Gi−1(x) ◦Gi−1(Ext(x, y)),

where ◦ means concatenation.
The function Glogn maps a seed of length s · (log n+ 1)

to an output of length n. The upper bound on the errors of
the generators is proved by induction on i. Let us denote
the error of the i’th generator εi. For the base case, the
output of the generator is truly uniform, so ε0 = 0. For the
general case, the idea is that although the second half of
the bits is not independent of the first half, conditioned on
the vertex reached in the middle, the seed x has roughly
i · s − log d bits of entropy (where d is the width of the
program). Thus, if s ≥ Ω(log d+log(1/ε)), the seed for the
second half is ε-close to uniform, even when conditioned on
this middle vertex. Thus, the total error can be bounded by
εi ≤ (εi−1)+(εi−1 + ε) = 2εi−1 + ε, giving εlogn = O(nε).
In order to get a meaningful result, ε must be bounded by
1/n, which means that, according to this analysis, the seed
length of the generator must be at least Ω(log2 n).

1The logarithms in this paper are always of base 2.

In our work, we give a more fine-grained analysis of
this construction, that gives better parameters for regular
branching programs. To illustrate our ideas, let us consider
two extreme examples. First, suppose we have a branching
program that reads 2i bits, and the final output of the
program does not depend on the second half of the bits:
the vertex at the 2i−1 + 1 layer determines the final vertex
that the program reaches. For such a program, we can bound
the error by εi ≤ εi−1. This is because only the distribution
on the 2i−1 +1 layer is relevant. On the other hand, suppose
we had a program where only the last 2i−1 bits of input are
relevant, in the sense that every starting vertex in the middle
layer has the same probability of accepting a uniformly
random 2i−1 bit string. In this case, we can bound the error
by εi ≤ εi−1 + ε.

In general, programs are a combination of these two
situations. The program has d possible states at any given
time, and intuitively, if the program needs to remember
much information about the first 2i−1 bits, then it cannot
store much information about the next 2i−1 bits. This is the
fact that we shall exploit. In order to do so, we shall need
to formalize how to measure the information stored by a
program.

For every vertex v in the program, we label the vertex by
the number q(v), which is the probability that the program
accepts a uniformly random string, starting at the state v.
To every edge (u, v) in the program, we assign the weight
|q(v)−q(u)|. Our measure of the information in a segment of
the program is the total weight of all edges in that segment.
Checking with our examples above, we see that if the total
weight of the second half of the program is 0, then the
middle layer of the program must determine the output. On
the other hand, if all vertices in the middle layer have the
same value of q(v), then the weight of all edges in the first
half must be 0. A key observation is that if the input bits
are replaced with bits that are only ε-close to uniform, then
the outcome of the program can change by at most ε times
the weight of the program.

The proof proceeds in two steps. In the first step, we show
via a simple combinatorial argument that the total weight
of all edges in a regular branching program of width d is
bounded by O(d). To argue this, we use regularity; for non-
regular programs, the weight can grow with n. In the second
step, we prove by induction on i that εi ≤ O(i·ε·d·weightP),
where here weightP is the total weight of all edges in the
program P . If weightP = weightQ + weightR, where Q,R
are the first and second parts of the program, the contribution
to εi of the first half is at most O((i−1) · ε ·d ·weightQ) by
induction. If the seed to the second half was truly uniform,
the contribution of the second half would be at most O((i−
1)·ε·d·weightR). Instead, it is only ε-close to uniform, which
contributes an additional error term of O(ε · d · weightR).
Summing the three terms proves the bound we need.

The total error of the generator is thus bounded by

O(log n · ε · d · weightP). Now we only need to set ε to
be roughly 1/(d2 log n) to get a meaningful result. This
reduces the seed length of the generator to O((log d +
log log n) log n).

II. PRELIMINARIES

Branching Programs: For an integer n, denote [n] =
{1, 2, . . . , n}. Fix two integers n, d and consider the set of
nodes V = [n]× [d]. For t ∈ [n], denote Vt = {(t, i)}i∈[d].
We refer to Vt as layer t of V .

