
Distance Oracles Beyond the Thorup–Zwick Bound

Mihai Pǎtraşcu

AT&T Labs
Email: mip@alum.mit.edu

Liam Roditty

Computer Science Department
Bar-Ilan University

Email: liamr@macs.biu.ac.il

Abstract—We give the first improvement to the
space/approximation trade-off of distance oracles since the
seminal result of Thorup and Zwick [STOC’01].

For unweighted graphs, our distance oracle has size
O(n5/3) = O(n1.66···) and, when queried about vertices
at distance d, returns a path of length 2d + 1.

For weighted graphs with m = n2/α edges, our
distance oracle has size O(n2/ 3

√
α) and returns a factor

2 approximation.
Based on a plausible conjecture about the hardness of

set intersection queries, we show that a 2-approximate
distance oracle requires space Ω̃(n2/

√
α). For unweighted

graphs, this implies a Ω̃(n1.5) space lower bound to achieve
approximation 2d + 1.

I. INTRODUCTION

A distance oracle is a replacement for the all-pairs

shortest paths matrix of a graph. Given a graph with n
vertices and m edges, the goal is to construct a data

structure of small (subquadratic) space, such that the

distance between any two vertices can be computed

efficiently (say, in constant time). Since subquadratic

space is believed to be unattainable in the exact case,

we allow approximation. Say the query asks about the

distance between vertices s and t, and let d = d(s, t).
Then, a k-approximate distance oracle might return a

distance d̂ of d ≤ d̂ ≤ k · d. The oracle should also be

able to list a path of length d̂ in constant time per hop.

The state of the art in distance oracles can be under-

stood by reference to the landmark result of Thorup

and Zwick from STOC’01 [TZ05]. They describe a

distance oracle of size O(kn1+1/k) which achieves a

factor 2k − 1 approximation, for any integer k ≥ 2.

Thus, for approximation 3, the space is O(n1.5); for ap-

proximation below 3, no subquadratic bound is known.

The original construction time was O(mn1/k). In

SODA’04, Baswana and Sen [BS06] improved this to

O(n2) for unweighted graphs. In FOCS’06, Baswana

and Kavitha [BK06] extended the O(n2) running time

to weighted graphs. Subsequently, Baswana, Gaur, Sen,

and Upadhyay [BGSU08] obtained subquadratic con-

struction time in unweighted graphs, at the price of

increasing the approximation from k · d to k · d+O(1).

For instance, their algorithm runs in time O(m+n23/12)
for 3d + 8 approximation.

The original query time was O(k), which is not

constant for super-constant approximation. In FOCS’06,

Mendel and Naor [MN07] gave an oracle with space

O(n1+1/k) and O(1) query time, at the price of in-

creasing the approximation factor to O(k).
Motivated by experimental evidence from Kri-

oukov et al. [KFY04], Chen, Sommer, Teng, and

Wang [CSTW09] show that the Thorup–Zwick scheme

has smaller space on random power-law graphs.

Enǎchescu, Wang, and Goel [EWG08] demonstrate bet-

ter space for Erdős-Rényi random graphs.
Space versus approximation: Despite considerable

follow-up work, there has been no progress on what

appears to be the main consideration: the trade-off

between approximation and space.
Thorup and Zwick [TZ05] show that their space

bound is “optimal” based on the girth conjecture of

Erdős (which is partially proved, and widely believed).

However, one must be careful about the notion of

optimality here: this lower bound only shows that there

exist dense enough graphs, which cannot be “com-

pressed” to less than n1+1/k edges without introducing

approximation above 2k − 1.
There are two scenarios in which better distance

oracles could be possible:

1) The incompressibility argument says nothing

about sparse graphs (the most realistic network

scenario). If the graph has less than n1+1/k edges,

the problem is not one of compression, but of

data representation: how to store shortest paths

information for quick retrieval.

2) For unweighted graphs, it makes sense to consider

additive approximation in addition to multiplica-

tive. The lower bound is based on distances d = 1,

and thus only implies that an approximation of

d+2k−1 requires space Ω(n1+1/k). Needless to

say, an additive approximation of 2k− 1 is much

more desirable than the same multiplicative factor.

