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Abstract—We study the single-sink buy-at-bulk problem with
an unknown cost function. We wish to route flow from a set
of demand nodes to a root node, where the cost of routing
x total flow along an edge is proportional to f(x) for some
concave, non-decreasing function f satisfying f(0)=0. We present
a simple, fast, combinatorial algorithm that takes a set of
demands and constructs a single tree T such that for all f the
cost f(T) is a 47.45-approximation of the optimal cost for that
f. This is within a factor of 2.33 of the best approximation
ratio currently achievable when the tree can be optimized
for a specific function. Trees achieving simultaneous O(1)-
approximations for all concave functions were previously not
known to exist regardless of computation time.

Keywords-approximation algorithms; network design; buy-
at-bulk;

I. INTRODUCTION

Many natural network design settings exhibit some form
of economies of scale that reduce the costs when many
flows are aggregated together. We may benefit from cheaper
bandwidth when laying high capacity network links [1],
reduced infrastructure costs or bulk discounts for shipping
large amounts of goods together [2], or summarization and
compression of correlated information flows [3]. These sce-
narios are known in the literature as buy-at-bulk problems.
In a general buy-at-bulk problem we are given a graph and
a set of demands for flow between nodes. The cost per unit
length for routing a total of x flow along an edge is f(x)
for some function f . To model the economies of scale, we
assume f is concave and monotone non-decreasing.

We will focus on single-sink (or single-source) case,
where all demands must be routed to a given root. When
f is known, the problem becomes the well-studied single-
sink buy-at-bulk (SSBaB) problem. SSBaB is NP -hard—
it generalizes the Steiner tree problem—but constant-factor
approximations are known for any given f (e.g. [4], [5]). The
special case where f has the form f(x) = min{x,M} for
some M (edges can be “rented” for linear cost or “bought”
for a fixed cost) is known as the single-sink rent-or-buy
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(SSRoB) problem and has also received significant attention
(e.g. [6], [7]).

Buy-at-bulk algorithms produce trees that are heavily
tailored to the particular function at hand, but in some
scenarios f may be unknown or known to change over time.
One setting where this arises is in aggregation of data in
sensor networks. The degree of redundancy among different
sensor measurements may be unknown, or the same network
may be used for aggregating different types of information
with different amounts of redundancy. In other situations
rapid technological advancement may cause bandwidth costs
to change drastically over time. Further, in the interest of
simplifying the design process and building robust networks,
it may be useful to decouple the problem of designing
the network topology from that of determining the exact
characteristics of the information or goods flowing through
that network. In these settings it is desirable to find a single
tree that is simultaneously good for all cost-functions, and
from a theoretical perspective, the existence of such trees
would reveal surprising structure in the problem.

There are two natural objective functions which capture
the idea of simultaneous approximation for multiple cost
functions. Let F be the set of all concave, monotone non-
decreasing cost functions satisfying f(0) = 0, f(T ) be the
cost of a routing tree T under function f , and T ∗f be the
optimal routing graph for f . Note that due to the concavity
of f we may assume that T ∗f is a tree. LetR be a randomized
algorithm that returns a feasible routing tree T . First, we
could try to minimize the quantity

sup
f∈F

ER[f(T )]

f(T ∗f )
(1)

which we call the oblivious approximation ratio. If the
oblivious ratio is small, then R returns a distribution that
works well in expectation for any f . However, there may be
no sample from this distribution that works for everything:
for any tree T there may be functions for which f(T ) is
expensive.

To circumvent this problem we can work with the much
stronger simultaneous approximation ratio. For a determin-
istic or randomized algorithm A that returns a tree TA the



simultaneous ratio of A is defined as:

EA

[
sup
f∈F

f(TA)

f(T ∗f )

]
(2)

A bound on the simultaneous ratio subsumes one on the
oblivious ratio and proves there exists a single tree that is
simultaneously good for all f .