A branching program of length n and width d is a directed
(multi-) graph with set of nodes V = [n] × [d], as follows:
For every node (t, i) ∈ V1 ∪ . . . ∪ Vn−1, there are exactly 2
edges going out of (t, i) and both these edges go to nodes
in Vt+1 (that is, nodes in the next layer of the branching
program). One of these edges is labeled by 0 and the other
is labeled by 1. Without loss of generality, we assume that
there are no edges going out of Vn (the last layer of the
branching program). A branching program is called regular
if for every node v ∈ V2∪ . . .∪Vn, there are exactly 2 edges
going into v (note that we do not require that the labels of
these two edges are different).

Paths in the Branching Program: We will think of the
node (1, 1) as the starting node of the branching program,
and of (n, 1) as the accepting node of the program. For a
node v ∈ V1 ∪ . . . ∪ Vn−1, denote by next0(v) the node
reached by following the edge labeled by 0 going out of v,
and denote by next1(v) the node reached by following the
edge labeled by 1 going out of v.

A string x = (x1, . . . , xr) ∈ {0, 1}r, for r ≤ n−1, defines
a path in the branching program path(x) ∈ ([n] × [d])r+1

by starting from the node (1, 1) and following at step t the
edge labeled by xt. That is, path(x)1 = (1, 1) and for every
t ∈ [r], path(x)t+1 = nextxt

(path(x)t).
For a string x ∈ {0, 1}n−1, and a branching program B

(of length n), define B(x) to be 1 if path(x)n is the accepting
node, and 0 otherwise.

Remark 1. As the definitions above indicate, for the rest of
this paper a branching program is always read-once.

Distributions over {0, 1}n: For a distribution D over
{0, 1}n, we write x ∼ D to denote that x is distributed
according to D. Denote by Uk the uniform distribution
over {0, 1}k. For a random variable z and an event A,
denote by z|A the random variable z conditioned on A.
For a function ν, denote by |ν|1 its L1 norm. We measure
distances between distributions and functions using the L1

distance.

III. EVALUATION PROGRAMS

An evaluation program P is a branching program, where
every vertex v is associated with a value q(v) ∈ [0, 1], with
the property that if the outgoing edges of v are connected

to v0, v1, then

q(v) =
q(v0) + q(v1)

2
. (1)

Every branching program induces a natural evaluation pro-
gram by labeling the last layer as

q((n, i)) =

{
1 if i = 1,
0 otherwise.

and then labeling each layer inductively by Equation (1).
Given x ∈ {0, 1}r, and an evaluation program P , we

shall write valP (x) (or simply val(x), when P is clear from
context) to denote the quantity q(path(x)r+1), namely, the
value q(v) of the vertex v reached by starting at the start
vertex and taking the path defined by x. We shall write
val(x, y) to denote the value obtained by taking the path
defined by the concatenation of x, y.

We shall use the following three simple propositions.

Proposition 2. If U is the uniform distribution on r bit
strings, Eu∼U [val(x, u)] = val(x).

We assign a weight of |q(u)− q(v)| for every edge (u, v)
of the evaluation program. The weight of the evaluation
program P is the sum of all the weights of edges in the
program. We denote this quantity by weightP .

Proposition 3. Let X,Y be two distributions on r bit
strings, and P be an evaluation program. Then∣∣∣ E
x∼X

[valP (x)]− E
y∼Y

[valP (y)]
∣∣∣ ≤ |X − Y |1 · weightP

2
.

Proof: Let valmax denote the maximum value of val(b1)
and valmin denote the minimum value of val(b2) over all
choices of b1, b2 ∈ {0, 1}r. Assume that valmax 6= valmin

(otherwise the proof is trivial). Let vmax be the vertex
reached by a string b1 for which the maximum is attained,
and let vmin 6= vmax be the vertex reached by a string b2
for which the minimum is attained. Let γmax, γmin be two
edge disjoint paths in the program starting at some node v
and ending at vmax, vmin, respectively. Such paths must exist,
since vmax, vmin are both reachable from the start vertex of
the program. By the triangle inequality, valmax − valmin is
bounded by the total weight on the edges of these paths,
which implies

valmax − valmin ≤ weightP .