A reason to be skeptical about the first scenario

is that, even for sparse graphs, the exact problem is

thought to require quadratic space. This can be argued

quite persuasively under a popular conjecture about the

hardness of set intersection (see below).

In FOCS’09, Sommer, Verbin, and Yu [SVY09] pro-

vided a further negative result: they showed that c-

approximate distance oracles with constant query time

require space n1+Ω(1/c). Obtaining a sharp constant in

the exponent is beyond the state of the art in lower

bounds, so this is the best argument one can currently

bring for the optimality of the Thorup–Zwick oracle.

Regarding the second scenario, we note that much

progress has been made in the related area of graph

theory that deals with spanners. Given a graph G, a

(α, β)-spanner is a subgraph H which guarantees that,

for any pair of vertices u, v, dH(u, v) ≤ α·dG(u, v)+β.

In other words, distances increase at most by a factor

of α and an additive β if we throw out the edges in

G \ H . In the spirit of distance oracles, a classic re-

sult [ADD+93] constructs a (2k−1, 0)-spanner. Among

purely multiplicative results, this is optimal assuming

the girth conjecture.

In STOC’01, Elkin and Peleg [EP04] constructed

spanners with 1 + ε multiplicative stretch and n1+ε

edges, but with an additive overhead (that depends on

ε). In SODA’06, Thorup and Zwick [TZ06] showed that

a spanner with this type of guarantee also follows from

the techniques of their distance oracle. Specifically, they

obtain (1 + ε, β)-spanners of size O(n1+1/k), for any

constant k, where β = (O(1)
ε)k.

One can also construct purely additive spanners. Dor,

Helperin, and Zwick [DHZ00] present a simple (1, 2)-
spanner with Õ(n3/2) edges. Elkin and Peleg [EP04]

obtain (1, 2)-spanner with O(n3/2) edges using a dif-

ferent construction. In SODA’05, Baswana, Kavitha,

Mehlhorn, and Pettie [BKMP05] present a spanner with

O(n4/3) edges and additive 6 approximation. Sparser

spanners are not known for any additive guarantee,

though it is conceivable that a spanner with O(n1+1/k)
edges and additive approximation 2k − 1 could exist.

This would match the lower bound of the girth conjec-

ture; in fact, in FOCS’06, Woodruff [Woo06] showed

this lower bound unconditionally for additive spanners.

Additive guarantees in distance oracles: None of

the improvements in spanners translated into an im-

proved distance oracle with additive guarantees. There

is, in fact, a strong barrier to additive guarantees in

distance oracles. Consider breaking every edge into c
pieces, introducing vertices along the edge. This in-

creases the number of vertices to n+cm and multiplies

each distance by c. Since any pairwise distance is a

multiple of c, any additive guarantee of less than c is

meaningless.

If we started with a sparse graph, m = O(n), the

size has not changed asymptotically. Thus, an (α, β)-
distance oracle is at least as hard to construct as an α-

approximate distance oracle on sparse graphs. In other

words, we cannot hope for scenario 2 without also

solving scenario 1 (building better distance oracles for

sparse graphs).

This reveals a large gap between spanners (a graph

theoretic problem) and distance oracles (an algorithmic

problem). If the graph has O(n) edges, a spanner is

trivial: just include all the edges. For a distance oracle,

sparse graphs can be hard.

A. New Upper Bounds

In this paper, we break the long-standing bounds of

Thorup and Zwick, and give the first nontrivial distance

oracles for approximation below 3.

For unweighted graphs, we realize scenario 2 from

above: we show that it is possible to gain from additive

approximation! Specifically, we obtain an oracle of size

O(n1.66···), which returns a distance of at most 2d + 1:

Theorem 1. For any unweighted graph, there exists a
distance oracle of size O(n5/3) that, given any nodes u
and v at distance d, returns a distance of at most 2d+1
in constant time. The distance oracle can be constructed
in expected time O(m · n2/3), and

Notice that the size of the oracle is independent of the

graph size, i.e. our oracle can also be used to compress

the graph. If compression were the goal, one could

use a (1, 2)-spanner, and achieve a representation of

size O(n1.5) (which is optimal). For distance oracles,

however, no o(n2) space bound was known even for

graphs with m = O(n) edges.