We emphasize that the distinction between the simul-
taneous and oblivious objectives is not a technicality in
the objective but rather a fundamental difference and that
the gap between these ratios can be large. Consider the
problem of embedding arbitrary metrics into tree metrics,
another problem that requires bounding the cost under many
different functions (i.e. distortion of each edge). It is well-
known that distributions over trees can achieve O(log n)
expected distortion for all edges [8] but that even for simple
graphs like the n-cycle no single tree can do better than
Ω(n) distortion [9]. Therefore, the ratio between maximum
expected distortion and the expected maximum distortion is
Ω(n/ log n) in this case.

Goel and Estrin [10] introduced the problem of simul-
taneous SSBaB and gave an algorithm with an O(logD)
bound on the simultaneous ratio (2), where D is the total
amount of demand. Goel and Post [11] recently improved
the oblivious ratio (1) to O(1) for a large constant. Trees
for which the simultaneous ratio was O(1) were not known
to exist regardless of computation time.

In this paper we give the first constant guarantee on the
simultaneous ratio, resolving the major open question of
Goel and Estrin and Goel and Post [10], [11]. Several aspects
of our algorithm and analysis bear mentioning:
• We achieve a simultaneous approximation ratio of

47.45. This is within a factor of 2.33 of the current
best approximation for normal SSBaB of 20.42 [5] and
substantially smaller than the O(1) oblivious bound
[11], which we estimate to be around 15 million.

• The algorithm is entirely combinatorial, in contrast to
the result of Goel and Post [11], which uses separation
oracles to prove an O(1)-oblivious distribution exists
but reveals little of its structure.

• Our analysis is short and simple, no more complex than
the analysis of a normal SSBaB algorithm.

• The runtime is only O((t(n,m) +m+ n log n) logD)
for a graph with n nodes, m edges, and D demand,
where t(n,m) is the runtime of an SSRoB approxima-
tion.

The algorithm is quite simple. We first find approximate
trees for a set of rent or buy basis functions, prune this
set to obtain a subset L of trees whose total rent costs are
increasing geometrically while total buy costs are dropping
geometrically, and then prove it suffices to approximate
every tree in L. The set of bought nodes for each tree in
L defines a series of tree layers, which we stitch together

using light approximate shortest-path trees (LASTs) [12] to
approximate both the minimum spanning tree (MST) and
shortest-path tree. Finally, we consider any layer in the tree.
Using the geometrically changing costs and the properties of
the LAST construction, we conclude that everything within
the layer is an approximate MST, and everything outside
approximates the shortest-path tree cost.

A. Related Work

The SSBaB problem was first posed by Salman et al.
[2], and the first general approximation algorithm was given
by Awerbuch and Azar [13], who used metric tree embed-
dings [14] to achieve an O(log2 n) ratio, later improved
to O(log n) using better embeddings by Bartal [15] and
Fakcharoenphol et al. [8]. Guha et al. [4] gave the first
constant approximation, and follow-up work by Talwar [16],
Gupta et al. [17], Jothi and Raghavachari [18], Grandoni
and Italiano [19], and Grandoni and Rothvoß [5] has since
reduced the constant to 20.42. Most recent algorithms for
SSBaB (and several related problems) are based on the
sample and augment framework of Gupta et al. [17]. Many
algorithms using this framework have been derandomized
by van Zuylen [20].

The special case of SSRoB has also been extensively stud-
ied, often as a special case of the connected facility location
problem. The first constant factor approximation was given
by Ravi and Salman [21] as a special case of the traveling
purchaser problem. Karger and Minkoff [6] gave an alternate
algorithm and introduced connected facility location. Gupta
et al. improved the approximation to 9.01 [22], Swamy and
Kumar to 4.55 [23], and Gupta et al. to 3.55 [17]. Gupta et al.
[24] derandomized the 3.55-approximation to achieve a 4.2-
approximation. Eisenbrand et al. [7] developed a randomized
2.92-approximation, which recently improved to 2.8 using
the 1.39-approximation for Steiner tree of Byrka et al. [25].
Both Williamson and van Zuylen [26] and Eisenbrand et al.
[7] independently derandomized the 2.92-approximation to
achieve a deterministic 3.28-approximation.