Let x ∼ X and let y ∼ Y . Let B denote the set {b ∈
{0, 1}r : Pr[x = b] ≥ Pr[y = b]}. Observe that∑
b∈B

Pr[x = b]− Pr[y = b]

=
∑
b/∈B

Pr[y = b]− Pr[x = b] = |X − Y |1/2.

Without loss of generality, assume that Ex∼X [valP (x)] ≥
Ey∼Y [valP (y)]. We bound

E
x∼X

[val(x)]− E
y∼Y

[val(y)]

=
∑

b∈{0,1}r

Pr[x = b] · val(b)− Pr[y = b] · val(b)

≤
∑
b∈B

(Pr[x = b]− Pr[y = b]) · valmax

+
∑
b/∈B

(Pr[x = b]− Pr[y = b]) · valmin

= |X − Y |1(valmax − valmin)/2
≤ |X − Y |1 · weightP /2.

Lemma 4. For every regular evaluation program P of width
d and length n,

weightP ≤ 2
∑

{i,j}⊂[d]

|q((n, i))− q((n, j))|.

Proof: Consider the following game: 2d pebbles are
placed on the real numbers 0 ≤ q1, . . . , q2d ≤ 1. At each
step of the game one can choose two pebbles such that their
distance is at least 2δ (for δ ≥ 0) and move each of them a
distance of δ toward the other. The gain of that step is 2δ
(that is, the total translation of the two pebbles in that step).
The goal is to maximize the total gain that one can obtain
in an unlimited number of steps, that is, the total translation
of all pebbles in all steps.

Consider the game that starts with 2d pebbles placed on
the real numbers

0 ≤ q((n, 1)), q((n, 1)),q((n, 2)), q((n, 2)), . . .
. . . , q((n, d)), q((n, d)) ≤ 1.

By Equation (1), for every t ∈ [n− 1], one can start with 2
pebbles placed on each number q((t + 1, i)) and end with
2 pebbles placed on each number q((t, i)), for i ∈ [d], by
applying d steps of the game described above (one step for
each node in Vt). The total gain of these d steps is just the
total weight of the edges in between Vt and Vt+1. Note that
for this to hold we use regularity.

To complete the proof, we will show that if we start with
pebbles placed at q1, . . . , q2d, then the total possible gain in
the pebble game is L =

∑
{i,j} |qi − qj |.

Without loss of generality, we can assume that each step
operates on two adjacent pebbles. This is true because if in
a certain step pebbles a, b are moved a distance of δ toward
each other, and there is a pebble c in between a and b,
one could reach the same final position (i.e., the same final
position of all pebbles after that step), but with a higher
gain, by first moving a and c a distance of δ′ toward each
other (for a small enough δ′), and then b and c a distance of

δ′ toward each other and finally a and b a distance of δ− δ′
toward each other.

If a step operates on two adjacent pebbles a, b, then for
any other pebble c the sum of the distance between a and
c and the distance between b and c remains the same (since
c is not between a and b), while the distance between a
and b decreases by 2δ (where 2δ is the gain of the step).
Altogether, L decreases by exactly 2δ, the gain of the step.
Since L cannot be negative, the total gain in the pebble game
is bounded by the initial L. Since we can decrease L to be
arbitrarily close to 0 (by operating on adjacent pebbles), the
bound on the possible gain in the pebble game is tight.

IV. THE GENERATOR

Our pseudorandom generator is a variant of the space
generator of Impagliazzo, Nisan and Wigderson [INW94]
(with different parameters). We think of this generator as a
binary tree of extractors, where at each node of the tree an
extractor is applied on the random bits used by the sub-tree
rooted at the left-hand child of the node to obtain “recycled”
random bits that are used by the sub-tree rooted at the right-
hand child of the node (see for example [RR99]). We present
our generator recursively, using extractors. We use the ex-
tractors constructed by Goldreich and Wigderson [GW97],
using random walks on expander graphs and the expander
mixing lemma.

The GW Extractor: Fix two integers n and d. Assume,
for simplicity, that n is a power of 2. Let ε > 0 be an error
parameter that we are aiming for. Let

β =
ε

2d2 log n
,

and note that log(1/β) = O(log d + log log n + log(1/ε)).
Let k = Θ(log(1/β)) be an integer, to be determined below.