By breaking up the edges, this immediately implies

a 2-approximate distance oracle of space O(n5/3) for

graphs with m = O(n) edges. The following general-

izes this result for weighted graphs and for any graph

density:

Theorem 2. Given a weighted graph with m = n2/α
edges, we can construct a distance oracle of size
O(n2/α1/3), which returns a 2-approximation to any
distance in constant time.

This realizes scenario 1 from above: we obtain the

first distance oracles that take advantage of graph spar-

sity. Our space bound is “in between” m and n2. For any

m < n2−ε, the space is superlinear, but subquadratic.

B. Lower Bounds

Since our results achieve unexpected space bounds,

understanding the limitations of distance oracles be-

comes a very intriguing question. A priori, it is con-

ceivable that 2d+1 approximation in sparse graphs can

be achieved by an oracle taking space O(n1+ε). For

2-approximate distance oracles, the space needs to be

Ω(m) [TZ05], i.e. compression is impossible. But it is

unclear that it needs to be superlinear in m, or have our

“between m and n2” flavor. For instance, could one

achieve a space of O(m + n5/3)?
The state of the art in lower bounds does not

allow us to address these questions unconditionally:

current lower bounds cannot differentiate between space

O(n1.01) and space O(n1.99). To achieve some guid-

ance in understanding distance oracles, we will prove a

conditional lower bound.

Conjecture 3. Consider a data structure that prepro-
cesses sets S1, . . . , Sn ⊆ [X], and answers queries of
the form “does Si intersect Sj?” Let X = lgc n for a
large enough constant c.

If the query takes constant time, the space must be
Ω̃(n2).

This conjecture is folklore, and appears rather widely

believed. The problem is of fundamental importance in

information retrieval. For instance, Si could be the set of

documents containing word i. Then, Si ∩ Sj represents

the documents that contain two search terms. An algo-

rithm that could retrieve these documents significantly

faster than scanning sets Si or Sj would be a major

breakthrough.

An important implication of this conjecture is a strong

lower bound on exact distance oracles; see [CP10]:

Corollary 4. A distance oracle for unweighted graphs
with m = Õ(n) edges, which can distinguish between
distances of 2 and 4 in constant time requires Ω̃(n2)
space, assuming Conjecture 3.

Proof: Build a bipartite graph, with n vertices on

the left and X on the right; the number of vertices is

n+X = O(n). Connect vertex i to the elements of Si;

the number of edges is nX = Õ(n). Two left vertices

are at distance 2 if the corresponding sets intersect, and

distance at least 4 otherwise. Thus, the distance oracle

can solve set intersection queries.

It follows that distance oracles with approximation

better than 2 require nearly quadratic space. Since

the lower bound applies to sparse graphs, no additive

approximation can help (by breaking edges into pieces).

Thus, approximation (2−ε)d+O(1) is impossible with

subquadratic space. In other words, our distance oracles

give the best possible approximation with nontrivial

space.

We will take this idea further, using the hardness

of set intersection to argue a lower bound for 2-

approximate oracles. Unfortunately, we need a distribu-

tional version of the conjecture, which will be stated

shortly as Conjecture 7. Before dealing with these

technicalities, we discuss the implications for distance

oracles.

Theorem 5. Consider a distance oracle for unweighted
graphs with m = n2/α edges. If the query algorithm
can distinguish between distances 3 and 7 in constant
time, the oracle needs Ω̃(n2/

√
α) space, assuming

Conjecture 7.

This should be contrasted to our upper bound, which

gives 2-approximate distances using space O(n2/ 3
√

α).
The flavor of our upper bound is found to be correct:

superlinear space is needed for any subquadratic m.

In the regime m = O(n), a 2d + 1 distance oracle

is equivalent to a 2-approximate distance oracle. Thus,

our O(n1.66···) upper bound is complemented by the

following:

Corollary 6. Under Conjecture 7, a (2, 1)-distance
oracle for unweighted graphs with m = O(n) edges
requires space Ω̃(n1.5).