The problem of simultaneous approximation for multiple
cost functions has been studied using both the oblivious
and simultaneous objectives. Goel and Estrin [10] were
the first to explicitly pose the question of simultaneous
approximations and gave an algorithm with an O(logD)
simultaneous guarantee. Prior to that Khuller et al. [12] gave
an algorithm to simultaneously approximate the two extreme
cost functions f(x) = 1 and f(x) = x—a result which plays
an important role in this paper—and metric tree embeddings
had been applied to SSBaB [13], [8] to achieve an O(log n)
bound for the oblivious objective. Enachescu et al. [27] gave
an O(1) simultaneous guarantee for the special case of grid
graphs with some spatial correlation. Goel and Post [11]
proved that an oblivious guarantee of O(1) is achievable for
all graphs. Gupta et al. [28] and Englert and Räcke [29]
have studied several generalizations of the problem where



both the demands and function are unknown, and multiple
sinks are allowed. In these settings the guarantee is generally
O(log n) or O(polylog n).

II. NOTATION AND PRELIMINARIES

Formally, we are given a graph G = (V,E) with edge
lengths le for e ∈ E, a root node r, and a set of demand
nodes D ⊆ V with integer demands dv . The total demand is
D =

∑
v dv . We want to route dv flow from each v to r as

cheaply as possible, where the cost of routing xe flow along
edge e is lef(xe) for some unknown, concave, monotone
increasing function f satisfying f(0) = 0. Not knowing
f , our objective is to find a feasible tree T minimizing
supf f(T )/f(T ∗f ), where T ∗f is the optimal graph for f .

We first show that we can restrict our analysis to a smaller
class of basis functions. Let ε > 0 be a small constant
which will trade off the runtime and the approximation
ratio, and K = dlog1+εDe. For 0 ≤ i ≤ K, define
Mi = (1 + ε)i, Ai(x) = min{x,Mi}, and T ∗i as the
optimal tree for Ai. By the monotonicity and concavity of
f , whenever Mi ≤ x ≤ Mi+1 we have f(Mi) ≤ f(x) ≤
f(Mi+1) ≤ (1 + ε)f(Mi), so with a loss of only a factor of
1 + ε we can interpolate between f(Mi) and f(Mi+1) and
assume f is piecewise linear with breakpoints only at powers
of 1 + ε. A nondecreasing concave function that is linear
between powers of 1 + ε can be written as a nonnegative
linear combination of {Ai}0≤i≤K by setting coefficients
equal to the changes in slope: if the slope drops from δi
to δi+1 at (1 + ε)i it induces the term (δi − δi+1)Ai(x).
Now for a linear combination

∑
i aiAi(x) and a tree T∑

i aiAi(T )∑
i aiAi(T

∗
f )
≤
∑
i aiAi(T )∑
i aiAi(T

∗
i )

=

∑
i aiAi(T

∗
i ) Ai(T )

Ai(T∗
i
)∑

i aiAi(T
∗
i )

≤ max
i

Ai(T )

Ai(T ∗i )

so it suffices to upper bound maxiAi(T )/Ai(T
∗
i ).

We now define some notation and subroutines that will
be important for our algorithm. The problem of finding a
good aggregation tree for the function Ai(x) = min{x,Mi}
is an instance of the SSRoB problem, and we can find a
λ-approximate tree Ti, where λ is the best approximation
ratio known, currently equal to 2.8 using the algorithm of
Eisenbrand et al. [7] and Byrka et al. [25]. We will assume
the algorithm is deterministic. If not (as in the case of
the 2.8-approximation) we repeat it a polynomial number
of times and pick the best tree, so we are close to a λ-
approximation with very high probability. In this case, our
simultaneous approximation algorithm will have some tiny
probability of failure.

The cost Ai(Ti) can be broken into two pieces, the rent
cost and the buy cost, based on whether Ai is maxed out at
Mi:

Definition 2.1: For an aggregation tree Ti for cost func-
tion Ai with xe flow on edge e, the rent cost Ri and
normalized buy cost Bi are defined as

Ri =
∑

e∈Ti, xe<Mi

leAi(xe)

Bi =
∑

e∈Ti, xe≥Mi

le
Ai(xe)

Mi
=

∑
e∈Ti, xe≥Mi

le

Note that edge costs composing Ri are weighted by the
amount of flow they carry, but edges in Bi are not; they
use unweighted edge costs. The total cost of Ti is given by
Ai(Ti) = Ri +MiBi. The rent and buy costs also partition
the nodes of Ti into two sets:

Definition 2.2: The core Ci of tree Ti consists of r and all
nodes spanned by bought edges and the periphery contains
all vertices outside Ci.

