Frugal and Truthful Auctions for Vertex Covers, Flows, and Cuts

David Kempe*, Mahyar Salek* and Cristopher Moore?
*University of Southern California
iUniversity of New Mexico and The Santa Fe Institute

Abstract—We study truthful mechanisms for hiring a team
of agents in three classes of set systems: Vertex Cover auctions,
k-flow auctions, and cut auctions. For Vertex Cover auctions,
the vertices are owned by selfish and rational agents, and
the auctioneer wants to purchase a vertex cover from them.
For k-flow auctions, the edges are owned by the agents, and
the auctioneer wants to purchase k edge-disjoint s-t paths,
for given s and t. In the same setting, for cut auctions, the
auctioneer wants to purchase an s-¢ cut. Only the agents know
their costs, and the auctioneer needs to select a feasible set and
payments based on bids made by the agents.

We present constant-competitive truthful mechanisms for
all three set systems. That is, the maximum overpayment of
the mechanism is within a constant factor of the maximum
overpayment of any truthful mechanism, for every set system
in the class. The mechanism for Vertex Cover is based on
scaling each bid by a multiplier derived from the dominant
eigenvector of a certain matrix. The mechanism for k-flows
prunes the graph to be minimally (k + 1)-connected, and then
applies the Vertex Cover mechanism. Similarly, the mechanism
for cuts contracts the graph until all s-¢ paths have length
exactly 2, and then applies the Vertex Cover mechanism.

Keywords-mechanism design; frugality; spectral; Vertex Cov-
ers; Flows; Cuts;

I. INTRODUCTION

Many tasks require the joint allocation of multiple re-
sources belonging to different bidders. For instance, consider
the task of routing a packet through a network whose edges
are owned by different agents. In this setting, it is necessary
to obtain usage rights for multiple edges simultaneously
from the agents. Similarly, if the agents own the vertices
of a graph, and we want to monitor all edges, we need the
right to install monitoring devices on nodes, and again obtain
these rights from distinct agents.

Providing access to edges or nodes in such settings makes
the agents incur a cost c., which the agents should be paid
for. A convenient way to determine “appropriate” prices to
pay the agents is by way of auctions, wherein the agents
e submit bids b. to an auctioneer, who selects a feasible
subset S of agents to use, and determines prices p. to pay
the agents. The most basic case is a single-item auction. The
auctioneer requires the service of any one of the agents, and
their services are interchangeable. Single-item auctions have
a long history of study, and are fairly well understood [16],
[17]. Motivated by applications in computer networks and
electronic commerce, several recent papers have considered
the extension to a setup termed hiring a team of agents [3],

[9]1, [10], [15], [22]. In this setting, there is a collection
of feasible sets, each consisting of one or more agent. The
auctioneer, based on the agents’ bids b, selects one feasible
set S, and pays each agent e € .S a price pe.

Some of the well-studied special cases of set systems are
path auctions [3], [10], [15], [20], [24], in which the feasible
sets are paths from a given source s to a given sink ¢, and
spanning tree auctions [4], [12], [15], [22], in which the
feasible sets are spanning trees of a connected graph. In
both cases, the agents are the edges of the graph. In this
paper, we will extend the study to more complex examples
of set systems, namely:

1) Vertex Covers: The agents own the vertices of the
graph G, and the auctioneer needs to select a vertex
cover [5], [9], [22]. Not only are vertex covers of
interest in their own right, but they give a key primitive
for many other set systems as well, as we will explore
in depth in this paper.

2) Flows: The agents are the edges of GG, and the auc-
tioneer wants to select k edge-disjoint paths from s
to t. Thus, this scenario generalizes path auctions;
the generalization turns out to require significant new
techniques in the design and analysis of mechanisms.

3) Cuts: In the same setting as for flows, the auctioneer
wants to purchase an s-t cut.

In choosing an auction mechanism for a set system, the
auctioneer needs to take into account that the agents are
selfish. Ideally, the auctioneer would like to know the agents’
true costs c.. However, the costs are private information, and
a rational and selfish agent will submit a bid b. # ¢, if doing
so leads to a higher profit. The area of mechanism design
[19], [20], [21] studies the design of auctions for selfish and
rational agents.

We are interested in designing truthful (or incentive-
compatible) auction mechanisms: auctions under which it
is always optimal for selfish agents to reveal their private
costs c. to the auctioneer. Such mechanisms are societally
desirable, because they make the computation of strategies a
trivial task for the agents, and obviate the need for gathering
information about the costs or strategies of competitors.
They are also desirable from the point of view of analysis,
as they allow us to identify bids with costs, and let us
dispense with any kinds of assumptions about the distri-
bution of agents’ costs. In that sense, truthful mechanisms

have inherently much more stable outcomes than games
only possessing Nash Equilibria, and may give bidders more
confidence that the right outcome will be reached. For this
reason, truthful mechanism design has been a mainstay of
game theory for a long time.

It is well known that any truthful mechanism will have to
pay agents more than their costs at times; in this paper, we
study mechanisms approximately minimizing the “overpay-
ment”. The ratio between the payments of the “best” truthful
mechanism and natural lower bounds has been termed the
“Price of Truth” by Talwar [22], and studied in a number
of recent papers [3], [4], [9], [10], [12], [15], [22], [24]. In
particular, [15] and [9] define and analyze different natural
measures of lower bounds on payments, and define the
notions of frugality ratio and competitiveness. The frugality
ratio of a mechanism is the worst-case ratio of payments to a
natural lower bound (formally defined in Section II), over all
cost vectors of the agents. A mechanism is competitive for a
class of set systems if its frugality ratio is within a constant
factor of the frugality ratio of the best truthful mechanism,
for all set systems in the class.

A. Our Contributions

In this paper, we present novel frugal mechanisms for
three general classes of set systems: Vertex Covers, k-Flows,
and Cuts. Vertex Cover auctions can be considered a very
natural primitive for more complicated set systems. Under
the natural assumption that there are no isolated vertices,
they capture set systems with “minimal competition”: if
the auction mechanism decides to exclude an agent v from
the selected set, this immediately forces the mechanism to
include all of v’s neighbors, thus giving these neighbors a
monopoly. Thus, a different interpretation of Vertex Cover
auctions is that they capture any set system where feasible
sets can be characterized by positive 2SAT formulas: each
edge (i, 7) corresponds to a clause (z; Vx;), stating that any
feasible set must include at least one of agents ¢ and j.