Technical details: We will use the following

amended version of Conjecture 3:

Conjecture 7. Consider a data structure in the cell-
probe model that preprocesses sets S1, . . . , Sn ⊆ [X],
and answers queries of the form “does Si intersect Sj?”
Let α, β be large enough constants. Let X = O(lgα n),
and assume that the data structure uses constant query
time and space O(n2/ lgβ n).

There exists a distribution D such that, when
(S1, . . . , Sn) is drawn from D and (i, j) ∈ [n]2 uni-
formly at random, the data structure has error at least
1
10 .

A reasonable way to state our simple Conjecture 3

is that a randomized data structure with constant

query time must use Ω̃(n2) space. If we had hardness

for randomized algorithms, by Yao’s minimax princi-

ple [Yao77], there would exist a distribution D′ that

is hard for any algorithm. For technical reasons, we

cannot deal with an arbitrary distribution D′, but only

one of the form D′ = D × [n]2 (the query (i, j) is

uniform). Intuitively, this assumption is quite plausible:

if (i, j) has too biased a distribution, one can tabulate

the answers for the frequent (i, j) values, so the space

is certainly subquadratic.

One can imagine strengthening the conjecture to

super-constant query time (even a lower bound of

Ω(X/ lg n) seems plausible). In this case, we would

obtain space lower bounds against distance oracles with

polylogarithmic query time. Going the other way, one

may assume a weaker space lower bound of Ω(n2−ε),
with creates an ε loss in the exponent of the lower

bound.

Even if one chooses to disbelieve Conjecture 7, a

“lower bound” based on it reveals the limit of current

techniques. Indeed, if intersection queries were miracu-

lously easy, it is quite likely that such a data structure

could be used to give better distance oracles. (The upper

bounds of this paper need to jump several hoops to avoid

naturally occurring set intersection queries.)

II. UPPER BOUND FOR UNWEIGHTED GRAPHS

In this section, we prove Theorem 1: we construct a

distance oracle of size O(n5/3) that approximates the

distance between any vertices s, t with a distance of at

most 2 · d(s, t) + 1.

Our construction will be randomized, and will yield

an oracle of expected size O(n5/3); the query algorithm

is deterministic (and never makes an error). Given this

guarantee, a distance oracle of worst-case size O(n5/3)
can be constructed by a Las Vegas algorithm.

Our construction begins by sampling vertices at two

different rates:

set A: sample every vertex independently at random

with probability n−1/3. Then E[|A|] = n2/3.

set B: sample every vertex independently at random

with probability n−2/3. Then E[|B|] = n1/3.

Given a vertex u ∈ V and a set of vertices S ⊆ V ,

we make the following convenient definitions:

NNS(u) = the nearest neighbor of u in S (i.e. the

node v ∈ S that minimizes d(u, v), where ties

are broken arbitrarily).

RS(u) = the distance from u to its nearest neighbor

NNS(u).
BS(u) = the set of vertices strictly closer to u than

NNS(u). In other words, BS(u) is the ball

around u of radius RS(u) − 1.

Our construction first considers the balls BA(u) for

all u ∈ B. Intuitively speaking, we grow balls around

vertices of B, stopping whenever a vertex of A is

reached. Define C to contain all vertices reached by

this process (some may be reached multiple times, for

various u ∈ B):

set C: A ∪
(⋃

u∈B BA(u)
)

.

We store the distance from each u ∈ C to all other

nodes of G.

Claim 8. The expected size of C is at most n2/3.

Proof: By linearity of expectation, we have:

E[|C|] ≤ E[|A|] +
∑

u

Pr[u ∈ B] · E[|BA(u)|] =

n2/3 +
∑

u

E[|BA(u)|]/n2/3

The size |BA(u)| is a random variable depending on the

samples A. If we imagine all nodes sorted by distance to

u (breaking ties arbitrarily), an upper bound on |BA(u)|
is the location of the first element from A in this list. In

other words, the size of BA(u) is bounded from above

by a geometric random variable with rate n−1/3. Hence,

E[|BA(u)|] ≤ n1/3 for all u, and we obtain

E[|C|] ≤ n2/3 + n · n1/3/n2/3 = 2n2/3.

