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Abstract—A locally decodable code encodes a message by
a codeword, such that even if the codeword is corrupted by
noise, each message bit can be recovered with high probability
by a randomized decoding procedure that reads only few bits
of the codeword.

Recently a new class of locally decodable codes, based
on families of vectors with restricted dot products has been
discovered. We refer to those codes as Matching Vector (MV)
codes. In this work we develop a new view of MV codes and
uncover certain similarities between them and classical Reed
Muller codes. Our view allows us to obtain a deeper insight
into the power and limitations of MV codes. We use it to
construct codes that can tolerate more errors or are shorter
than previously known codes for certain parameter settings. We
also show super-linear lower bounds on the codeword length
of any MV code.
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Muller codes;

I. INTRODUCTION

Classical error-correcting codes allow one to encode a k-
bit message x into an N -bit codeword C(x), in such a way
that x can still be recovered even if C(x) gets corrupted
in a number of coordinates. The disadvantage of classical
error-correction is that one needs to read all or most of
the (corrupted) codeword to recover any information about
x. Suppose that one is only interested in recovering one
or a few bits of x. In this case, more efficient schemes
are possible allowing one to read only a small number
of code positions. Such schemes are known as Locally
Decodable Codes (LDCs). Locally decodable codes allow
reconstruction of an arbitrary bit xi, from looking only at
r << N randomly chosen coordinates of C(x). While initial
applications of locally decodable codes have been to data
transmission and storage, they have found applications in
other areas such as complexity theory and cryptography. See
the surveys [37], [31], [16] for more information. Below is
a slightly informal definition of LDCs:

An (r, δ, ε)-locally decodable code encodes k-bit mes-
sages x to N -bit codewords C(x), such that for every
i ∈ [k], the bit xi can be recovered with probability 1 − ε,
by a randomized decoding procedure that makes only r
queries, even if the codeword C(x) is corrupted in up to
δN locations.
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We would like to have LDCs that have small values
of r,N and ε and a large value of δ. However typically
the parameters are not regarded as equally important. In
applications of LDCs to data transmission and storage one
wants δ to be a large constant, (ideally close to 1/4), and the
codeword length N to be small. At the same time the exact
number of queries r is not very important provided that it is
much smaller than k. Similarly the exact value of ε < 1/2 is
not important since one can easily amplify ε to be close to
0, by running the decoding procedure few times and taking
a majority vote. In applications of LDCs in cryptography
one thinks of δ > 0 and ε < 1/2 as constants whose values
are of low significance and focuses on the trade-off between
r and N, with emphasis on very small values of r such as
r = 3 or r = 4.

A. Three generations of locally decodable codes

The notion of locally decodable codes was explicitly
discussed in various places in the early 1990s, most notably
in [2], [29], [26]. Katz and Trevisan [21] were the first to
provide a formal definition of LDCs (see also [30]) and
prove lower bounds on their length. Their bounds were
improved in [17], [23] where a tight (exponential) lower
bound for the length of 2-query LDCs was obtained. Further
lower bounds on the length of LDCs were obtained in [32],
[33]. The best lower bounds for the length of r-query LDCs
currently have the form Ω̃

(
n1+1/(dr/2e−1)

)
[33]. They are

very far form matching the best upper bounds.
One can informally classify the known families of locally

decodable codes into three generations based on the tech-
nical ideas that underlie them. The first generation captures
codes based on the idea of (low-degree) multivariate poly-
nomial interpolation. All such codes [2], [21], [6], [9] are
(directly or indirectly) based on classical (generalized) Reed
Muller (RM) codes [25]. The code consists of evaluations
of low degree polynomials in Fq[z1, . . . , zn], at all points
of Fnq , for some finite field Fq . The decoder recovers the
value of the unknown polynomial at a point by shooting
a line in a random direction and decoding along it using
noisy polynomial interpolation [5], [24], [30]. The method
behind these constructions is very general. It yields locally
decodable codes of all possible query complexities, (i.e., one
can choose r to be an arbitrary non-decreasing function of
k) that tolerate a constant fraction of errors. (We say that



an r-query code C tolerates δ fraction of errors if C is
(r, δ, ε)-locally decodable for some ε < 1/2.)

The second generation of LDCs [7], [35] combined the
earlier ideas of polynomial interpolation with a clever use of
recursion to show that Reed-Muller type codes are not the
shortest possible for constant values of query complexity
r ≥ 3. Codes of the second generation are (r, δ,Θ(rδ))-
locally decodable. Thus the fraction of noise handled by
these codes decays linearly with r. No LDCs of the second
generation with r = ω(1) and δ = Ω(1) are known to exist.

The latest (third) generation of LDCs was initiated in [36]
and developed further in [27], [22], [13], [20]. New codes
are obtained through an argument involving a mixture of
combinatorial and algebraic ideas, where the key ingredient
is a design of a large family of low dimensional (matching)
vectors with constrained dot products. Recently an important
progress in constructions of LDCs of the third generation has
been accomplished in [13] where the first constructions of
codes from matching vectors modulo composites (rather than
primes) were considered. In what follows we refer to LDCs
of the third generation as Matching Vector (MV) codes.

To date several families of (r, δ,Θ(rδ))-locally decodable
MV codes have been obtained. While codes in those families
were dramatically shorter than codes of earlier generations,
similarly to codes of [7], [35] they suffered from having
large values of ε = Ω(rδ). Thus as the number of queries
increased, the length N became smaller as a function of k,
but at the price of a reduction in the error-rate that the code
could handle. Codes with constant query complexity could
only tolerate tiny amounts of error, and no MV codes with
r = ω(1) capable of tolerating a constant fraction of errors
were known to exist.