Our mechanism for Vertex Cover works as follows: based
solely on the structure of the graph G, we define an
appropriate matrix K and compute its top eigenvector q.
After agents submit their bids b,,, the mechanism first scales
each bid to ¢, = b,/qy, and then simply runs the VCG
mechanism [23], [8], [13] with these modified bids. We
prove that this mechanism has a frugality ratio of « (the
largest eigenvalue of K), and that this is within a factor
of at most 2 of the frugality ratio of any mechanism. The
lower bound is based on pairwise ‘“competition” between
adjacent bidders for any truthful mechanism, and in a sense
can be considered the natural culmination to which the past
techniques of [10], [15] can be taken in deriving lower
bounds. The upper bound is based on carefully balancing
all possible worst cases of a single non-zero cost against
each other, and showing that the worst case is indeed one of
these cost vectors. We stress here that the mechanism does

not in general run in polynomial time: the entries of K are
derived from fractional clique sizes in GG, which are known
to be hard to compute, even approximately. We discuss the
issue of polynomial time briefly in Section VI.

Based on our Vertex Cover mechanism, we present a gen-
eral methodology for designing frugal truthful mechanisms.
The idea is to take the original set system, and prune agents
from it until it has “minimal competition” in the above sense;
subsequently, the Vertex Cover auction can be invoked. So
long as the pruning is “composable” in the sense of [1] (see
Section III), the resulting auction is truthful. The crux is then
to prove that the pruning step (which removes a significant
amount of competition) does not increase the lower bound on
payments too much. We illustrate the power of this approach
with two examples.

1) For the k-flow problem, we show that pruning the

graph to a minimum cost (k + 1) s-t-connected graph
H is composable, and increases the lower bound at
most by a factor of £+ 1. Hence, we obtain a 2(k+1)-
competitive mechanism. Establishing the bound of
k 4 1 requires significant technical effort.

2) For the cut problem, we show that pruning the graph
to a minimum-cost set of edges such that each s-¢ path
is cut at least twice gives a composable selection rule.
Furthermore, it increases the lower bound by at most
a factor of 2, leading to a 4-competitive mechanism.
For the pruning step, we develop a primal-dual algo-
rithm generalizing the Ford-Fulkerson Minimum-Cut
algorithm.

We note that while the Vertex Cover mechanism is in

general not polynomial, for both special cases derived here,
the running time will in fact be polynomial.

B. Relationship to Past and Parallel Work

As discussed above, a line of recent papers [3], [4], [9],
[10], [12], [15], [22], [24] analyze frugality of auctions in the
“hiring a team” setting, where the auctioneer wants to obtain
a feasible set of agents, while paying not much more than
necessary. In this context, the papers by Karlin et al. [15]
and Elkind et al. [9] are particularly related to our work.

Karlin et al. [15] introduce the definitions of frugality
and competitiveness which we use here. They also give
competitive mechanisms for path auctions, and for so-called
r-out-of-k systems, in which the auctioneer can select any
r out of k disjoint sets of agents. At the heart of both
mechanisms is a mechanism for r-out-of-(r + 1) systems.
Our mechanism for Vertex Covers can be considered a
natural generalization of this mechanism. Furthermore, both
r-out-of-k systems and path auctions are special cases of
k-flows. (Notice that choosing an r-flow when the graph
consists of k vertex-disjoint s-¢ paths is equivalent to r-out-
of-k systems.) Our approach of pruning the graph is similar
in spirit to the approach in [15], where graphs were also
first pruned to be minimally 2-connected, and set systems

were reduced to an r-out-of-(r 4+ 1) system. However, the
combinatorial structure of k-flows makes this pruning (and
its analysis) much more involved in our case.

Elkind et al. [9] study truthful mechanisms for Vertex
Cover. They present a polynomial-time mechanism with
frugality ratio bounded by 2A (the maximum degree of the
graph), and also show that there exist graphs where the best
truthful mechanism must have frugality ratio at least A/2.
Notice, however, that this does not guarantee the mechanism
to be competitive: indeed, there are graphs where the best
truthful mechanism has frugality ratio significantly smaller
than A/2, and our goal is to have a mechanism which is
within a constant factor of best possible for every graph.

Results very similar to ours have been derived inde-
pendently by [6] using somewhat similar techniques. Both
papers first derive mechanisms for Vertex Cover auctions.
Our mechanism is based on scaling bids by eigenvector
entries of a scaled adjacency matrix. It has constant com-
petitive ratio for all inputs, but may not run in polynomial
time. Their mechanism, on the other hand, uses eigenvectors
of the unscaled adjacency matrix. It may not be constant
competitive on some inputs, but always runs in polynomial
time. On the inputs derived from flow and cut problems, both
mechanisms coincide, and are thus competitive and run in
polynomial time.

II. PRELIMINARIES

A set system (E,F) has n agents (or elements), and a
collection F C 2F of feasible sets. We call a set system
monopoly-free if no element is in all feasible sets, i.e., if
NgerS = 0. The three classes of set systems studied in
this paper are:

1) Vertex Covers: here, the agents are the vertices of a

graph G, and F is the collection of all vertex covers of
G. To avoid confusion, we will denote the agents by
u, v instead of e in this case. Notice that every Vertex
Cover set system is monopoly-free.

2) k-flows: here, we are given a graph G with source s
and sink ¢. The agents are the edges of G. A set of
edges is feasible if it contains (at least) k& edge-disjoint
s-t paths. A k-flow set system is monopoly-free if and
only if the minimum s-¢ cut cuts at least k + 1 edges.

3) Cuts: With the same setup as for k-flows, a set of
edges is feasible if it contains an s-¢ cut. Thus, the set
system is monopoly-free if and only if G contains no
edge from s to t.

(E,F) is common knowledge to the auctioneer and all
agents. Each agent e € E has a cost c., which is private,
i.e., known only to e. If e is selected by the mechanism, it
incurs cost c.. We write ¢(S) =) g c. for the total cost
of a set S' of agent, and also extend this notation to other
quantities (such as bids or payments). A mechanism for a
set system proceeds as follows:

1) Each agent submits a sealed bid b..

2) Based on the bids b., the auctioneer selects a feasible
set S € F as the winner, and computes a payment
Pe > b for each agent e € S. The agents e € S are
said to win, while all other agents lose.

Each agent, knowing the algorithm for computing the
winning set and the payments, will choose a bid b, max-
imizing her own profit, which is p. — c. if the agent wins,
and O otherwise. We are interested in mechanisms where
self-interested agents will bid b = c.. More precisely,
a mechanism is truthful if, for any fixed vector b_. of
bids by all other agents, e maximizes her profit by bidding
b. = c.. If a mechanism is known to be truthful, we can
use b. and c. interchangeably. It is will-known [3], [17]
that a mechanism is truthful only if its selection rule is
monotone in the following sense: If all other agents’ bids
stay the same, then a losing agent cannot become a winner
by raising her bid. Once the selection rule is fixed, there is
a unique payment scheme to make the mechanisms truthful:
each agent is paid her threshold bid: the supremum of all
winning bids she could have made given the bids of all other
agents.