We now turn our attention to BC(u), for all vertices

u ∈ V \ C. Intuitively, we grow a ball around each

vertex, stopping whenever we reach a vertex from C.

See Figure 1 for a geometrical depiction.

With this build-up, the strategy of our oracle is simple

to describe. Consider the balls around our source and

destination, BC(s) and BC(t). We have two possibili-

ties:

BC(s) ∩ BC(t) = ∅. By definition, BC(s) contains

all nodes at distance RC(s) − 1 from s, and

similarly, BC(t) contains all nodes at distance

RC(t)−1 from t. If the balls are disjoint, then

necessarily:

(RC(s) − 1) + (RC(t) − 1) < d(s, t) ⇒
RC(s) + RC(t) ≤ d(s, t) + 1 ⇒

min{RC(s), RC(t)} ≤ d(s,t)+1
2

Recall that we have stored the distance from

each u ∈ C to all other nodes. If RC(s) ≤
RC(t), we will approximate d(s, t) by the

length of the path s � NNC(s) � t. Apply-

ing the triangle inequality, the length of this

path is:

d
(
s, NNC(s)

)
+ d

(
NNC(s), t

) ≤
2RC(s) + d(s, t) ≤ 2 · d(s, t) + 1

The case RC(s) > RC(t) is symmetric, where

we take the path s � NNC(t) � t.

t
s

A = { }

B = { }

C = { }

Figure 1. The dashed balls represent BC(s) and BC(t).

BC(s) ∩ BC(t) �= ∅. For all pairs (s, t) such

that BC(s) and BC(t) intersect, we store their

exact distances in a hash table.

To summarize, our query algorithm is the following:

1) Look up (s, t) in the hash table. If found, return

the exact distance.

2) If RC(s) ≤ RC(t), return the length of the path

s � NNC(s) � t.
3) Otherwise, return the length of the path s �

NNC(t) � t.

It remains to understand the space requirement. Since

E[|C|] = O(n2/3), the first part of the distance oracle

(the distance from each vertex in C to all other vertices)

takes O(n5/3) space in expectation. The remaining

challenge is to analyze the size of our hash table from

the second part.

Claim 9. For any u ∈ V , the number of vertices v with
BC(u) ∩ BC(v) �= ∅ is at most n2/3 in expectation.

Proof: Let S be the set of vertices v whose ball

intersects the ball of u. For ease of counting |S|, we

can consider the following algorithmic definition. Sort

w ∈ V by increasing distance from u. In this order,

keep adding to S all vertices v whose ball contains w,

i.e. w ∈ BC(v). Stop when you reach some w ∈ C.
To ease analysis, we will overcount |S|: imagine

that the algorithm adds all v such that w ∈ BA(v).
Since A ⊆ C, BC(v) is subset of BA(v), and this new

algorithm outputs a superset of S.
We now claim that the algorithm stops before adding

any v ∈ B. Suppose for contradiction that v ∈ B, and

w ∈ BA(v). But C contains all balls BA(v) for v ∈ B,

so w ∈ C. This is a contradiction, since the algorithm

stops upon seeing w ∈ C.

We can finally bound |S|: if we sort v’s in the order in

which they are added by the algorithm, |S| is bounded

by the first position on which an element v ∈ B appears.

Observe that the order only depends on B (the algorithm

looks at BA(v)), but is independent of A. Thus, |S|
is bounded by a geometric random variable with rate

n−2/3. We have shown E[|S|] ≤ n2/3.

Construction time: The cost for computing the

distance from each u ∈ C to all other nodes of G
is Õ(mn2/3). Also, the cost for computing BA(u)
for every u ∈ B is O(n) since E[|B|] = n1/3 and

E[|BA(u)|] ≤ n1/3.

As BC(u) ⊆ BA(u), the cost of growing BC(u) is

bounded by the cost of growing BA(u), for all vertices

u ∈ V \C. Since E[|BA(u)|] ≤ n1/3 the cost is bounded

by O(n5/3).

We also need to compute the intersection between

BC(s)∩BC(t) for every pair of vertices s, t ∈ V . Since

E[|BA(u)|] ≤ n1/3 for every u ∈ V we can compute

all the intersections in O(n7/3) time. We conclude that

the construction time is Õ(mn2/3) + O(n7/3).