For every 1 ≤ i ≤ log n, let

Ei : {0, 1}ki × {0, 1}k −→ {0, 1}ki

be an (extractor) function such that the following holds:
If z0, . . . , zi ∼ Uk (and are independent), then for any
event A depending only on z = (z0, . . . , zi−1) such that
Prz(A) ≥ β, the distribution of Ei(z|A, zi) is β-close
to the uniform distribution. Explicit constructions of such
functions were given in [GW97]. Fix k = Θ(log(1/β)) to
be the length needed in their construction.

The Pseudorandom Generator: For 0 ≤ i ≤ log n, define
a (pseudorandom generator) function

Gi : {0, 1}k(i+1) −→ {0, 1}2
i

recursively as follows. Let y0, . . . , ylogn ∈ {0, 1}k. For i =
0, define G0(y0) to be the first bit of y0 (we use only the
first bit of y0, for simplicity of notation). For 1 ≤ i ≤ log n,

define

Gi(y0, . . . , yi)
= Gi−1(y0, . . . , yi−1) ◦Gi−1(Ei((y0, . . . , yi−1), yi)).

That is, Gi is generated in three steps: (1) generate 2i−1 bits
by applying Gi−1 on (y0, . . . , yi−1); (2) apply the extractor
Ei with seed yi on (y0, . . . , yi−1) to obtain (y′0, . . . , y

′
i−1) ∈

{0, 1}ki; and (3) generate 2i−1 additional bits by applying
Gi−1 on (y′0, . . . , y

′
i−1).

Our generator is

G = Glogn : {0, 1}k(logn+1) −→ {0, 1}n.

Analysis: The following theorem shows that G works.

Theorem 5. For every evaluation program P (not neces-
sarily regular) of width d and length 2i + 1,∣∣∣ E

y∼Uk(i+1)

[valP (Gi(y))]− E
u∼U2i

[valP (u)]
∣∣∣

≤ i · (d+ 1) · β · weightP .

Proof: We prove the statement by induction on i.
For i = 0, the statement is trivially true, since G0(y) is
uniformly distributed. To prove the statement for larger i,
fix an evaluation program P that reads 2i bits. We write
weightP = weightQ+weightR, where weightQ is the weight
of edges in the first half of the program, and weightR is the
weight of edges in the second half. Let z ∼ Uki, yi ∼ Uk
and u1, u2 ∼ U2i−1 . We need to bound,∣∣E [valP (Gi(z, yi))]− E [valP (u1, u2)]

∣∣
≤
∣∣E [valP (Gi−1(z), u2)]− E [valP (u1, u2)]

∣∣
+
∣∣E [valP (Gi(z, yi))]− E [valP (Gi−1(z), u2)]

∣∣. (2)

By Proposition 2, the first term is equal to
|E [valP (Gi−1(z))]− E [valP (u1)]|, which is at most
(i− 1) · (d+ 1) · β · weightQ by the inductive hypothesis.

The second term equals∣∣∣E
z

[
E
yi

[valP (Gi−1(z), Gi−1(Ei(z, yi)))]

− E
u2

[valP (Gi−1(z), u2)]
]∣∣∣. (3)

We shall bound (3) separately, depending on which of
the vertices in the middle layer is reached by the pro-
gram. Define the events A1, . . . , Ad, with Aj = {z :
path(Gi−1(z))2i−1+1 = (2i−1 + 1, j)}. Equation (3) is
bounded from above by

d∑
j=1

Pr[Aj]
∣∣∣ E
z|Aj

[
E
yi

[valP (Gi−1(z|Aj), Gi−1(Ei(z|Aj , yi)))]

− E
u2

[valP (Gi−1(z|Aj), u2)]
]∣∣∣.