The reason that previous constructions all gave ε = Ω(rδ)
lay in the reliance on the smoothness of the decoder to prove
its correctness. The proofs proceeded by showing that each
of the r queries made by the decoder is smooth, meaning
that it distributed (close to) uniformly over the bits of the
codeword. By the union bound, if a δ fraction is corrupted,
then we are unlikely to query any of these locations. This
argument clearly will not work once the error rate exceeds
1/r. Indeed a recent result [15] shows that for 3-query
LDCs, correcting more than 1/3 fraction of errors requires
exponential length.

B. Our results

In this work we develop a new view of MV codes and
uncover certain similarities between them and classical Reed
Muller codes. Our view allows us to obtain a deeper insight
into the power and limitations of MV codes.

1) We show that existing families of MV codes can
be enhanced to tolerate a nearly 1/8 fraction of
errors, independent of the value of r, at a price

of a moderate increase in the number of queries1.
Specifically, for every constant t ≥ 2, we ob-
tain a family of binary

(
tO(t), δ, 4δ(1 +O(1/ ln t))

)
-

locally decodable codes of length essentially iden-
tical to the length of the currently shortest known(
2O(t), δ, 2O(t)δ

)
-LDCs of [13], [20]. These codes

encode messages of length k into codewords of length
exp exp

(
(log k)1/t(log log k)1−1/t

)
.

2) We obtain the first families of (binary) matching vector
codes of super-constant query complexity that can
tolerate a constant fraction of errors, close to 1/8. Our
codes are shorter than Reed Muller LDCs for all values
of r ≤ log k/(log log k)c, for some constant c.

3) The parameters of an MV code are determined by
the parameters of the underlying family of matching
vectors. We obtain new upper and lower bounds on
the parameters of such families and conclude that any
MV code encodes messages of length k to codewords
of length at least k2Ω(

√
log k). Therefore MV codes

do not improve upon Reed Muller locally decodable
codes for r ≥ (log k)Ω(

√
log k).

C. Our techniques

Our constructions are centered around a new view of MV
codes that fleshes out some intrinsic similarities between
MV codes and RM codes. In our view an MV code con-
sists of a linear subspace of polynomials in Fq[z1, . . . , zn],
evaluated at all points of Cnm, where Cm is a certain
multiplicative subgroup of F∗q . The decoding algorithm is
similar to traditional local decoders for RM codes. The
decoder shoots a line in a certain direction and decodes
along it. The difference is that the monomials which are
used are not of low-degree, they are chosen according to
a matching family of vectors. (Two collections of vectors
U ,V ⊆ Znm form a matching family if for every ui ∈ U
there is a unique vi ∈ V such that (ui,vi) = 0, while other
dot products (uj ,vi) belong to a small set S ⊆ Zm \ {0}.)
Further, the lines for decoding are multiplicative, a notion
that we will define shortly.

Constructions of locally decodable codes from matching
vectors have previously been considered in [36], [27], [13],
[20]. In this work we show that if the family of matching
vectors underlying the MV code is bounded (meaning that
dot products between all vectors u ∈ U and v ∈ V are
small in Zm with respect to the natural total ordering);
then the restriction of a codeword of the MV code to a
multiplicative line yields an evaluation of a low degree
polynomial. Therefore one can apply existing techniques
for noisy polynomial interpolation in the decoding process
and tolerate a large fraction of errors. We show how the

1It is interesting to contrast our work with the work of Woodruff [34]
who obtained a non-linear transformation that (in certain circumstances)
allows one to reduce LDC codeword length at a price of a loss in the value
of δ.



currently best known families of matching vectors (due to
Grolmusz [19]) can be turned into bounded families. We also
give a simple construction of bounded families of matching
vectors.

We also initiate a systematic study of families of matching
vectors and prove upper bounds on their sizes. For the
case when m = p is a prime, our bounds are obtained by
using the expansion of hyperplanes in Znp when viewed as
a collection of points. This bound beats the classical linear-
algebra based bound when the dimension n is small. Our
bounds for composites are obtained via reductions to the
prime case. These bounds in turn imply that any matching
vector code must stretch messages of length k to codewords
of length k2Ω(

√
log k) for large enough k, regardless of the

query complexity.

D. Subsequent work

After the initial publication [18], [11] of our work Ben-
Aroya et al. [8] have independently rediscovered some of
the ideas that we use. See [8, section Related work] for an
accurate account of the relation between the papers. Ben-
Aroya et al. have extended some our results. Specifically,
we show how one can locally decode binary MV codes
from nearly 1/8 fraction of errors (1/4 for codes over large
alphabets). Ben-Aroya et. al [8] show how one can decode
binary MV codes from nearly 1/4 fraction of errors (1/2
for codes over large alphabets). They also consider local list
decoding of MV codes.

The idea behind the improved unique-decoder of [8] is
that if we take a sufficiently large (but constant) number
of multiplicative lines; then the average agreement with the
codeword along a line is likely to exceed 1/2. We run our
decoder (proposition 7) along every line we picked. Each
invocation returns a candidate value of the desired message
symbol. Ben-Aroya et. al [8] show that if we use Forney’s
GMD decoding technique [14] where one assigns weights
to each output of the decoder based on the number of
errors along the corresponding line; then the symbol with the
largest weight is with high probability the correct symbol.