If we condition on the nodes in Ci then the rent-or-buy
problem becomes easy: demands outside the core pay linear
cost until they reach Ci, so they should take the shortest path,
whereas within Ci we pay a fixed cost per edge length, so
the best strategy is to follow the min spanning tree. The cost
Ri is therefore at least the sum of shortest path distances to
Ci, while Bi is at least the weight of the MST of Ci.

In addition to the SSRoB approximation, we will also
employ the light, approximate shortest-path tree algorithm
of Khuller et al. [12]:

Definition 2.3 ([12]): For α ≥ 1 and β ≥ 1, an (α, β)-
light, approximate shortest-path or (α, β)-LAST is a span-
ning tree T of G with root r such that
• For each vertex v, the distance from v to r in T is at

most α times the shortest path distance from v to r in
G.

• The edge weight of T is at most β times the weight of
an MST of G.

Khuller et al. show how to construct an (α, β)-LAST for
any α > 1 and β ≥ α+1

α−1 . Roughly, the algorithm performs
a depth-first traversal of the MST of G starting from r,
checking the stretch of the shortest path to each node. If
the path to some v has blown up by at least an α factor,
then it updates the tree to take the shortest path from v to
r, adjusting other tree edges and distances accordingly. See
the paper [12] for a full description and analysis.

Finally, we define four parameters α, β, γ, and δ used by
our algorithm whose values we will optimize at the end.
• α > 1 is the approximation ratio for shortest paths used

in our LAST.
• β ≥ α+1

α−1 is the corresponding approximation to the
MST in the LAST.

• γ > 1 is the factor by which normalized buy costs Bi
increase from layer to layer in our tree.

• δ > 1 is the factor by which rent costs Ri drop from
layer to layer.

We now turn to a more thorough explanation of tree layers.



III. TREE LAYERS

In the normal SSBaB problem, the cost function is defined
as f(x) = minj{σj + δjx}, the cheapest of a collection of
different “pipes” or “cables” given to the algorithm, each
with an affine cost function σj + δjx. It is common (e.g.
[4], [17]) to first prune these pipes to a smaller set with
geometrically decreasing δj’s and geometrically increasing
σj’s and then build a solution in layers where each layer
routes with a different pipe.

We perform an analogous procedure. We would like to
build our simultaneous tree T in a series of nested layers
defined by the cores Ci of each tree Ti, so that the core of
T under Ai is similar to Ci, but we have no guarantees on
the relationships between different cores: Ci and Ck may be
entirely disjoint except for r. However, we will show that
as long as normalized buy costs Bi and Bk are within a
constant factor of each other, the same core can be used for
both trees. Consequently, we are able to define nested layers
by choosing one Ci for each order of magnitude of Bi.

After finding λ-approximate trees Ti for each Ai, we loop
through the costs Bi and Ri, discarding i whenever Bi does
not drop by γ or Ri does not grow by δ. We are left with a
subset L of the Ti where the Bi’s are dropping by a factor
of γ and the Ri’s are growing by a factor of δ. The cores Ci
for each i ∈ L will define the layers of our tree. Algorithm
1 describes the procedure in more detail.

Intuitively, as it becomes more expensive to buy edges the
optimum will buy fewer edges and rent more. In the case of
approximations, the progression becomes muddled because
for some i the approximation guarantee may be tight while
for i+ 1 we may get lucky and find the optimum, resulting
in both rent and normalized buy costs dropping. We first
show that the monotonicity in buy and rent costs still holds
as long as each Ti is better for Ai than both Ti−1 and Ti+1.

Lemma 3.1: After line 8 of Algorithm 1, for every i we
have Bi ≥ Bi+1 and Ri ≤ Ri+1.