Denote by Rj the evaluation program whose start ver-
tex is (2i−1 + 1, j). Observe that if z ∈ Aj , then
valP (Gi−1(z), x) = valRj (x). Thus,

(3) ≤
d∑
j=1

Pr[Aj]
∣∣∣ E
z|Aj

[
E
yi

[valRj
(Gi−1(Ei(z|Aj , yi)))]

− E
u2

[
valRj (u2)

]]∣∣∣
Now if Pr[Aj] ≤ β, the j’th term contributes at most

β · weightR,

by Proposition 3. On the other hand, if Pr[Aj] ≥ β, then
Ei(z|Aj , yi) is β-close to a uniformly random string. By
Proposition 3 and the induction hypothesis, in this case the
j’th term contributes at most

Pr[Aj] ((i− 1) · (d+ 1) · β · weightR + β · weightR/2) .

Therefore,

(3) ≤ (i− 1) · (d+ 1) · β · weightR + (d+ 1) · β · weightR.

Putting the bounds for the two terms in (2) together, we get

(2) ≤ (i− 1) · (d+ 1) · β · weightQ

+ (i− 1) · (d+ 1) · β · weightR
+ (d+ 1) · β · weightR

= (i− 1) · (d+ 1) · β · (weightQ + weightR)
+ (d+ 1) · β · weightR
≤ i · (d+ 1) · β · weightP ,

as required.
Finally, we prove the main theorem of the paper.

Theorem 6. There is an efficiently computable function G :
{0, 1}s → {0, 1}n with

s = O((log d+ log log n+ log(1/ε)) log n),

such that if u ∼ Un, y ∼ Us and B is any regular branching
program of length n+ 1 and width d,∣∣Pr[B(G(y)) = 1]− Pr[B(u) = 1]

∣∣ ≤ ε.
Proof: Set G = Glogn as in the construction above.

The seed length to the generator is bounded by O(k log n) =
O((log d+ log log n+ log(1/ε)) log n) as required.

Given a branching program B, we make it an evaluation
program P , by labeling every vertex v by the probability
of reaching the accept vertex with a uniform random walk
starting at v. We thus see that for any n bit string x, B(x) =
valP (x). From Theorem 5, it follows that

|Pr[B(G(y)) = 1]− Pr[B(u) = 1]|
≤ (log n) · (d+ 1) · β · weightP .

By Lemma 4, weightP ≤ 2(d−1). Thus the error is at most
2d2(log n)β ≤ ε, according to the choice of β.

V. BIASED DISTRIBUTIONS FOOL SMALL WIDTH

Suppose we have a regular branching program B of length
n and width d.

Let D be a distribution over {0, 1}n−1. For α ≥ 0,
we say that D is α-biased (with respect to the branching
program B) if for x = (x1, . . . , xn−1) ∼ D the following
holds: for every t ∈ [n − 1] and every v ∈ Vt such that
Prx[path(x)t = v] ≥ α, the distribution of xt conditioned
on the event path(x)t = v is α-close to uniform, that is,
|Prx[xt = 1 | path(x)t = v]− 1/2| ≤ α/2.

The following theorem shows that the distribution of the
node in the branching program reached by an α-biased
random walk is (poly(d) ·α)-close to the distribution of the
node reached by a uniform random walk.

Theorem 7. Let P be a regular evaluation program of
length n. Let α ≥ 0. Let D be an α-biased distribution
(with respect to P). Then,∣∣∣ E

x∼D
[valP (x)]− E

u∼Un−1

[valP (u)]
∣∣∣ ≤ α · weightP /2.

Before proving the theorem, we note that it can be shown
by similar arguments that the distribution defined by G from
the previous section is α-biased, with small α. Using the
theorem, this also implies that G fools regular branching
programs.

Proof: We prove the theorem using a hybrid argument.
For each t ∈ {0, . . . , n − 1}, define the distribution Dt to
be the same as D on the first t bits, and the same as Un−1

on the remaining bits. Thus D0 = Un−1 and Dn−1 = D.
By the triangle inequality, we have that∣∣∣ E
x∼D

[valP (x)]− E
u∼Un−1

[valP (u)]
∣∣∣

≤
n−2∑
t=0

∣∣∣ E
x∼Dt

[valP (x)]− E
y∼Dt+1

[valP (y)]
∣∣∣.