E. Outline

We start section III with formal definitions of locally
decodable codes and matching families of vectors. We
introduce the concept of a bounded matching family and
show how any such family yields an LDC tolerating a large
fraction of errors. In section IV we present two constructions
of bounded matching families. In section V we put the
results of sections III and IV together to obtain new upper
bounds on the length of MV codes. In section VI we
obtain a collection of upper bounds on the size of matching
families of vectors. In section VII we translate the results of
section VI into lower bounds on the length of MV codes.

II. NOTATION

We use the following standard mathematical notation:
• [k] = {1, . . . , k};
• Fq is a finite field of q elements. F∗q is the multiplicative

group of Fq;
• For a polynomial f ∈ Fq[z1, . . . , zh] we denote by

supp(f) the set of monomials with non zero coefficients
in f , where a monomial ze11 · · · z

eh
h is identified with

the integer h-tuple (e1, . . . , eh);
• Zm is the ring of integers modulo an integer m. Z∗m is

the set of invertible elements of Zm;
• d(x,y) denotes the Hamming distance between vectors

x and y;
• (u,v) stands for the dot product of vectors u and v;
• For a vector w ∈ Znm and an integer l ∈ [n], let w(l)

denote the l-th coordinate of w;
• A D-evaluation of a function f defined over D, is a

vector of values of f at all points of D.
• We write exp(x) to denote 2O(x).

III. MATCHING VECTOR CODES: THE FRAMEWORK

In this section we formally define locally decodable codes
and matching families of vectors. We review the existing
construction of LDCs from matching families, casting it in a
new language that makes explicit certain intrinsic similarity
between MV codes and RM codes. We then introduce the
concept of a bounded matching family and show how MV
codes based on these families can be decoded from large
amounts of error.

Definition 1: A q-ary code C : Fkq → FNq is said to
be (r, δ, ε)-locally decodable if there exists a randomized
decoding algorithm A such that

1) For all x ∈ Fkq , i ∈ [k] and y ∈ FNq such that
d(C(x),y) ≤ δN : Pr[Ay(i) = x(i)] ≥ 1 − ε, where
the probability is taken over the random coin tosses
of the algorithm A.

2) A makes at most r queries to y.

A locally decodable code is called linear if C is a
linear transformation over Fq. Our constructions of locally
decodable codes are linear. While our main interest is in
binary codes we deal with codes over larger alphabets as
well.

Definition 2: Let S ⊆ Zm \ {0}. We say that families
U = {u1, . . . ,uk} and V = {v1, . . . ,vk} of vectors in Znm
form an S-matching family if the following two conditions
are satisfied:
• For all i ∈ [k], (ui,vi) = 0;
• For all i, j ∈ [k] such that i 6= j, (uj ,vi) ∈ S.
We now show how one can obtain an MV code out of a

matching family. We start with some notation.
• We assume that q is a prime power, m divides q − 1,

and denote a subgroup of F∗q of order m by Cm;
• We fix some generator g of Cm;



• For w ∈ Znm, we define gw ∈ Cnm by(
gw(1), . . . , gw(n)

)
;

• For w,v ∈ Znm we define the multiplicative line Mw,v

through w in direction v to be the multi-set

Mw,v =
{
gw+λv | λ ∈ Zm

}
; (1)

• For u ∈ Znm, we define the monomial monu ∈
Fq[z1, . . . , zn] by

monu(z1, . . . , zn) =
∏
`∈[n]

z
u(`)
` . (2)

A. The general encoding/decoding framework

Observe that for any w,u,v ∈ Znm and λ ∈ Zm we have

monu

(
gw+λv

)
= g(u,w)

(
gλ
)(u,v)

. (3)

The formula above implies that the Mw,v-evaluation of
a monomial monu is a Cm-evaluation of a (univariate)
monomial

g(u,w)y(u,v) ∈ Fq[y]. (4)

This observation is the foundation of our decoding algo-
rithms. We now specify the encoding procedure and outline
the main steps taken by all decoding procedures described
later on (propositions 3 and 7). Let U ,V be an S-matching
family in Znm.

Encoding: We encode a message (x(1), . . . ,x(k)) ∈ Fkq
by the Cnm-evaluation of the polynomial

F (z1, . . . , zn) =
k∑
j=1

x(j) ·monuj
(z1, . . . , zn). (5)

Notice that F = Fx is a function of the message x (we
will omit the subscript and treat x as fixed throughout this
section).

Basic decoding: The input to the decoder is a (corrupted)
Cnm-evaluation of F and an index i ∈ [k].

1) The decoder picks w ∈ Znm uniformly at random;
2) The decoder recovers the noiseless restriction of F

to Mw,vi . To accomplish this the decoder may query
the (corrupted) Mw,vi -evaluation of F at m or fewer
locations.

To see that noiseless Mw,vi -evaluation of F uniquely
determines x(i) note that by formulas (3), (4) and (5) the
Mw,vi

-evaluation of F is a Cm-evaluation of a polynomial

f(y) =
k∑
j=1

x(j) · g(uj ,w)y(uj ,vi) ∈ Fq[y]. (6)

Further observe that the properties of the S-matching
family U ,V and (6) yield

f(y) = x(i) · g(ui,w) + (7)

+
∑
s∈S

 ∑
j : (uj ,vi)=s

x(j) · g(uj ,w)

 ys.