A. Nash Equilibria and Frugality Ratios

To measure how much a truthful mechanism “overpays”,
we need a natural bound to compare the payments to. Karlin
et al. [15] proposed using as a bound the solution of a natural
minimization problem. However, as pointed out by Elkind
et al. [9] and Chen and Karlin [7], the proposed bound has
several undesirable non-monotonicity properties: introducing
more competition can lead to an increase in the bound, as
can lowering costs of losing agents or increasing costs of
winning agents.

Instead, we use the value of the following natural max-
imization LP proposed by Elkind et al. [9]. Let S be the
cheapest feasible set with respect to the true costs c.; ties
are broken lexicographically.

Maximize
subject to

v(c) =) cqe

(i) e > ce Ve 0
(i) ze = ce Ve ¢ S
(1ii) Y pcg Te < Deep®e VI €F

(Elkind et al. [9] refer to v(c) as NTUp.x(c)). The
intuition for this LP is that it captures the bids of agents
in the most expensive “Nash Equilibrium” of a first-price
auction with full information, under the assumption that the
actual cheapest set S wins, and the losing agents all bid their
costs. That is, the mechanism selects the cheapest set with
respect to the bids z., and pays each winning agent her bid
Z.. The first constraint captures individual rationality, and
the third constraint states that the bids x. are such that S
still wins. We say that a vector x is feasible if it satisfies

the LP (1).!

In a slight abuse of terminology, we will refer to z. as
the Nash Equilibrium bid of agent e, or simply the Nash
bid of e, despite the fact that these bids technically may not
constitute a Nash Equilibrium.

Notice that v(c) is defined for all monopoly-free set
systems. We now formally define the frugality ratio of a
mechanism M for a set system (E, F), and the notion of a
competitive mechanism.

Definition 2.1 (Frugality Ratio, Competitive Mechanism):

Let M be a truthful mechanism for the set system (E,F)
and let Pp(c) denote the total payments of M when the
actual costs are c.

1) The frugality ratio of M is

sup, P;‘?(E)C),

om =
2) The frugality ratio of the set system (E,F) is

S pr = infymom,

where the infimum is taken over all truthful mecha-
nisms M for (E, F).

3) A mechanism M is k-competitive for a class of set
systems {(E1,F1), (Ea, Fa),...} if ¢ is within a
factor x of @ (g, r,) for all 4.

Remark 2.2: The frugality ratio of a mechanism is de-
fined as instance-based. The frugality ratio of a set system
captures the inherent structural complexity of that instance,
which can be “exploited” with careful worst-case choices of
costs.

Competitiveness, on the other hand, is defined over a
class of set systems. If a single mechanism, such as the
ones defined in this paper, is competitive, it does as well
on each set system in the class as the best mechanism,
which could possibly be tailored to this specific instance.
The nomenclature “competitive” is motivated by the analogy
with online algorithms.

The instance-based definition [15], [9] allows us a more
fine-grained distinction between mechanisms than earlier
work (e.g., [3], [20]), where a lower bound in terms of a
worst case over all instances was used.

III. VERTEX COVER AUCTIONS

In this section, we describe and analyze a constant-
competitive mechanism for Vertex Cover auctions. We then
show how to use it as the basis for a methodology for
designing frugal mechanisms for other set systems. The
graph is denoted by G = (V, E), with n vertices. We write
u ~ v to denote that (u,v) € E.

The mechanism consists of running VCG with different
multipliers for different agents. The multipliers capture “how

'While the LP is inspired by the analogy of Nash Equilibria, it should
be noted that first-price auctions do not in general have Nash Equilibria
due to tie-breaking issues (see a more detailed discussion in [14], [15]).

important” an agent is for the solution, in the sense of how
many other agents can be omitted by including this agent.
They are computed as eigenvector entries of a certain matrix
K. As we will see, the computation of K is NP-hard itself,
so the mechanism will in general not run in polynomial time
unless P=NP.

As a first step, the mechanism prunes all isolated vertices,
since they will never be part of any vertex cover. From
now on, we assume that each vertex is incident to at least
one edge. Let 1, (for any vertex v) be the vector with 1
in coordinate v, and O in all other coordinates. We define
v, = v(1,) > 1 to be the total “Nash Equilibrium” payment
of the first-price auction (in the sense of [9]) if agent v
has cost 1 (and thus loses), and all other agents have cost
0. v, is exactly the fractional clique number of the graph
induced by the neighbors of v, without v itself. This fact
is proved in Section III-A; it implies that unless ZPP=NP,
v, cannot be approximated to within a factor O(n'~¢) in
polynomial time, for any € > 0. Our inability to compute v,
is the chief obstacle to a constant-competitive polynomial-
time mechanism.

Let A be the adjacency matrix of G (with diagonal 0). De-
fine D = diag(1/v1,1/va,...,1/v,), and K = DA. Thus,
if u ~ v, then k, , = 1/v,; otherwise, k,,, = 0. K has the
same eigenvalues as K’ = D~Y/2KD'Y/? = DY/2ADY/?,
and the eigenvectors of K are of the form DY/2 . e, where
e is an eigenvector of K’. Because K’ is symmetric and
has non-negative entries, by the Perron-Frobenius Theorem,
its eigenvalues are real, and its top eigenvector has positive
entries. Hence, the same holds for K.

Let « be the largest eigenvalue of K, and q a correspond-
ing eigenvector (with positive entries). Notice that given K,
a and q can be computed efficiently and without knowledge
of the agents’ bids or costs.

The mechanism £V is now as follows: after all nodes v
submit their bids b,, the algorithm sets ¢, = b,/q,, and
computes a minimum cost vertex cover S with respect to
the costs ¢, (ties broken lexicographically). S is chosen as
the winning set, and each agent in S is paid her threshold
bid. (Notice that the second step of the mechanism again
requires the solution to an NP-hard problem.)

&V is truthful since the selection rule is clearly monotone,
and the payments are the threshold bids. Thus, we can as-
sume without loss of generality that bids and costs coincide.
In the following, we analyze the frugality ratio of £V, and
show that £V is competitive.

Lemma 3.1: £V has frugality ratio at most o.

Proof: We start by considering only cost vectors with
only one non-zero entry, i.e., of the form ¢ = ¢, - 1,,. For
such a cost vector, consider any agent u #* v. If u bids
more than q—:‘ - ¢, (and all agents besides u,v bid 0), then
the set V' \ {u} is cheaper with respect to costs ¢’ (the new
costs after raising its bid) than {u}, and u cannot be part
of the winning vertex cover. Thus, the payment to u is at

most 2+ . ¢,. Hence, the total payment of £V is at most
P(c) = qi “Cy * Y yep Qu- On the other hand, by definition
of v, and linearity of v, we have that v(c) = ¢,,, so the
frugality ratio is
TR I
Coy Vs

q% ’ Zuwv 711, " u
L _—
where the second equality followed because the vector q is
an eigenvector of K with eigenvalue «. Thus, for any cost
vector with only one non-zero entry, the frugality ratio is at
most «.