For t ∈ {1, . . . , n− 1}, let weightt denote the weight of
the edges going out of Vt. We claim that the t’th term in the
sum is bounded by α · weightt+1/2. The sum of all terms
is thus at most α/2 ·

∑n−1
t=1 weightt = α · weightP /2, as

required.
To bound the t’th term, let z be distributed according to

the first t + 1 bits of D. Let z≤t denote the first t bits of
z, and let zt+1 be the t + 1’st bit of z. Let ut+1 denote a
uniform bit. Since all bits in Dt, Dt+1 after the t+ 1’st bit
are uniform, Proposition 2 implies that the t’th term in the
sum is equal to∣∣∣∣ E

z≤t

[
E
zt+1

[valP (z≤t, zt+1)]− E
ut+1

[valP (z≤t, ut+1)]
]∣∣∣∣ .

For every vertex v in Vt+1, define the event Av to be
the event that path(z≤t)t+1 = v, and let Rv denote the
evaluation program with two layers whose start vertex is
v. Rv involves only two edges, since only the edges leading

out of v are traversable. We have that
∑
v∈Vt+1

weightRv
=

weightt+1. Observe that if z≤t ∈ Av , then valP (z≤t, y) =
valRv

(y). So we can bound the t’th term from above by∑
v∈Vt+1

∣∣∣Pr[Av]
(

E
zt+1|Av

[valRv
(zt+1|Av)]

− E
ut+1

[valRv
(ut+1)]

)∣∣∣. (4)

There are two cases we need to consider. The first case is
when v admits Pr[Av] ≥ α. In this case, zt+1|Av is α-close
to uniform, and by Proposition 3, the v’th term is bounded
by Pr[Av]·α·weightRv

/2. The second case is when v admits
Pr[Av] < α. In this case, Proposition 3 tells us that the v’th
term is bounded by α · weightRv

/2. To conclude,

(4) ≤ α ·
∑

v∈Vt+1

weightRv
/2 = α · weightt+1/2.

As a corollary, we get that α-biased distributions are
pseudorandom for regular branching programs of bounded
width.

Corollary 8. Let B be a regular branching program of
length n and width d. Let α ≥ 0. Let D be an α-biased
distribution (with respect to B). Then,∣∣∣∣ Pr

x∼D
[B(x) = 1]− Pr

u∼Un−1
[B(u) = 1]

∣∣∣∣ ≤ α(d− 1).

Proof: Let P be the evaluation program obtained by
labeling every vertex of B with the probability of accepting
a uniform input starting at that vertex. Since P is regular
and has width d, weightP ≤ 2(d − 1) by Lemma 4. Apply
Theorem 7 to complete the proof.

Remark 9. Corollary 8 tells us that in order to fool regular
constant width branching programs with constant error,
we can use α-biased distributions, with α a small enough
constant. This statement is false for non-regular programs,
as we now explain. Consider the function tribesn that is
defined as follows: Let k be the maximal integer so that
(1−2−k)n ≤ 1/2. The function tribesn takes as input nk bits
x = (xi,j)i∈[n],j∈[k] and tribesn(x) =

∨
i∈[n]

∧
j∈[k] xi,j .

The tribes function has a natural width 3 branching pro-
gram. This program is, however, not regular. Even a very
strong notion of α-biased distribution does not fool it, as
long as α � 1/ log n. This is true as if all the bits in D
are, say, (10/ log n)-biased towards 1 and all of them are
independent, then the expectation of the tribes function with
respect to D is Ω(1)-far from the expectation of the tribes
function with respect to the uniform distribution.

ACKNOWLEDGEMENTS

We would like to thank Zeev Dvir, Omer Reingold and
David Zuckerman for helpful discussions.

REFERENCES

[AGHP92] Noga Alon, Oded Goldreich, Johan Håstad, and René
Peralta. Simple construction of almost k-wise indepen-
dent random variables. Random Structures and Algorithms,
3(3):289–304, 1992.

[AKS87] Miklós Ajtai, János Komlós, and Endre Szemerédi. De-
terministic simulation in LOGSPACE. In STOC, pages 132–
140. ACM, 1987.

[Bar89] David A. Barrington. Bounded-width polynomial-size
branching programs recognize exactly those languages in
NC1. Journal of Computer and System Sciences, 38(1):150–
164, February 1989.