It is evident from the above formula that supp(f) ⊆ S∪{0}
and

x(i) = f(0)/g(ui,w). (8)

We now describe several local decoders that follow the
general paradigm outlined above.

B. The simplest decoder

The proposition below gives the simplest local decoder. In
the current form it has first appeared in [13]. Earlier versions
can be found in [36], [27].

Proposition 3: Let U ,V be a family of S-matching vec-
tors in Znm, |U| = |V| = k, |S| = s. Suppose m | q − 1,
where q is a prime power; then there exists a q-ary linear
code encoding k-long messages to mn-long codewords that
is (s+ 1, δ, (s+ 1)δ)-locally decodable for all δ.

Proof: The encoding procedure has already been spec-
ified by formula (5). To recover the value x(i)

1) The decoder picks w ∈ Znm at random, and queries
the (corrupted) Mw,vi

-evaluation of F at (s + 1)
consecutive locations

{
gw+λvi | λ ∈ {0, . . . , s}

}
to

obtain values c0, . . . , cs.
2) The decoder recovers the unique sparse univariate

polynomial h(y) ∈ Fq[y] with supp(h) ⊆ S ∪ {0}
such that for all λ ∈ {0, . . . , s}, h(gλ) = cλ. (The
uniqueness of h(y) follows from standard properties
of Vandermonde matrices.)

3) Following the formula (8) the decoder returns
h(0)/g(ui,w).

The discussion above implies that if all (s+ 1) locations
queried by the decoder are not corrupted then h(y) is indeed
the noiseless restriction of F to Mw,vi , and decoder’s output
is correct. It remains to note that each individual query of
the decoder goes to a uniformly random location and apply
the union bound.

Remark 4: In the proposition above we interpolate the
polynomial h(y) to recover its free coefficient. In certain
cases (relying on special properties of the integer m and the
set S) it may be possible to recover the free coefficient in
ways that do not require complete interpolation and thus save
on the number of queries. This general idea has been used
in [36], [13] for the case of three-query codes, and in [20].
In the full version of the paper [11] we present some new
general sufficient conditions that allow for such a saving.

C. Improved decoding using bounded matching families

We now introduce the concept of a bounded matching
family of vectors and show how MV codes based on
bounded matching families can be decoded from large
amounts of error. In what follows we identify Zm with the
subset {0, . . . ,m−1} of real numbers. This imposes a total
ordering on Zm, 0 < 1 < . . . < m − 1 and allows us to
compare elements of Zm with reals.



Definition 5: Let b be a positive real. A set S ⊆ Zm is
b-bounded if for all s ∈ S, s < b.

Definition 6: Let b be a positive real. An S-matching
family U ,V in Znm is b-bounded if the set S is b-bounded.

The proposition below gives the first local decoder for
MV codes that is capable of tolerating large amounts of
error. Our constructions of MV codes in section V rely on
it.

Proposition 7: Let σ be a positive real. Let U ,V be a σm-
bounded family of S-matching vectors in Znm, |U| = |V| =
k. Suppose m | q− 1, where q is a prime power; then there
exists a q-ary linear code encoding k-long messages to mn-
long codewords that is (m, δ, 2δ/(1−σ))-locally decodable
for all δ.

Proof: The encoding procedure has already been spec-
ified by (5). To recover the value x(i),

1) The decoder picks w ∈ Znm at random, and queries
every point of the (corrupted) Mw,vi

-evaluation of
F at all m locations

{
gw+λvi | λ ∈ Zm

}
to obtain

values c0, . . . , cm−1.
2) The decoder recovers the univariate polynomial

h(y) ∈ Fq[y] of degree less than σm such that for
all but at most (m − σm)/2 values of λ ∈ Zm,
h(gλ) = cλ. If such an h does not exist the de-
coder encounters a failure, and returns 0. Note that
deg h < σm implies that h(y) is unique, if it exists.
The search for h(y) can be done efficiently using the
Berlekamp-Welch algorithm [25].

3) Following the formula (8) the decoder returns
h(0)/g(ui,w).

The discussion above implies that if the Mw,vi
-evaluation

of F is corrupted in at most (m − σm)/2 locations, then
h(y) is indeed the noiseless restriction of F to Mw,vi , and
the decoder’s output is correct. It remains to note that each
individual query of the decoder goes to a uniformly random
location and thus by Markov’s inequality the probability that
more than (m−σm)/2 of decoder’s queries go to corrupted
locations is at most 2δ/(1− σ).

D. Further improvement for small and bounded S

The improved decoding described in the previous section
did not use any information on the size of the set S (only the
fact that all elements in S are bounded). In the full version
of the paper [11] we show that, in the case when |S| is small
(and ln q is small relative to m), one can get an even better
result.

E. From q-ary to binary codes

Proposition 7 yields non-binary locally decodable codes.
As we remarked earlier our main interest is in binary LDCs.
The next lemma extends proposition 7 to produce binary
codes. The idea behind the proof is fairly standard and
involves concatenation with a good binary error correcting
code. We defer the proof to the full version of the paper.

Lemma 8: Let σ be a positive real. Let U ,V be a σm-
bounded family of S-matching vectors in Znm, |U| = |V| =
k. Suppose m | q − 1, where q = 2b. Further suppose
that there exists a binary linear code Cinner of distance
µB encoding b-bit messages to B-bit codewords; then there
exists a binary linear code C encoding kb-bit messages to
mnB-bit codewords that is (mB, δ, 2δ/(µ − µσ))-locally
decodable for all δ.