Proof: First we show that for each i, Ai(Ti) ≤
min{Ai(Ti+1), Ai(Ti−1)}. After the loop on lines 3–4, we
have Ai(Ti) ≤ Ai(Ti−1), and after the second loop on lines
5–6 we have Ai(Ti) ≤ Ai(Ti+1), so we only need to show
that the second loop does not break the first condition. If the
second loop updates Ti then Ai(Ti) will only shrink, and if
it changes Ti−1 it does this by setting Ti−1 ← Ti which
preserves Ai(Ti) ≤ Ai(Ti−1).

Now consider Ai(Tk) for any k. By definition Ai(x) ≤ x
and Ai(x) ≤Mi, so to upper bound Ai(Tk) we may assume
edges within Ck pay Mi per unit length, which sums to
MiBk, and edges outside Ck pay linear cost, or Rk total,
implying Ai(Tk) ≤ Rk +MiBk. Therefore

Ri +MiBi = Ai(Ti) ≤ Ai(Ti+1) ≤ Ri+1 +MiBi+1

=⇒Mi(Bi −Bi+1) ≤ Ri+1 −Ri

Input: Graph G and demands D
Output: Set L and cores Ci for each i ∈ L

1: for i← 0 to K do
2: Ti ← λ-approximate tree for Ai(x)

3: for i← 1 to K do
4: if Ai(Ti−1) < Ai(Ti) then Ti ← Ti−1

5: for i← K − 1 down to 0 do
6: if Ai(Ti+1) < Ai(Ti) then Ti ← Ti+1

7: for i← 0 to K do
8: calculate Ci, Bi, Ri

9: LB ← ∅
10: B ←∞
11: for i← 0 to K do
12: if Bi < 1

γB then
13: LB ← LB ∪ {i}
14: B ← Bi
15: L← ∅
16: R←∞
17: foreach i ∈ LB in decreasing order do
18: if Ri < 1

δR then
19: L← L ∪ {i}
20: R← Ri
21: return L and Ci for each i ∈ L

Algorithm 1. Finding tree layers

Similarly,

Ri+1 +Mi+1Bi+1 = Ai+1(Ti+1)

≤ Ai+1(Ti) ≤ Ri +Mi+1Bi

=⇒ Ri+1 −Ri ≤Mi+1(Bi −Bi+1)

Combining the inequalities,

Mi(Bi −Bi+1) ≤ Ri+1 −Ri ≤Mi+1(Bi −Bi+1)

If Bi−Bi+1 < 0 the inequality is false because Mi+1 > Mi,
so we conclude Bi ≥ Bi+1. And using the first inequality,
0 ≤Mi(Bi −Bi+1) ≤ Ri+1 −Ri, so Ri ≤ Ri+1.

We need to show that we can restrict our attention to
Ti for i ∈ L. Suppose i < k but Bi ≤ γBk. Using
Lemma 3.1, observe that Ak(Ti) ≤ Ri + MkBi ≤ Rk +
δMkBk ≤ δAk(Tk). Note this is independent of the size of
the intersection of the cores Ci and Ck and any differences
in routing. The following lemma generalizes this simple but
key observation and proves that approximating each i ∈ L
is sufficient.

Lemma 3.2: Suppose there exists a tree T and constants
cB and cR such that for all i ∈ L there exists a partition
of the edges of T into two sets TBi

and TRi
satisfying

A0(TBi
) ≤ cBBi and AK(TRi

) ≤ cRRi, then for all
k ∈ {0, . . . ,K}, Ak(T ) ≤ max{cBγ, cRδ}λAk(T ∗k ).



Proof: Let k ∈ {0, . . . ,K}. Let j = max{j ∈ LB |j ≤
k}. Either j = k or k was discarded due to j on lines 11–
14 because Bk ≥ 1

γBj , and either way Bj ≤ γBk. Now
let i = min{i ∈ L|i ≥ j}. Again i = j or j was pruned
due to i on lines 17–20, and Ri ≤ δRj . Applying Lemma
3.1 with i ≥ j and j ≤ k, we have Bi ≤ Bj ≤ γBk and
Ri ≤ δRj ≤ δRk.