[BNS89] László Babai, Noam Nisan, and Mario Szegedy. Multi-
party protocols and logspace-hard pseudorandom sequences
(extended abstract). In STOC, pages 1–11. ACM, 1989.

[GW97] Oded Goldreich and Avi Wigderson. Tiny families of
functions with random properties: A quality-size trade-off for
hashing. Random Struct. Algorithms, 11(4):315–343, 1997.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson.
Pseudorandomness for network algorithms. In STOC, pages
356–364, 1994.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded
computation. Combinatorica, 12(4):449–461, 1992.

[Nis94] Noam Nisan. RL ⊆ SC. Computational Complexity, 4:1–
11, 1994.

[NN93] Joseph Naor and Moni Naor. Small-bias probability
spaces: Efficient constructions and applications. SIAM Jour-
nal on Computing, 22(4):838–856, August 1993.

[NZ96] Noam Nisan and David Zuckerman. Randomness is
linear in space. Journal of Computer and System Sciences,
52(1):43–52, 1996.

[RR99] Ran Raz and Omer Reingold. On recycling the random-
ness of states in space bounded computation. In STOC, pages
159–168, 1999.

[RTV06] Omer Reingold, Luca Trevisan, and Salil Vadhan. Pseu-
dorandom walks on regular digraphs and the RL vs. L
problem. In STOC, pages 457–466. ACM, 2006.

[Sav70] Walter J. Savitch. Relationships between nondeterministic
and deterministic tape complexities. J. Comput. Syst. Sci,
4(2):177–192, 1970.

[SZ] Michael Saks and David Zuckerman. Personal communica-
tion.

[SZ99] Michael E. Saks and Shiyu Zhou. BPHspace(S) ⊆
DSPACE(S3/2). J. Comput. Syst. Sci, 58(2):376–403, 1999.

APPENDIX

We now show that the generator fools a more general class
of programs, namely, branching programs in which every
vertex is hit with either zero or non-negligible probability
by a truly random input. Such programs are not necessarily
regular, but every regular program can be shown to have
this property. We start by showing that the weight of such
programs can be bounded.

Suppose P is an evaluation program of length n and width
d. For every vertex v in the program, we denote by p(v) the
probability that the program reaches the vertex v starting
at (1, 1), according to the uniform distribution. Recall that
q(v) is the value of the vertex v in the program P .

For technical reasons, we need the following definition.
For a given evaluation program P of length n and width
d, define P ′, the non-redundant part of P , as the program
obtained by removing from P all vertices v with p(v) = 0.
The non-redundant part of P is not necessarily an evaluation
program, according to our definition, as some of its layers
may have less than d vertices. Nevertheless, P ′ has a natural
notion of weight induced by P , by assigning every vertex
in P ′ the same value as its value in P . The program P ′ also
has a natural structure of layers, induced by P : for t ∈ [n],
the vertices in V ′t are those vertices v in Vt so that p(v) > 0.

Lemma 10. Let P be an evaluation program, and γ > 0
be such that for every vertex v in P , either p(v) = 0 or
p(v) ≥ γ. Then weightP ′ ≤ 2/γ2, where P ′ is the non-
redundant part of P .

Proof: The proof is a fractional version of the pebble
argument used in the regular case. We play the following
pebble game. We start with a number of pebbles, located
at positions q1, q2, . . . , q` ∈ [0, 1]. The pebbles also have
corresponding heights p1, . . . , p` > 0 that add up to 1:∑`
i=1 pi = 1. The rules of the game are as follows. In each

step, we are allowed to pick a parameter η > 0 and two
pebbles at positions a, b, each of which has height at least
η. We then reduce the heights of each of these pebbles by
η, and add a new pebble of height 2η at position (a+ b)/2.
The gain in this step is η2|a− b|. If two pebbles are at the
same position, then we treat them as a single pebble whose
height is just the sum of the heights of the pebbles. The sum
of heights of the pebbles is 1 throughout the game.