Proposition 7 allows one to obtain LDCs over large
alphabets that tolerate δ up to 1/4. Lemma 8 allows one
to obtain binary LDCs that tolerate δ up to 1/8.

IV. MATCHING VECTORS: CONSTRUCTIONS

In this section we present constructions of bounded
matching families of vectors. Our first construction
(lemma 12) is based on an existing matching family due
to Grolmusz [19]. We argue that an appropriate scaling
turns Grolmusz’s family into a bounded family. Later in
section V we use this construction to obtain MV codes that
improve upon LDCs of [13], [20] in terms of the amount
of noise that they can tolerate, and improve upon classical
r-query RM LDCs in terms of codeword length for all
r ≤ log k/(log log k)c. Our second construction (lemma 15)
is self-contained. It improves on the first construction for
large values of m, and yields MV codes that match RM
LDCs for certain values of r > log k/(log log k)c.

Definition 9 (Canonical set): Let m =
∏t
i=1 pi be a

product of distinct primes. The canonical set in Zm is
the set of all non-zero s such that for every i ∈ [t],
s ∈ {0, 1} mod pi.

Basic parameters of Grolmusz’s family are given by the
following lemma. The construction follows the lines of
Grolmusz’s construction of a set system with restricted inter-
sections modulo composites [19], but with some differences.
We use an approach suggested by Sudan to go directly from
polynomials to matching vectors without constructing set-
systems, which gives a slight improvement in parameters.
The proof can be found in the full version of the paper [11].

Lemma 10: Let m =
∏t
i=1 pi be a product of distinct

primes. Let w be a positive integer. Let {ei}, i ∈ [t] be
integers such that for all i, we have peii > w1/t. Let d =
maxi p

ei
i , and h ≥ w be arbitrary. Let S be the canonical

set; then there exists an
(
h
w

)
-sized family of S-matching

vectors in Znm, where n =
(
h
≤d

)
.

We now argue that a canonical set can be turned into a
bounded one via scaling by an invertible element.

Lemma 11: Let m =
∏t
i=1 pi be a product of distinct

primes. Let S be the canonical set in Zm. There exists an
α ∈ Z∗m such that the set αS is σm-bounded for any σ >∑
i∈[t] 1/pi.

Proof: We start with some notation.

• For every i ∈ [t], define the integer p̂i = m/pi;



• Let α ∈ Z∗m be the unique element such that for all
i ∈ [t], α = p̂i mod pi.

Observe that for any i, j ∈ [t],(
α−1p̂i

)
mod pj =

{
1, if i=j;
0, otherwise.

Let s ∈ S be arbitrary. Set I = {i ∈
[t] | pi does not divide s}. Observe that s = α−1

∑
i∈I p̂i.

Therefore
αs =

∑
i∈I

p̂i ≤ m
∑
i∈[t]

1/pi.

The argument above shows that any S-matching family
U ,V where S is the canonical set can be turned into a
bounded one (by scaling all vectors in V by an invertible
element). Note that such scaling does not change the set
U , and hence the corresponding MV code. It also does
not change the set of points queried by the decoder (of
proposition 7), since for an invertible α ∈ Zm, and an
arbitrary v ∈ Znm multiplicative lines in the directions v
and αv are the same. Combining lemma 11 with lemma 10
we obtain

Lemma 12: Let m =
∏t
i=1 pi be a product of distinct

primes. Let w be a positive integer. Let {ei}, i ∈ [t] be
integers such that for all i, we have peii > w1/t. Let d =

maxi p
ei
i , and h ≥ w be arbitrary. Then there exists an

(
h
w

)
-

sized σm-bounded family of matching vectors in Znm, where
n =

(
h
≤d

)
and σ is an arbitrary real number larger than∑

i∈[t] 1/pi.
In fact one can show that the scaling above is the optimal

scaling of the canonical set, in the sense that it minimizes
the size of the maximum element.

A. Simple construction of matching vectors

In this section we give an elementary construction of a
bounded family of matching vectors. The construction works
for both prime and composite moduli. The family improves
upon the family of lemma 12 for large values of m. The
proofs appear in the full version of the paper. In what follows
we use Z≥0 to denote the set of non-negative integers.

Definition 13: Let b(m′, n) denote the number of vectors
w ∈ Zn≥0 such that ‖w‖22 = m′.

Thus b(m′, n) counts the number of integer points on
the surface of the n-dimensional ball of radius

√
m′ in the

positive orthant.
Lemma 14: Let m′ < m and n ≥ 2 be arbitrary positive

integers. There exists a b(m′, n−1)-sized (m′+1)-bounded
family of matching vectors in Znm.

The lemma below follows by combining lemma 14 with
some crude lower bounds for b(m′, n− 1).