Now consider an arbitrary cost vector ¢, and write it as
c = >, cl,. We claim that P(c) <) ¢,P(1,). For
consider any vertex u € S winning with cost vector c. When
the cost vector is ¢, 1, instead, u’s payment is q,/qy - Cy.
On the other hand, when the cost vector is ¢, if u bids
strictly more than) q./q, - ¢y, then u cannot be in the
winning set, as replacing v with all its neighbors would give
a cheaper solution with respect to the costs ¢’. Thus, each
node w gets paid at most), q./q, - ¢, With cost vector
c, and the total payment is at most

Zu Zuwu % Gy Zv Co - Zuwv ZTL: =

On the other hand, we have that

V(C) Z Zv CUV(]'U) = Zv Coly,

because of the following argument: For each v, let x(*) be a
an optimal solution for the LP (1) with cost vector 1,,. Then,
simply by linearity, the vector x = c,x) is feasible for
the LP (1) with cost vector ¢, and achieves the sum of the
payments. Thus, the optimal solution to the LP (1) with cost
vector ¢ can have no smaller total payments.

Combining the results of the previous two paragraphs, we
have the following bound on the frugality ratio:

5, o P(Ly)
Soe S

>, P (1y).

P(c)
maxXe oy

P(1.)

< maX¢ max, — < a.
:

|
Next, we prove that no other mechanism can do asymp-
totically better.
Lemma 3.2: Let M be any truthful vertex cover mecha-
nism on G. Then, M has frugality ratio at least 5.

Proof: We construct a directed graph G’ from G by
directing each edge e of G in at least one direction. Consider
any edge e = (u,v) of G. Let c be the cost vector in which
Cy = Qu,sCy = Qu, and ¢; = 0 for all ¢ # u,v. When M
is run on the cost/bid vector c, at least one of u and v
must be in the winning set S; otherwise, it would not be
a vertex cover. If u € S, then add the directed edge (v, u)
to G'. Similarly, if v € S, then add (u,v) to G'. (If both
u,v € S, then both edges are added.) By doing this for all
edges e € GG, we eventually obtain a graph G’.

Now give each node v a weight w, = ¢,. Each node-
weighted directed graph contains at least one node v such

that Zu:(v,u)EE Wy, > Zu:(u,v)EE w,, (see, e.g., the proof of
Lemma 11 in [15]). Fix any such node v in G’ with respect
to the weights g,.

Now consider the cost vector ¢ with ¢, = ¢, and ¢; =
0 for all ¢ # v. By monotonicity of the selection rule of
M (which follows from the truthfulness of M), at least all
nodes u such that (v,u) € G’ must be part of the selected
set S of M, and must be paid at least g,. Therefore, the
total payment of M is at least

% Zuwv qu 1 1

5V ZUNU o du = Vv Oy,
where the last equality followed from the fact that q is an
eigenvector of the matrix K.

On the other hand, as in the proof of Lemma 3.1, v(c) =
v, q, for our cost vector c, so the frugality ratio under c is
at least %a. []

Combining Lemma 3.1 and Lemma 3.2, we have proved
the following theorem:

Theorem 3.3: £V is 2-competitive for Vertex Cover auc-
tions.

Remark 3.4: 1) The lower bound of %a on the frugal-

ity ratio of any mechanism can potentially be large.
For instance, for a complete bipartite graph K, ,,, we
have @ = ©(n). Thus, such large overpayments are
inherent in truthful mechanisms in general. However,
truthful mechanisms may be much more frugal on
specific classes of graphs.

2) €V in general does not run in polynomial time. For

the final step, computing a minimum-cost vertex cover
with respect to the scaled costs, we could use a
monotone 2-approximation, as suggested by Elkind et
al. [9]. The hardness of computing K is more severe.
However, notice that for specific classes of graphs,
such as degree-bounded or triangle-free graphs, K
can be computed efficiently, giving us non-trivial
polynomial-time mechanisms for Vertex Cover on
those classes. This issue is discussed more in Section
VL

Zu:(v,u)EG’ Gu

v

A. Relationship between Nash Equilibria and the Fractional
Clique Problem

Proposition 3.5: Let G, be the subgraph induced by the
neighborhood of v (but without v itself). Then, v, is exactly
the fractional clique number of GG, (and thus equal to the
fractional chromatic number of G,).

Proof: Recall that the fractional clique number is the
solution to the linear program

Maximize), z,
subject to > ;2 <1 for all indep. sets I @)
Ty >0 for all u

Let x be any bid vector feasible for the LP (1). First, for
all vertices u that do not share an edge with v, we must

have z, = 0, because V' \ {u, v} is a feasible set. So we
can restrict our attention to G,,. If I is any independent set
in G, then z(I) < 1. The reason is that the set V' \ I is
also feasible, and would cost less than V' \ {v} if the sum
of bids exceeded 1. Thus, any feasible bid vector x induces
a feasible solution to the LP (2), of the same total cost.

Conversely, if we have a feasible solution to the LP (2),
we can extend it to a bid vector for all agents by setting
Z, = 1, and x,, = 0 for all vertices not neighboring u. We
need to show that each feasible set 1" (vertex cover) has total
bid at least as large as the set V'\ {v}. If T does not contain
v, it must contain all of v’s neighbors, and thus has the same
bid as V'\ {v} by definition. Otherwise, because V' \ T is an
independent set, the feasibility for the LP (2) implies that
x(VA\T) < 1. Thus, 2(T) > (V) —1 = 2(V \ {v}). Thus,
the two LPs (1) and (2) have the same value. [|

The dual of the Fractional Clique Problem is the Frac-
tional Coloring problem. Since the fractional chromatic
number of a graph and the (integer) chromatic number are
within a factor O(logn) of each other (see, e.g., [18]; a
simple proof follows from standard randomized rounding
arguments), any approximation hardness results for Graph
Coloring also apply to the Fractional Clique Problem with at
most a loss of logarithmic factors. In particular, the result of
Feige and Kilian [11] implies that unless ZPP=NP, v, cannot
be approximated to within a factor O(n!~¢) in polynomial
time, for any € > 0.

B. Composability and a General Design Approach

Vertex Cover auctions can be used naturally as a way
to deal with other types of set systems: first pre-process
the set system by removing a subset of agents, turning the
remaining set system into a Vertex Cover instance; then, run
EV on that instance.

The important part is then to choose the pre-processing
rule to ensure that the overall mechanism is both truthful
and competitive. A condition termed composability in [,
Definition 5.2] is sufficient to ensure truthfulness; we show
that a comparison between lower bounds is sufficient to show
competitiveness.