First, we observe that the program P ′ defines a way to
achieve a gain of at least (γ/2)2 · weightP ′ , as follows. We
do so in n− 1 steps, indexed by t ∈ {n− 1, n− 2, . . . , 1}.
The way we start the game is specified by V ′n: for each
i such that p((n, i)) > 0, associate the vertex (n, i) in
P ′ with a pebble at position qi = q((n, i)) and height
p((n, i)). We maintain the following property throughout the
game: before we start the t’th step, for every pebble at the
current configuration of the game, the sum

∑
w p(w), with

w associated with the pebble, is the height of the pebble.

Here is how we perform the t’th step. From the pebble
configuration specified by V ′t+1, we obtain the configuration
specified by V ′t , by applying |V ′t | fractional pebble moves,
as follows. In each one of these moves, we pick a vertex
v ∈ V ′t , we choose η = p(v)/2 > 0, and we choose a to be
the position of the pebble associated with next0(v) and b to
be the position of the pebble associated with next1(v). We
then apply the pebble move defined by η, a, b, and associate
the vertex v with the pebble at position (a + b)/2. Since
p(v) ≥ γ, the gain of this step is at least (γ/2)2|a− b|. The
total gain obtained by reaching the configuration specified
by V ′t from that specified by V ′t+1 is thus at least (γ/2)2

times the weight of the layer. Continuing in this way for the
whole program, we get a sequence of pebble moves with
total gain at least (γ/2)2 · weightP ′ .

Next, we show that the total gain in any game with
any starting configuration is at most 1/2 (again, this bound
holds even for an unbounded number of moves). For any
configuration of ` pebbles at positions q1, . . . , q` and heights
p1, . . . , p`, define the quantity L =

∑
{i,j}⊂[`] pipj |qi − qj |.

We claim that in any valid fractional pebble move that is
defined by η, a, b, this quantity must decrease by at least
η2|a− b|. To see this, observe that if c 6∈ {a, b} is a position
of a pebble, then the sum of terms involving c in L can
only decrease: if pa, pb, pc are the heights of the pebbles at
positions a, b, c,

pcpa|a− c|+ pcpb|b− c|
≥ pc(pa − η)|a− c|+ pc(pb − η)|b− c|

+ pc2η|(a+ b)/2− c|,

as

(|a− c|+ |b− c|)/2 ≥ |(a+ b)/2− c|,

by convexity.

Moreover, the pebbles at positions a, b reduce the sum by

papb|a− b| −
(
(pa − η)(pb − η)|a− b|

+ (pa − η)2η|a− b|/2 + (pb − η)2η|a− b|/2
)

= |a− b|η2.

Since L is always non-negative, the initial L, which is

Linitial =
∑

{i,j}⊂[k]

pipj |qi − qj | ≤
∑

{i,j}⊂[k]

pipj < 1/2

for some k ∈ N, is thus an upper bound on the total gain
possible in the fractional pebble game. To conclude,

(γ/2)2 · weightP ′ ≤ total gain of game < 1/2.

Lemma 10 and Theorem 5 imply that the pseudorandom
generator defined earlier fools branching programs that do
not have low probability vertices.

Theorem 11. Let B be a branching program, and γ > 0 be
such that for every vertex v in the program, either p(v) = 0
or p(v) ≥ γ. Let G = Glogn be the generator as defined
above. Then if y, u are distributed uniformly at random (as
in Theorem 6),∣∣Pr[B(G(y)) = 1]− Pr[B(u) = 1]

∣∣ ≤ 2ε/γ2.

Proof: We define the evaluation program P by setting
q(v) to be the probability of accepting a uniform input
starting at the vertex v. Let P ′ be the non-redundant part
of P . By Lemma 10, weightP ′ ≤ 2/γ2. In terms of func-
tionality, P and P ′ are equivalent. The proof of Theorem 5
thus tells us that the error of the generator is at most
β(log n)(d+ 1)weightP ′ ≤ 2ε/γ2, by the choice of β.

It follows from Theorem 11 that one can efficiently
construct a generator that ε-fools branching programs in
which every vertex is reached with probability either zero or
at least γ, using a seed of length O((log log n+ log(1/ε) +
log(1/γ)) log n), as we can assume d ≤ O(1/γ).