Lemma 15: Let m′ < m and n ≥ 2 be arbitrary positive
integers. There exists a k-sized (m′+ 1)-bounded family of

matching vectors in Znm, where

k = 1
m′+1

(
m′

n−1

)(n−1)/2

for m′ ≥ n, (9)

k =
(
n−1
m′

)
for m′ < n. (10)

V. UPPER BOUNDS FOR MV CODES

In this section we combine the results of the previous sec-
tions to derive upper bounds on MV codes. A combination
of lemma 8 and lemma 12 yields

Lemma 16: Let m =
∏t
i=1 pi be a product of distinct

primes. Let w be a positive integer. Suppose integers {ei},
i ∈ [t] are such that for all i, we have peii > w1/t. Let
d = maxi p

ei
i , and h ≥ w be arbitrary. Let σ is an arbitrary

real number larger than
∑
i∈[t] 1/pi. Suppose m | q − 1,

where q = 2b. Further suppose that there exists a binary
code Cinner of distance µB encoding b-bit messages to B-bit
codewords; then there exists a binary linear code C encoding(
h
w

)
· b-bit messages to m( h

≤d ) · B-bit codewords that is
(mB, δ, 2δ/(µ− µσ))-locally decodable for all δ.

We now estimate asymptotic parameters of our codes. The
lemma below follows by appropriately setting the parameters
in lemma 16. We defer the proof to the full version of the
paper [11].

Lemma 17: For all integers t ≥ 2 and k ≥ 2t there exists
a binary linear code encoding k-bit messages to

N = exp exp
(

(log k)1/t(log log k)1−1/tt ln t
)

-bit codewords that is
(
tO(t), δ, 4δ(1 +O(1/ ln t))

)
-locally

decodable for all δ.
Setting t to be a constant in lemma 17 yields
Theorem 18: For every t ≥ 2 and all sufficiently large

k, there exists a binary linear code encoding k-bit messages
to exp exp

(
(log k)1/t(log log k)1−1/t

)
-bit codewords that is(

tO(t), δ, 4δ(1 +O(1/ ln t))
)
-locally decodable for all δ.

For every constant t ≥ 2, theorem 18 gives a family
of
(
tO(t), δ, 4δ(1 +O(1/ ln t))

)
-locally decodable codes of

length essentially identical to the length of the shortest
known

(
2O(t), δ, 2O(t)δ

)
-locally decodable codes of [13],

[20]. Our codes can tolerate much larger amounts of noise,
(i.e., for large values of t our codes tolerate approximately
1/8 fraction of errors, while the fraction of errors tolerated
by codes from earlier work drops to zero rapidly.) The
improvement comes at a price of a moderate increase in
the number of queries.

The following theorem gives asymptotic parameters of our
codes in terms of r and k. See [11] for a proof.

Theorem 19: For every large enough integer r and every
k ≥ r, there exists a binary linear code encoding k-bit
messages to

exp exp
(

(log k)O(log log r/ log r)· (11)

·(log log k)1−Ω(log log r/ log r) log r
)



bit codewords that is (r, δ, 4δ(1 +O(1/ ln ln r)))-locally de-
codable for all δ.

A. MV codes over characteristic zero

We remark here that the entire construction and analysis of
MV codes described in the preceding sections (apart from
the parts dealing with reduction to the binary case) work
also if the underlying field, Fq , is replaced with the complex
number field C. The only property we used in Fq is that it
contains an element of order m, which trivially holds over
C for every m. This implies the existence of linear LDCs
with essentially the same parameters as above also over the
complex numbers (the definition of LDCs over an arbitrary
field is the same as for finite fields, we simply allow the
decoder to preform field arithmetic operations on its inputs).
Once one has linear a code over the complex numbers, it is
straightforward to get a code over the reals by writing each
complex number as a pair of real numbers.

We find this interesting since, previous to MV codes, there
were no known constructions of LDC’s over characteristic
zero (apart from trivial 2-query codes of exponential stretch).
In fact, there are no known constructions, apart from MV
codes, even over finite fields with very large characteristic
(RM codes require that the characteristic will be at most
the codeword length). Even though this might seem like
an esoteric setting, LDCs over characteristic zero did came
up in some recent works in connection to arithmetic circuit
complexity [12], [10].

B. Comparison to Reed Muller codes

Theorem 19 yields the first family of locally decodable
codes (other than RM codes) that have super-constant query
complexity and tolerate a constant fraction of errors. In this
section we provide a comparison between RM codes and
our codes.

A Reed Muller locally decodable code [21], [31], [37]
is specified by three integer parameters. Namely, a prime
power (alphabet size) q, number of variables n, and the
degree d < q−1. The q-ary code consists of Fnq -evaluations
of all polynomials in Fq[z1, . . . , zn] of total degree at most
d. Such code encodes k =

(
n+d
d

)
-long messages to qn-

long codewords. Provided that d < σ(q − 1), the code is
(q − 1, δ, 2δ/(1 − σ))-locally decodable for all δ. If q is a
power of 2 non-binary RM LDCs can be turned into binary
via concatenation (in a manner similar to the one used in
lemma 8). If one does concatenation with an asymptotically
good code of relative distance µ one gets a binary linear
code encoding k-bit messages to N -bit codewords that is
(r, δ, 2δ/(µ− µσ))-locally decodable for all δ, where

k =

(
n+ d

d

)
log q, N = Θ(qn ln q), r = Θ(q ln q). (12)

One can get various asymptotic families of RM LDCs
by specifying an appropriate relation between n and d and

letting these parameters grow to infinity. Increasing d relative
to n yields shorter codes of larger query complexity.

Example 20: Setting d = n, q = cn (for a constant c),
and letting n grow while concatenating with asymptotically
good binary codes of relative distance µ one gets a family of
binary LDCs that encode k-bit messages to kΘ(log log k)-bit
codewords and are (Θ(log k log log k), δ, 2δ/(µ− 2µ/c))-
locally decodable for all δ.