Definition 3.6 (Composability [1]): Let o be a selection
rule mapping bid vectors to the set of (remaining) agents.
o is composable if o(b) = T implies that o(b),,b_.) =T
for any e € T and b, < b.. In other words, not only can
a winning agent not become a loser by bidding lower; she
cannot even change which set containing her wins.

Formally, when we talk about “removing” a set of agents
from a set system, we are replacing (E, F) with (T, F|r),
where T' = o(b), and Flp:={S e F|SCT}

Theorem 3.7: Let o be a composable selection rule with
the following property: For all monopoly-free set sys-
tems (F,F) in the class, and all cost vectors ¢, writing
(E",F') = (0(c), Floe)): (1) (E',F') is a Vertex Cover
instance, and (2) v(g/, 71(c) < k- V(g F)(c).

Let the Remove-Cover Mechanism RCM consist of
running £V on (E’,F’). Then, RCM is a truthful 2k-
competitive mechanism.

Proof: Truthfulness is proved in [1, Lemma 5.3]. The
upper bound on the frugality ratio of RCM follows simply
from Lemma 3.1 and the assumption of the theorem:

Prem(e) < a((E', F")) - vip 7(c)
< a((E'F))-k-ve,F(c).

To prove the lower bound, let M be any truthful mech-
anism for (E, F), and let (E', F’) be the Vertex Cover set
system maximizing a((E’, F’)). We consider cost vectors ¢
with ¢, = oo (or some very large finite values) for e ¢ E’.
For such cost vectors, we can safely disregard all elements
e ¢ F' altogether, as they will not affect the solutions to the
LP (1), nor be part of any solution selected by M.

But then, M is exactly a mechanism selecting a feasible
solution to the Vertex Cover instance (E’, 7’). By Lemma
3.2, M thus has frugality ratio at least a((E’,F"))/2,
completing the proof. []

A simple general way to obtain a composable rule is to
minimize the sum of costs:

Lemma 3.8: Let o be any rule selecting a set S minimiz-
ing b(S) over all sets .S with a certain property P. Then, o
is composable.

Proof: Consider any agent e who is part of the winning
set .S with respect to b. If e’s bid decreases by e, the cost of
S decreases by €, while the costs of all other sets decrease
by at most €. Thus, so long as ties are broken consistently,
S will still be selected. []

IV. A MECHANISM FOR FLOWS

We apply the methodology of Theorem 3.7 to design a
mechanism FM for purchasing k edge-disjoint s-¢ paths.
We are given a (directed) graph G = (V| E), source s, sink
t, and target number k. As discussed earlier, the agents are
edges of G. We assume that GG is monopoly-free, which is
equivalent to saying that the minimum s-t cut contains at
least k+ 1 edges. For convenience, we will refer to k edge-
disjoint s-t paths simply as a k-flow, and omit s and t.

To specify FM, all we need to do is describe a com-
posable pre-processing rule o. Our rule is simple: Choose
(k + 1) edge-disjoint s-t paths, of minimum total bid with
respect to b; ties are broken lexicographically. We call such
a subgraph a (k + 1)-flow, where it is implicit that we are
only interested in integer flows, and identify the flow with
its edge set. Call the minimum-cost (k + 1)-flow H. (In
Section III-B, we generically referred to this set system as
(E',F"))

Theorem 4.1: The mechanism FM is truthful and 2(k +
1)-competitive and runs in polynomial time.

We show this theorem in three parts: First, we establish
that the k-flow problem on H indeed forms a Vertex Cover

instance (Lemma 4.2). By far the most difficult step is show-
ing that the lower bound satisfies vy (c) < (k+ 1) - vg(c)
for all cost vectors ¢ (Lemma 4.4). The composability of o
follows from Lemma 3.8. Together, these three facts allow
us to apply Theorem 3.7, and conclude that F M is a truthful
2(k+1)-competitive mechanism. Finally, we verify that F M
runs in polynomial time (Lemma 4.7).

Lemma 4.2: The instance (E’, F') whose feasible sets are
all k-flows on H is a Vertex Cover set system.

Proof: The edges of H are the vertices in the Vertex
Cover instance. For clarity, consider explicitly the graph R,
which contains a vertex wu, for each edge e € H, and an
edge between u,, u.s if and only if removing e would create
a monopoly for ¢’. This is the case iff there exists at least
one minimum s-t cut in H containing both e and e’. For
any set of edges E’ in H, let N(E’) be the corresponding
set of nodes in R. Thus, for any minimum s-t cut E’, the
set N(E’) forms a clique in R.

If F' is a k-flow, then for any pair of edges e, e’ that lie
on a minimum s-¢ cut, £’ must contain at least one of e, ¢’.
Thus, N(E') is a vertex cover of R.

Conversely, let E’ be a set of edges in H such that N (E’)
is a vertex cover of R. We will show that for every s-t cut
F C E, at least k edges of E’ cross F, ie., |[E'NF|> k.
This will imply that E’ is a k-flow. Assume for contradiction
that |E’ N F| < k. Because N(E') is a vertex cover of R,
there can be no edge between any pair from N(F \ E’) in
R. By definition, this means that for any pair e,e’ € F'\ E’,
there is no minimum s-¢ cut containing both ¢ and ¢’. By
Proposition 4.3 below, this is equivalent to saying that for
each pair e,e’ € F'\ E’, the graph H contains a path from
e to ¢’ or a path from €’ to e.

Consider a directed graph whose vertices are the edges
F \ E’, with an edge from e to e/ whenever H contains
a path from e to ¢’. By the above argument, this graph is
a tournament graph, and thus contains a Hamiltonian path.
That is, there is an ordering ey, . .., e, of the edges in F'\ E’
such that each e; 1 is reachable from e; in H. By adding a
path from s to e; and from e; to ¢, we thus obtain an s-t
path P containing all edges in F'\ E’. The graph H \ P is
a k-flow, so the set £/ N F, having size less than k, cannot
be an s-t cut in H \ P. Let P’ be an s-t path in H \ P
disjoint from E’ N F. By construction, P’ is also disjoint
from F'\ E’. Thus, we have found an s-t path P’ in H
disjoint from F, contradicting the assumption that F' is an
s-t cut. |

Next, we show an alternative characterization of which
pairs of edges can be in a minimum cut together in H.

Proposition 4.3: Let H be a graph consisting of k + 1
edge-disjoint s-t paths, and e = (u,v),e’ = (v/,0') two
edges of H. Then, there is a minimum s-t cut containing
both e and €’ if and only if there is no path from v to u’
and no path from v’ to u.