This is sufficient to bound the cost of Ak(T ):

Ak(T ) = Ak(TRi
) +Ak(TBi

) ≤ AK(TRi
) +MkA0(TBi

)

≤ cRRi + cBMkBi

≤ cRδRk + cBγMkBk

≤ max{cRδ, cBγ}Ak(Tk)

≤ max{cRδ, cBγ}λAk(T ∗k )

The equality follows because TBi and TRi partition the
edges of T . The first inequality is because AK(x) and
MkA0(x) both upper bound Ak(x), the second is by as-
sumption, the third is from the derivation above, the fourth
uses Ak(Tk) = Rk + MkBk, and the last is because Tk is
a λ-approximation.

We will primarily assume that our SSRoB algorithm is
a generic approximation, but Lemma 3.2 can easily be
improved to take advantage of an SSRoB algorithm with
a stronger guarantee that separately bounds Ri and MiBi in
terms of the optimal costs R∗i and MiB

∗
i .

Corollary 3.3: Let T , cB , and cR be as in Lemma 3.2,
and suppose
• Ri ≤ µRR∗i + µBMiB

∗
i

• MiBi ≤ νRR∗i + νBMiB
∗
i

then for all k,

Ak(T ) ≤ max{cRδµR+ cBγνR, cRδµB + cBγνB}Ak(T ∗k ).

Proof: We change the inequalities in the proof above
as follows:

Ak(T ) ≤ cRδRk + cBγMkBk

≤ cRδ(µRR∗k + µBMkB
∗
k) + cBγ(νRR

∗
k + νBMkB

∗
k)

≤ max{cRδµR + cBγνR, cRδµB + cBγνB}Ak(T ∗k )

IV. CONSTRUCTING THE TREE

The construction of the tree itself is quite simple. We have
a set of indices L and core sets Ci for i ∈ L. Starting with
the largest i ∈ L, i.e. smallest Bi, and working downward,
we connect each Ci to T , the tree so far, with a LAST.
Algorithm 2 describes the procedure more formally. The
notation G/T represents contracting T to a single node in
G, and G[Ci] is the induced subgraph on Ci, so (G/T )[Ci]
denotes first contracting T and then restricting to nodes in
Ci.

Lemma 4.1: The graph T constructed by Algorithm 2 is
a tree and spans all demand nodes.

Input: Graph G. Set L and accompanying Ci for
each i ∈ L
Output: Aggregation tree T

1: T ← {r}
2: foreach i ∈ L in decreasing order do
3: T ′ ← (α, β)-LAST of (G/T )[Ci] with root T
4: T ← T ∪ T ′
5: return T

Algorithm 2. Constructing the tree

Proof: Observe that 0 ∈ L, and R0 = 0, so C0 covers
all demands. Therefore after the last iteration T spans D.
Each iteration only adds edges spanning new vertices, so no
cycles are created.

The tree may contain paths connecting Steiner nodes that
carry no flow. Such edges can be safely pruned or just
ignored because they contribute nothing to the cost.

All that remains is to define the partitions TBi and TRi

and prove the bounds needed in Lemma 3.2. The set TBi

contains all edges present in T after connecting Ci, and
TRi

contains the rest. Both cost bounds will follow easily
from the geometrically changing costs: the cost A0(TBi

) is
dominated by the cost of the Ci layer, an approximate MST,
and AK(TRi) is dominated by the rent costs of the next
layer, an approximate shortest-path tree. First, we bound the
normalized buy cost of TBi

:
Lemma 4.2: Let i ∈ L, and TBi be the tree T after the

round when Ci is added. Then the edge cost A0(TBi
) is at

most βγ
γ−1Bi.

Proof: The proof is by decreasing induction on i, i.e.
in the order in which the layers are built. Let c be a constant
to be chosen at the end. The base case is the largest i ∈ L,
which is the smallest i such that Bi = 0. In this case, Ci =
{r}, TBi

= {r}, and the edge cost is 0.
Now let i ∈ L, k = min{k ∈ L|k > i} be the previous

(inner) layer, and suppose the edge cost of TBk
is at most

cBk. By the construction of L, we know Bk < 1
γBi,

implying TBk
costs at most c

γBi. The cost of an MST of
Ci in G is at most Bi, and TBk

may already span part of
Ci, so connecting the rest with an MST1 of (G/TBk

)[Ci]
costs at most Bi. Using an (α, β)-LAST scales the cost by
at most β.