We now argue that RM LDCs are inferior to codes of
theorem 19 (with respect to codeword length) for all r ≤
log k/(log log k)c, where c is a universal constant. To arrive
at such a conclusion we need a lower bound on the length
of RM LDCs. Let d, n, and q be such that formulas (12)
yield an r-query LDC, where r belongs to the range of our
interest. We necessarily have d ≤ n (otherwise r > log k).
Thus

k =

(
n+ d

d

)
log q ≤ (en/d)d log q ≤ nO(d), (13)

and n ≥ kΩ(1/d). Therefore writing exp(x) to denote 2Ω(x),
we have

N ≥ exp exp (log k/d) ≥ exp exp (log k/r) . (14)

Note that when r is a constant then already 3-query codes
of [13] improve substantially upon (14). To conclude the
argument one needs to verify that there exists a constant c
such that for every nondecreasing function r(k), where r(k)
grows to infinity, and satisfies r(k) ≤ log k/(log log k)c, for
all sufficiently large k the right hand side of (14) evaluates
to a larger value than (11).

Remark 21: It is interesting to observe that while MV
codes of theorem 19 improve upon RM LDCs only for r ≤
log k/(log log k)c, one can get MV codes that (asymptoti-
cally) match RM LDCs of example 20 combining lemma 15
(where m has the shape 2b − 1, n = m+ 1 and m′ = n/2)
with lemma 8.

VI. MATCHING VECTORS: LIMITATIONS

Let k(m,n) denote the size of the largest family of S-
matching vectors in Znm where we allow S to be an arbitrary
subset of Zm \ {0}. The rate of any locally decodable code
obtained via propositions 3 and 7 is at most k(m,n)/mn.
Our goal in this section is to establish upper bounds on
k(m,n) (all proofs are deferred to the full version [11].) In
section VII we translate these bounds into lower bounds on
the length of MV codes.

There is a large body of work in combinatorics on
the closely related problem of set-systems with restricted
modular intersections. The problem there is to bound the
size of the largest set family F on [n], where the sets in
F have cardinality 0 modulo some integer m, while their
intersections have non-zero cardinality modulo m. The clas-
sical result in this area is the modular Ray-Chaudhuri-Wilson
theorem [3] showing that when m is a prime (or a prime



power), an upper bound of nO(m) holds. It is known that
such a bound does not apply when m is composite [19]. The
best upper bound for general m shows that |F| ≤ 2n/2 [28].

We start by bounding k(m,n) in the prime case.

A. The prime case

We present two bounds for the prime case. The first is
based on the linear algebra method [3] and is tight when p
is a constant.

Theorem 22: For any positive integer n and any prime p,
we have

k(p, n) ≤ 1 +

(
n+ p− 2

p− 1

)
.

Note that equation (10) shows that for constant p and
growing n, the above bound is asymptotically tight.

Our second bound comes from translating the problem of
constructing matching vectors into a problem about points
and hyperplanes in projective space. The n− 1 dimensional
projective geometry PG(Fp, n − 1) over Fp consist of all
points in Fnp\{0n} under the equivalence relation λv ≡ v for
λ ∈ F∗p. Projective hyperplanes are specified by vectors u ∈
Fnp \{0n} under the equivalence relation λu ≡ u for λ ∈ F∗p;
such a hyperplane contains all points v where (u,v) = 0.

We define a bipartite graph H(U, V ) where the vertices
on the left correspond to all hyperplanes in PG(Fp, n− 1),
vertices on the right correspond to all points in PG(Fp, n−1)
and u and v are adjacent if (u,v) = 0. For X ⊆ U and Y ⊆
V , we define N(X) and N(Y ) to be their neighborhoods.
We use N(u) for the neighborhood of u.

Definition 23: Let n be a positive integer and p be a
prime. Let U be the set of hyperplanes in PG(Fp, n−1). We
say that a set X ⊆ U satisfies the unique neighbor property
if for every u ∈ X , there exists v ∈ N(u) such that v is
not adjacent to u′ for any u′ ∈ X \ {u}.

Lemma 24: Let n be a positive integer and p be a prime.
Let U be the set of hyperplanes in PG(Fp, n − 1). There
exists a set X ⊆ U, |X| = k satisfying the unique neighbor
property if and only if there exists a k-sized family of Z∗p-
matching vectors in Znp .

Corollary 25: Let n be a positive integer and p be a
prime. Let U be the set of hyperplanes in PG(Fp, n − 1).
The size of the largest set X ⊆ U that satisfies the unique
neighbor property is exactly k(p, n).

The expansion of the graph H(U, V ) was analyzed by
Alon using spectral methods [1, theorem 2.3]. We use the
rapid expansion of this graph to bound the size of the largest
matching vector family.

Lemma 26: Let n ≥ 2 be an integer and p be a prime. Let
U (V ) be the set of hyperplanes (points) in PG(Fp, n− 1).
Let u = pn−1

p−1 = |U | = |V |. For any nonempty set X ⊆ U
with |X| = x,

|N(X)| ≥ u− u
n

n−1 /x. (15)

Lemma 27: Let n be a positive integer and p be a prime;
then

k(p, n) ≤ 4pn/2 + 2. (16)

Equation (9) shows that k(p, n) = Ω
(
p(n−3)/2

)
, so the

above upper bound is nearly tight when n is a constant and
p grows to infinity. Note that for this setting of parameters,
the linear-algebra bound gives k(p, n) ≤ O(pn−1), so the
bound above gives a significant improvement.