Proof: Assume that there is a path from v to u'. Let

P be a concatenation of an s-v path using e, the path from
v to u/, and a path from v’ to ¢ using e. Then, H \ P is a
k-flow, and therefore has k edge-disjoint paths. Any s-t cut
in H must thus contain at least k& edges from H \ P, and
no s-t cut with fewer than k + 2 edges can contain both e
and ¢’

Conversely, if there is no minimum cut containing both
e, €', then every minimum cut in H \ {e, ¢’} must contain k
edges. Thus, H \ {e, e’} contains k edge-disjoint s-t paths.
Removing these paths from H leaves us with a 1-flow, i.e.,
one s-t path. By construction, this path must contain e and
€e’; thus, at least one is reachable from the other.]

Lemma 4.4: vy(c) < (k+1)-vg(c) for all c.

Proof: Let S be the cheapest k-flow in G with respect
to the costs c. Because H is a (k + 1)-flow, Corollary 4.6
below implies that vg(c) = k - mgy(c), where mg(c) is the
cost of the most expensive s-t path in H.

Let x be a solution to the LP (1) with cost vector ¢ on
the graph G. Define a graph G’ consisting of all edges in S,
as well as all edges that are in at least one tight feasible set
T (i.e., sets T' for which the constraint (iii) is tight, meaning
that z(T") = z(9)).

By definition, G’ contains (at least) k + 1 edge-disjoint
s-t paths. Lemma 4.5 (the key step) implies that all s-
t paths in G’ have the same total bid with respect to x.
Let P be an s-t path in G’ of maximum total cost ¢(P).
By individual rationality (Constraint (i) in the LP (1)), we
have that x(P) > ¢(P), and hence xz(P’) > ¢(P) for all
s-t paths P’. In particular, vg(c) = x(S) > k- ¢(P). By
definition of H (and because G’ contains at least k + 1
edge-disjoint s-t paths), we have that ¢(P) > ”,er(‘f), and
thus vg(c) > k-c(P) > kL_H ~mg(c) = k%-l -vg(c), which
completes the proof. []

Lemma 4.5: Let x be a solution to LP (1), and G’ as in
the proof of Lemma 4.4. Let v be an arbitrary node in G,

and P;, P, two paths from v to ¢. Then, x(P;) = z(Py).

Proof. Let F be the collection of all tight k-flows from
s to t except S, i.e., the set of all F' such that F' # S, F
consists of exactly k edge-disjoint s-t paths, and z(F) =
z(S). We define a directed multi-graph G as follows: for
each F € F, we add to G a copy of each edge e € F
(creating duplicate copies of edges e which are in multiple
flows F'). We call these edges forward edges. In addition,
for each edge e = (u,v) € S, we add |F| copies of the
backward edge (v,u) to G, i.e., we direct e the other way.
We define a mapping 7(e), which assigns to each edge e € G
its “original” edge in G. As usual, we extend notation and
write v(R) = {y(e) | e € R} for any set R of edges.

We will be particularly interested in analyzing collections
of cycles in G. We say that two cycles Cy, Cy are image-
disjoint if v(C1) N~(Ce) = 0. A cycle set is any set of
zero or more image-disjoint cycles in G (which we identify
with its edge set), and I' denotes the collection of all cycle

sets. For a cycle set C € T, let C— and C* denote the set
of forward and backward edges in C, respectively. Then, we
define ¢(C) = SU~(C7) \ v(CT). It is easy to see that
for each cycle set C, ¢(C) is a k-flow in G’. Conversely,
for every k-flow F' in G, there is a cycle set C € T" with

9(C) = F.)

We assign each edge e € G a weight w,. For forward
edges e, we set w, = Try(e)s while for backward edges
e = (v,u), we set w, = —x.(.). Notice that because each

copy of S contributes weight —x(.5), and each set F' € F
contributes 2(F) = z(S), the sum of all weights in G is 0.

Now, let C be any cycle set, and F = ¢(C) its corre-
sponding feasible set. We claim that F' is tight if and only if
> ecc We = 0. To prove this claim, notice that we can write

DieccWe = w(F\S)—z(S\F) =

which is 0 if and only if z(F) = (S), which is exactly the
definition of a tight set.

We next show that for any cycle C' in G, the feasible
set ¢(C) is tight. Assume for contradiction that this is not
the case, and let C' be a cycle with > - w. # 0. Let
F = ¢(C) be the corresponding feasible set. Because we
showed above that)" . w, = x(F) — 2(S), we can rule
out that) .~ w. < 0; otherwise, z(F) < x(S), which
would violate Constraint (iii) of the LP (1).

If > .cowe > 0, consider the multigraph obtained by
removing C' from G. Its total weight is Ze¢0 we < 0,
because the sum of all weights in G is 0 (as shown above).
G is Eulerian, i.e., the indegree equals the outdegree for
all nodes v. For v # s,t, this follows trivially because
each edge set we added constitutes a flow. For v = s,t,
it follows because each F' € F adds k edges out of s
(and into ¢), while the |F| copies of S add k|F| edges into
s and out of ¢. Because G is Eulerian and we remove a
cycle C, the remaining graph is still Eulerian, and its edges
can be partitioned into a collection of edge-disjoint cycles
{C4,...,C}. By the Pigeon Hole Principle, at least one
of the C; must have negative total weight; for the feasible
set F; = ¢(C;) corresponding to C;, we then derive that
x(F;) < x(S), which again violates the constraint (iii) of
the LP (1). Thus, we have shown that for each cycle C, the
corresponding feasible set is tight.

Finally, we prove the statement of the lemma. We will
prove it by induction on a reverse topological sorting of the
vertices v. That is, the index of v is at least as large as
the index of any w such that (v,u) € G’. Because G’ is
acyclic, such a topological sorting exists. The base case of
vertex t is of course trivial. For v # ¢, let Py, P» be two v-t
paths. We distinguish three cases, based on the first edges
e1 = (v,uy),e2 = (v,uz2) of the paths Py, P.

x(F) = z(5),

1) If G contains a forward edge (v, u1) and a backward
edge (uz,v) (or vice versa), then because each feasible
set is a flow, G must contain a v-t path P] entirely

consisting of forward edges and starting with e,
and a t-v path Pj entirely consisting of backward
edges and ending with es (backward). By induction
hypothesis, applied to u; and us, and because they
share their respective first edges, z(y(Py)) = z(Py),
and z(y(P5)) = x(P2). Because P U Pj forms
a cycle, and thus has total weight 0, we get that
z(y(Py)) = —wp; = wp; = z(y(P])), which proves
that .’L‘(Pl) = x(Pg)

2) If G contains forward edges (v,u;) and (v,us),
then it contains v-t paths Py, Pj starting with (v, uq)
resp. (v, uq) and consisting entirely of forward edges.
By induction hypothesis, z(y(P;)) = «(P;) and
z(y(P3)) = x(P2). Because all feasible sets were
flows, G must contain an s-v path P consisting
entirely of forward edges. And because .S is a feasible
set, G must also contain a t-s path P’ consisting
entirely of backward edges. Because PUP’U P/ forms
a cycle for each 4, we obtain that z(P;) = z(y(F})) =
—wpypr for each 4; in particular, 2(P;) = z(P2).