The total cost of edges laid so far is at most c
γBi + βBi,

so the proof is complete as long as cBi ≥ c
γBi + βBi. Set

c = βγ
γ−1 :

c ≥ β +
c

γ
⇐⇒ c

(
1− 1

γ

)
≥ β ⇐⇒ c ≥ βγ

γ − 1

Now we bound the rent costs of TRi by a similar proof.

1We could allow Steiner nodes and use a Steiner tree approximation, but
this would not improve the worst-case bound.



Lemma 4.3: Let i ∈ L and TRi
= T/TBi

, i.e. all edges
outside of TBi

. Then the rent cost AK(TRi
) is at most

αδ
δ−α−1Ri.

Proof: We prove by increasing induction on i ∈ L (the
reverse of Lemma 4.2) that AK(TRi) ≤ cRi for some c to
be determined. Since 0 ∈ L, and TB0 covers everything, the
base case TR0

costs 0 too.
For the inductive case, let i ∈ L, k = max{k ∈ L|k < i}

be the next (outer) layer, and TRk
have rent cost at most cRk.

As before, note Rk < 1
δRi, so AK(TRk

) ≤ c
δRi. Tree TBi

spans Ci and possibly more, so if all demands outside TBi

took the shortest path from their sources to TBi the shortest-
path cost would be at most Ri. However, the edges of TRk

have moved some demands around, and by the time they
reach the current layer they may be farther from TBi

than
their original sources were. But by the triangle inequality
the cost of sending all demands from their current locations
to TBi via shortest paths is at most c

δRi + Ri, the cost of
sending all flow in TRk

back to its source and from there to
TBi using shortest paths. The LAST algorithm guarantees
α-approximate shortest paths, multiplying the cost by α.

Consequently the total rent cost for TRi
is bounded by

c
δRi + α

(
c
δRi +Ri

)
, which needs to be at most cRi. We

can set c = αδ
δ−α−1 :

c ≥ c

δ
+
cα

δ
+ α⇐⇒ c

(
1− 1

δ
− α

δ

)
= c

δ − α− 1

δ
≥ α

⇐⇒ c ≥ αδ

δ − α− 1

We note that Lemma 4.3 explains how we circumvent
a major obstacle to an O(1)-simultaneous approximation—
the Ω(log n) distortion lower bound for embedding arbitrary
metrics into tree metrics [14]. If we needed to maintain
distances between many pairs of nodes the task would be
hopeless, but Lemma 4.3 shows that it suffices to preserve
the distance of each node to the next layer, so the graph of
distances to be maintained forms a tree.

We can now complete the proof of our main theorem and
choose the optimal parameters.

Theorem 4.4: The tree T achieves a simultaneous approx-
imation ratio of (1+ ε)λ(8+4

√
5) using a λ-approximation

to SSRoB. In particular,

• There is a randomized polynomial time algorithm that
finds a 47.45 simultaneous approximation with high
probability.

• There is a deterministic polynomial time algorithm that
finds a 55.58 simultaneous approximation.

• There exists a tree that is a 16.95 simultaneous approx-
imation.

Proof: Applying Lemma 3.2 with cB = βγ
γ−1 (Lemma

4.2) and cR = αδ
δ−α−1 (Lemma 4.3), the final approximation

ratio for an arbitrary cost function f is

(1 + ε)λmax

{
βγ2

γ − 1
,

αδ2

δ − α− 1

}
(3)

where the extra 1+ε comes from the approximation of f by
a combination of Ai’s. Now it is a simple matter of applying
calculus to find the optimal values for α, β, γ, and δ.