B. The prime power case

Lemma 28: Let n be a positive integer, p be a prime and
e ≥ 2. We have

k(pe, n) ≤ p(e−1)nk(p, n+ 1).

C. The composite case

Lemma 29: Let m,n, and q be arbitrary positive integers
such that q|m and (q,m/q) = 1; then

k(m,n) ≤ (m/q)
n
k(q, n).

Theorem 30: Let m and n be arbitrary positive integers.
Suppose p is a prime divisor of m; then

k(m,n) ≤ 5
mn

p(n−1)/2
.

The above bound is weak when n and p are constants,
for instance it is meaningless for n = 1. We give another
bound below which handles the case of small m. We start
with the case when n = 1.

Lemma 31: Let m ≥ 2 be an arbitrary positive integer;
then

k(m, 1) ≤ mO(1/ log logm) = mom(1).

We now proceed to the case of general n.
Theorem 32: Let m and n be arbitrary positive integers;

then
k(m,n) ≤ mn−1+om(1).

The upper bound of lemma 27 (that applies only when
m is prime) is substantially stronger than the bounds of
theorems 30 and 32. We feel that latter bounds can be
improved. Specifically, we propose the following

Conjecture 33: Let m and n be arbitrary positive inte-
gers; then k(m,n) ≤ O

(
mn/2

)
.

We discuss the implications of the conjecture for the lower
bounds for MV codes in remark 36.

VII. LOWER BOUNDS FOR MV CODES

We now translate the bounds on matching vector families
from the previous section to bounds on the encoding length
of matching vector codes. We argue that any family of
(non-binary) matching vector codes, (i.e., codes that for
some m and n, encode k(m,n)-long messages to mn-long
codewords) has an encoding blow-up of at least 2Ω(

√
log k).

All proofs are deferred to the full version of the paper [11].



Theorem 34: Consider an infinite family of Matching
Vector codes C` : Fkq → FNq for ` ∈ N, where k = k(`)
and N = N(`) go to infinity with `. For large enough `, we
have

k ≤ N

20.4
√

logN
⇒ N ≥ k20.4

√
log k.

One can generalize theorem 34 to get a similar statement
for binary MV codes (i.e., codes obtained by a concatenation
of a non-binary MV code with an asymptotically good
binary code).

Theorem 35: Let {m`} and {n`}, ` ∈ N be two arbitrary
sequences of positive integers, such that m`

n` monotonically
grows to infinity. Consider an infinite family of binary codes
C` : Fk`2 → FN`

2 for ` ∈ N, where each code C` is obtained
via a concatenation of an MV code encoding k(m`, n`)-long
messages to mn`

` -long codewords over Fq` , (here q` = 2t is
the smallest such that m` | 2t − 1) with an asymptotically
good binary code of some fixed rate; then for large enough
` the relative redundancy of C` is at least 2Ω(

√
log k`).

A. Comparison with RM LDCs

Here we observe that it is possible to construct binary
RM LDCs that have a blow-up of 2O(

√
log k) and query

complexity of (log k)O(
√

log k). By formula (12) the relative
redundancy of any RM LDC specified by parameters n, d
and q is given by

k/N ≤ O
((

n+ d

d

)
/qn
)
.

We assume that n < d; then
(
n+d
d

)
≤ (2ed/n)n. Therefore

(relying of d ≤ q) we get

k/N ≤ O((2e/n)n).

Thus to have relative redundancy smaller than 2O(
√

log k) it
suffices to have

n = O
(√

log k/ log log k
)
. (17)

Given k we choose n to be the largest integer satisfying (17).
Next we choose d to be the smallest integer satisfying
k ≤

(
n+d
d

)
log q. One can easily check that this yields

d = (log k)O(
√

log k), giving an RM LDC with desired
parameters.

Remark 36: It is not hard to verify that if conjecture 33
holds; then any MV code must have length N = Ω(k2). This
would imply that RM LDCs improve on MV codes once r ≥
log2 k, (by an argument similar to the one above). Since MV
codes improve on RM codes for r ≤ log k/(log log k)O(1),
this would give a clearer picture of the comparison between
the two families of codes.

VIII. CONCLUSIONS

In this work we developed a new view of matching vector
codes and uncovered certain similarities between MV codes
and classical Reed Muller codes. Our view allowed us to
obtain a deeper insight into the power and limitations of
MV codes. We showed that similarly to Reed Muller codes
MV codes constitute a rich code class containing codes of
both constant and growing query complexities, capable of
tolerating large amounts of noise. We showed that for query
complexity r ≤ log k/(log log k)O(1) MV codes are superior
to RM LDCs and for r ≥ (log k)Ω(

√
log k) MV codes are

inferior to RM codes. There are many questions that are left
open by our work. We elaborate on some of them.

• It is very interesting to see if one can get MV
codes that improve upon RM codes for values of
r ≥ log k/(log log k)O(1). This calls for constructions
of bounded matching families in Znm, where m is
comparable to (or larger than) n.

• It is very interesting to prove (or disprove) conjec-
ture 33. A simple case where it is open is when n
is a constant and m is a product of two nearly equal
primes.

• Our results show that MV codes share many properties
of RM codes. We would like to know if MV codes are
(or can be made) locally correctable [4], [10]. Note that
to date, RM LDCs constitute the only known class of
locally correctable codes.
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