3) Finally, if G contains backward edges (u1,v) and
(ug,v), we apply a similar argument. We now have
that G contains t-v paths Pj, Pj with respective last
edges (u1,v) and (uz, v), and by induction hypothesis,
z(y(P])) = z(P1), and z(y(P5)) = z(P,). Because
S is a flow, G also contains a v-s path P consist-
ing entirely of backward edges, and an s-v path P’
consisting entirely of forward edges. Now, the same
argument about P U P’ U P/ as in the previous case
shows that x(P;) = x(P2). [

As a corollary, we can derive a characterization of Nash
Equilibria in (k + 1)-flows.

Corollary 4.6: If G is a (k + 1)-flow, then bids x are at
Nash Equilibrium if and only if 2(P) = mng(c) for all s-
t paths P. In particular, all Nash Equilibria have the same
total cost z(S) = k - mg(c), where S is the winning set.

Proof: First, because G is a (k + 1)-flow, the graph G’
constructed above actually equals G (since it must contain
k 4+ 1 edge-disjoint s-t paths). If x is Nash Equilibrium bid
vector, then by Lemma 4.5, all s-t paths P have the same
total bid 2(P). Let P be an s-t path maximizing ¢(P), i.e.,
¢(P) = ma(c). G\ P is a k-flow, and clearly the cheapest
k-flow by definition of P. Therefore, all agents in P lose,
and z(P) = ¢(P) by the Constraint (ii) of the LP (1). m

Finally, we show that the mechanism £) runs in poly-
nomial time for the special case of graphs derived from k-
flows.

Lemma 4.7: For the Vertex Cover instance derived from
computing a k-flow on a (k + 1)-flow, the mechanism £V
runs in polynomial time.

Proof: There are two steps which are of concern:
computing the values v, and finding the cheapest vertex
cover with respect to the scaled bids. The latter is exactly a

Minimum Cost Flow problem by Proposition 4.2, and thus
solvable in polynomial time with standard algorithms [2].
For the former, we claim that v, = k for all u. € R. By
Proposition 3.5 and LP duality, v, is upper bounded by the
chromatic number of u.’s neighborhood, and lower bounded
by the clique number. Since each edge e € H is part of a
minimum cut of size k + 1, and the edges of the minimum
cut form a clique in R, the clique number is (at least) k.
On the other hand, we can decompose H into k£ + 1 edge-
disjoint paths, and color (the vertices corresponding to) each
path with its own color in R. By Proposition 4.3, this is a
valid coloring, and induces a coloring with & colors in the
neighborhood of each vertex ..]

V. A MECHANISM FOR CUTS

As a second application of our methodology, we give a
competitive mechanism C M for purchasing an s-t cut, given
a (directed) graph G = (V, E), source s, and sink ¢. Again,
the agents are edges. Here, the necessary monopoly-freeness
is equivalent to G not containing the edge (s, t).

Again, it suffices to specify and analyze a composable pre-
processing rule o. Our pre-processing rule is to compute a
minimum-cost set £’ of edges (with respect to the submitted
bids b), such that E’ contains at least two edges from each
s-t path. We call such an edge set a double cut. Since no
edge in E'\ E’ can ever win (i.e., be part of a cut), removing
E \ E’ from the set system is equivalent to contracting
all edges in FE \ E’. Thus, our pre-processing step can be
equivalently characterized as contracting all edges other than
E’, producing a new graph H. We begin with a simple
structural lemma about H.

Lemma 5.1: In H, all s-t paths have length exactly 2.

Proof: If there were an s-t path of length 1 in H, i.e.,
an edge (s,t), then consider the edge (u,v) in the original
graph corresponding to (s, t). Because u was contracted with
s, and v with ¢, there must be an s-u path and a v-t path in
G using only edges from E \ E’. But then, E’ cannot have
been a double cut. Similarly, if there were an s-t path P
of length at least 3, then at least one edge (u,v) of P has
neither s nor ¢ as an endpoint. This edge could be safely
contracted, i.e., removed from E’. [

Theorem 5.2: The double cut selection rule is composable
and produces a Vertex Cover instance with vy (c) < 2vg(c).
Furthermore, both the selection rule and the subsequent Ver-
tex Cover mechanism can be computed in polynomial time.
Thus, CM is a polynomial-time 4-competitive mechanism.

Again, the final conclusion follows from Theorem 3.7,
after establishing composability via Lemma 3.8.

To see that we obtain a Vertex Cover instance, notice
that Lemma 5.1 implies that H is of the following form: in
addition to s and ¢, there are vertices v, ..., vy, and for each
i =1,...,¢, a set of parallel edges F; from s to v;, and
a set of parallel edges E! from v; to ¢t. Any s-t cut has to
include, for each 7, all of F; or all of Ez’ Thus, we obtain an

equivalent 1-flow instance in a minimally 2-connected graph
by having two vertex-disjoint paths of length |E;| and |E|
between u; and u;;; for each ¢, and setting s = w; and
Ug4+1 = t. We can then apply Lemma 4.2. Notice that this
equivalence also establishes that £V runs in polynomial time
on the instances produced by this selection rule.

As before, the key part is to analyze the increase in the
lower bound.

Lemma 5.3: For all cost vectors ¢, vg(c) < 2vg(c).

Proof: Let (S, S) the cheapest s-t cut in G with respect
to the costs ¢, and x a solution to the LP (1) with cost
vector ¢ on the graph G. Let C be the set of all minimum
s-t cuts (T,T) with respect to the costs x; thus, each of
these cuts has cost #(E(S,S)). Define T~ = Ner7yec T
and T+ = J 1 7ec T- Then, both (T~,T~) and (T+,T7)
are minimum s-¢ cuts as well (see, e.g., [2, Exercise 6.39]).

Furthermore, the edge sets E(T~,T-) and E(T+,T+)
are disjoint. For assume that there were an edge e = (u,v)
in common between these sets. Then, u € n(T,T)ec T and
v € (\r7)ec I- In particular, this implies that u € S and
v € S. By maximality of the solution x for the LP (1), there
must be a constraint (iii) tight for e; otherwise, z. could be
increased. Let (T, T) be the cut corresponding to the tight
constraint. Thus, z(E(T,T)) = #(E(S,S)), and e does not
cross (T, T). Thus, either both v and v are in T, or both are
in T. Because (T,T) € C, this gives a contradiction.