The easiest parameters to fix are γ and δ. For γ:

d

dγ

[
βγ2

γ − 1

]
= β

(2γ)(γ − 1)− γ2

(γ − 1)2
= 0

=⇒ γ(γ − 2) = 0 =⇒ γ = 2

For δ:

d

dδ

[
αδ2

δ − α− 1

]
= α

2δ(δ − α− 1)− δ2

(δ − α− 1)2
= 0

=⇒ δ2 − 2αδ − 2δ = δ(δ − 2α− 2) = 0

=⇒ δ = 2α+ 2

Plugging γ = 2 and δ = 2α + 2 into (3), β γ2

γ−1 = 4β,
and

αδ2

δ − α− 1
=

α(2α+ 2)2

(2α+ 2)− α− 1
= 4α(α+ 1)

so (3) is now max{4β, 4α(α+1)}. The constraints on α and
β require β ≥ α+1

α−1 [12], so one term blows up if the other
shrinks. To minimize the maximum set the two expressions
to be equal:

β =
α+ 1

α− 1
= α(α+ 1)

=⇒ α(α− 1) = 1 =⇒ α2 − α− 1 = 0

=⇒ α =
1±
√

5

2

Using α = 1+
√
5

2 , we get

β =
α+ 1

α− 1
=

3 +
√

5

−1 +
√

5
=

(3 +
√

5)(1 +
√

5)

4

=
8 + 4

√
5

4
= 2 +

√
5

and δ = 2α+ 2 = 3 +
√

5.
Finally, βγ2

γ−1 = 4(2 +
√

5) so the simultaneous approxi-
mation ratio is

(1 + ε)λ(8 + 4
√

5).

Now,
• Using the best randomized approximation λ = 2.8, and

the ratio is 47.45 with high probability.
• Using the best deterministic approximation λ = 3.28,

and the ratio is 55.58.
• If the algorithm is allowed to run in exponential time
λ = 1, and the ratio is 16.95.



The 2.8-approximation of Eisenbrand et al. [7] actually
provides a slightly stronger guarantee on Ri and Bi, and
we can use Corollary 3.3 to get a tiny improvement in the
approximation ratio at the cost of a more complex derivation:

Theorem 4.5: There is a randomized polynomial time
algorithm that finds a 47.07 simultaneous approximation
with high probability.

Proof: Lemma 2 and Theorem 5 in [7] prove that

E[Ri] ≤ 2R∗i +
.807

x
MiB

∗
i

E[MiBi] ≤ ρ(x+ ε)R∗i + ρMiB
∗
i

where ρ = 1.39 is the Steiner tree approximation ratio and
x ∈ (0, 1] is a parameter. Applying Corollary 3.3 with

µR = 2 µB =
.807

x
νR = ρ(x+ ε) νB = ρ

the simultaneous ratio is bounded by

(1 + ε) max

{
2αδ2

δ − α− 1
+
ρ(x+ ε)βγ2

γ − 1
,

.807αδ2

x(δ − α− 1)
+
ρβγ2

γ − 1

}
Using

x = .5995 α = 1.5495 β =
α+ 1

α− 1
γ = 2 δ = 2α+ 2

yields a simultaneous ratio of 47.07. We omit the tedious
but straightforward derivation of these values.

We leave as an open question the problem of exploiting
Corollary 3.3 to substantially improve the ratio.

A. Runtime

Let t(n,m) be the running time of our SSRoB approx-
imation on a graph with n vertices and m edges, which
must be at least Ω(n) to write down the output. When ε
is constant, running the SSRoB approximation for each i
takes O(t(n,m) logD). Subsequent loops in Algorithm 1
take O(n logD) = O(t(n,m) logD).

For each of the O(logD) iterations of Algorithm 2
we need to do a graph contraction and run the LAST
algorithm, which requires computing the MST and shortest
path trees. The computation of the shortest path tree takes
O(m + n log n) and dominates the other steps. Combining
the two algorithms, the total time is O((t(n,m) + m +
n log n) logD).

V. OPEN PROBLEMS

We have answered the open questions posed by Goel and
Estrin and Goel and Post [10], [11], but there are several
avenues for further work. Our simultaneous ratio of 47.45
already surpasses many algorithms for normal SSBaB and
is only a factor of 2.33 away from the best. It would be nice
to eliminate this gap or, alternately, prove that a gap exists
between the approximation achievable for fixed f and the

best simultaneous ratio. We know of no lower bounds on
what simultaneous ratio may be possible, so any progress
in this direction would also be interesting. Generalizing
the settings in which O(1) simultaneous ratios are possible
would be interesting, but may be unlikely given that one
must contend with lower bounds for metric tree embedding
[14] and multi-sink buy-at-bulk [30].
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