Now define G’ := E(T~,T-)UE(T*,T+). Because G
consists of two disjoint s-t cuts, the cost-minimality of H
implies that ¢(G’) > ¢(H). By the “individual rationality”
LP constraint (i), 2(G’) > ¢(G'), and hence

(G

(a" c(H) vH(c)
e R

va(c) =
For the last inequality, notice that in the “Nash Equilibrium”
on H, for each 4, the cheaper of E; and E! will collec-
tively raise their bids to the cost of the more expensive
one, so the total bid of the winning set will be at most
> max(c(E;), c(E;)) < c(H). [|

The final claim required to prove Theorem 5.2 is that a
minimum-cost double cut can be computed in polynomial
time. To this end, we can write the natural linear program
for a minimum-cost double cut. One can then prove that it
is totally unimodular, and hence has an integral optimum.
A more efficient algorithm uses the primal-dual approach,
resulting in a natural generalization of the Ford-Fulkerson
algorithm. Details of the analysis for both algorithms can be
found in the full version of this paper.

VI. DIRECTIONS FOR FUTURE WORK

In general, the Vertex Cover mechanism does not run in
polynomial time, due to two obstacles: first, computing the
matrix K requires computing the largest fractional clique
size in the neighborhood of v, for each node v. Subsequently,
computing the solution with respect to scaled costs requires

finding a cheapest vertex cover. For the second obstacle,
it seems quite likely that monotone algorithms (such as
the one in [9]) could be adapted to our setting, and yield
constant-factor approximations. However, the difficulty of
computing the entries of K seems more severe. In fact,
we conjecture that no polynomial-time truthful mechanism
for Vertex Cover can be constant competitive. This result
would be quite interesting, in that it would show that the
requirements of incentive-compatibility and computational
tractability together can lead to significantly worse guaran-
tees than either requirement alone.

While our methodology of designing composable pre-
processing algorithms will likely be useful for other prob-
lems as well, it does not apply to all set systems. It is fairly
easy to construct set systems for which no such pruning
algorithm is possible. Even when pruning is in principle
possible, it may come with a large blowup in costs.

Thus, the following bigger question still stands: which
classes of set systems admit constant-competitive mecha-
nisms? The main obstacle is our inability to prove strong
lower bounds on frugality ratios. To date, all lower bounds
(here, as well as [10], [15]) are based on pairwise compar-
isons between agents, which can then be used to show that
certain agents, by virtue of losing, will cause large payments.
This technique was exactly the motivation for the Vertex
Cover approach. In order to move beyond Vertex Cover
based mechanisms, it will be necessary to explore lower
bound techniques beyond the one used in this paper.

ACKNOWLEDGMENT

We would like to thank Edith Elkind, Uriel Feige, Anna
Karlin, Tami Tamir, and Mihalis Yannakakis for useful dis-
cussions and pointers, and anonymous reviewers for useful
feedback.

REFERENCES

[1] Gagan Aggarwal and Jason D. Hartline. Knapsack auctions.
In Proc. 17th ACM Symp. on Discrete Algorithms, pages
1083-1092, 2006.

[2] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin.
Network Flows. Prentice Hall, 1993.

[3] Aaron Archer and Eva Tardos. Frugal path mechanisms. In
Proc. 13th ACM Symp. on Discrete Algorithms, pages 991—
999, 2002.

[4] Sushil Bikhchandani, Sven de Vries, James Schummer, and
Rakesh Vohra. Linear programming and Vickrey auctions.
IMA Volume in Mathematics and its Applications, Mathemat-
ics of the Internet: E-auction and Markets, 127:75-116, 2001.

[5] Gruia Calinescu. Bounding the payment of approximate
truthful mechanisms. In Proc. 15th Intl. Symp. on Algorithms
and Computation, pages 221-233, 2004.

[6] Ning Chen, Edith Elkind, Nick Gravin, and Fedor Petrov.
Frugal mechanism design via spectral techniques. In Proc.
51st IEEE Symp. on Foundations of Computer Science, 2010.

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]
(18]

[19]

(20]

[21]

(22]

(23]

(24]

Ning Chen and Anna Karlin. Cheap labor can be expensive.
In Proc. 18th ACM Symp. on Discrete Algorithms, pages 707—
715, 2007.

Edward H. Clarke. Multipart pricing of public goods. Public
Choice, 11:17-33, 1971.

Edith Elkind, Leslie Goldberg, and Paul Goldberg. Frugality
ratios and improved truthful mechanisms for vertex cover. In
Proc. 9th ACM Conf. on Electronic Commerce, pages 336—
345, 2007.

Edith Elkind, Amit Sahai, and Kenneth Steiglitz. Frugality
in path auctions. In Proc. 15th ACM Symp. on Discrete
Algorithms, pages 701-709, 2004.

Uriel Feige and Joe Kilian. Zero knowledge and the chro-
matic number. Journal of Computer and System Sciences,
57(2):187-199, 1998.

Rahul Garg, Vijay Kumar, Atri Rudra, and Akshat Verma.
Coalitional games on graphs: core structures, substitutes and
frugality. In Proc. 5th ACM Conf. on Electronic Commerce,
pages 248-249, 2003.

Theodore Groves. Incentives in teams. Econometrica,

41:617-631, 1973.

Nicole Immorlica, David R. Karger, Evdokia Nikolova, and
Rahul Sami. First-price path auctions. In Proc. 7th ACM
Conf. on Electronic Commerce, pages 203-212, 2005.

Anna Karlin, David Kempe, and Tami Tamir. Beyond VCG:
Frugality of truthful mechanisms. In Proc. 46th IEEE Symp.
on Foundations of Computer Science, pages 615-624, 2005.

Paul Klemperer. Auction theory: A guide to the literature.
Journal of Economic Surveys, 13(3):227-286, 1999.

Vijay Krishna. Auction Theory. Academic Press, 2002.

Carsten Lund and Mihalis Yannakakis. On the hardness of
approximating minimization problems. Journal of the ACM,
41(5):960-981, 1994.

Andreu Mas-Collel, Michael D. Whinston, and Jerry R.
Green. Microeconomic Theory. Oxford University Press,
1995.

Noam Nisan and Amir Ronen. Algorithmic mechanism
design. In Proc. 31st ACM Symp. on Theory of Computing,
pages 129-140, 1999.

Christos Papadimitriou. Algorithms, games and the Internet.
In Proc. 33rd ACM Symp. on Theory of Computing, pages
749-752, 2001.

Kunal Talwar. The price of truth: Frugality in truthful
mechanisms. In Proc. 21st Annual Symp. on Theoretical
Aspects of Computer Science, pages 608—619, 2003.

William Vickrey. Counterspeculation, auctions, and compet-
itive sealed tenders. J. of Finance, 16:8-37, 1961.

Qigi Yan. On the price of truthfulness in path auctions.
In Proc. 3rd Workshop on Internet and Network Economics
(WINE), pages 584-589, 2007.