Reporting a path: It is not too hard to extend our

data structure to return also actual paths in constant time

per hop. In the case that BC(s)∩BC(t) = ∅ and we use

either the shortest paths tree of NNC(s) or of NNC(t)
to report the distance we can also use it to report a

path. In the case that BC(s)∩BC(t) �= ∅ we can save a

vertex from the intersection. Then a shortest path from

s to this vertex is obtained using BC(s) and a shortest

path from this vertex to t is obtained using BC(t).

III. UPPER BOUND FOR WEIGHTED GRAPHS

We now show how to obtain 2-approximate distance

oracles for weighted graphs. Since an additive term does

not make sense for weighted graphs, we must implicitly

eliminate the +1 term from the previous approximation.

This term comes from the case when BC(s) and BC(t)
almost touch, i.e. they are connected by an edge. In the

weighted case, that edge could have arbitrary weight,

destroying the approximation guarantee.

To address this problem, we change our focus from

vertices to edges. With S ⊆ E being a set of edges, we

make the following convenient definitions:

N(S) = the set of vertices incident to the edges of

S.

B�
S(u) = the set of edges incident to the vertices of

BN(S)(u).

A convenient mental picture of B�
S(u) is in terms of

growing balls: consider a Dijkstra exploration around u,

which stops when it “touches” an edge from S (when

it reaches the first vertex incident to an edge from S).

The edges incident to the explored vertices form B�
S(u).

Note that some of these edges may go far outside the

ball.

It is crucial to observe the new meaning of B�
S(u) ∩

B�
S(v) �= ∅: the balls of vertices around u and v have

a connecting edge between them. This addresses the

reason for the additive one in the previous algorithm.

From now on, we will assume perfect tie-breaking

(all n2 possible distances are distinct). The construction

algorithm will build:

set A: sample each edge with probability n
m/α1/3.

We have E[|A|] = m · n
m/α1/3 = n/α1/3.

(Compare to the previous definition, where A
sampled n2/3 vertices.)

set B: sample each vertex with probability α1/3/n.

We have E[|B|] = α1/3. (In the previous

definition, B samples n1/3 vertices.)

set C: A ∪
(⋃

u∈B B�
A(u)

)
.

Claim 10. The expected size of C is at most n/α1/3.

Proof: We claim that, for any fixed u, the expected

size of B�
A(u) is at most m

n α1/3. Remember the inter-

pretation of B�
A(u) in terms of growing balls. Whenever

a node v is added to the ball by Dijkstra’s algorithm,

all edges incident to v are added to B�
A(u). But if an

edge was sampled in A, the algorithm stops. Thus, the

size of B�
A(u) is bounded by the first occurrence of an

A sample, which is a geometric random variable with

rate n
m/α1/3.

Since every u is placed into B with probability

α1/3/n, the expected size of C is:

n · (α1/3/n
) · E[|B�

A(u)|] ≤ α1/3 · m
n α1/3 =

n2/α
n · α2/3 = n/α1/3

We will now consider balls B�
C(u) around every

vertex u. The distance oracle will store:

1) the distance from each vertex in N(C) to each

other vertex.

2) the distance between any u and v with B�
C(u) ∩

B�
C(v) �= ∅.

The first component has expected size O(n2/α1/3).
Whenever B�

C(s) is disjoint from B�
C(t), this component

will provide a 2-approximate answer. Indeed, consider a

shortest path from s to t. By definition of B�
C(·), some

vertex of this path must be missing from both BN(C)(s)
and BN(C)(t). Let this vertex be v. If d(s, v) < d(v, t),
then d(s, v) ≤ 1

2d(s, t). Also, the nearest neighbor of s
in N(C) (call it w) is at distance at most d(s, v), since v
was not in the ball. We can report the path s � w � t,
which, by the triangle inequality, has length at most

2 · d(s, w) + d(s, t) ≤ 2 · d(s, t). The case when the

nearest neighbor of t is closer than d(s, w) is symmetric.

It remains to bound the size of the second component:

Claim 11. For any u ∈ V , the number of vertices v with
B�

C(u) ∩ B�
C(v) �= ∅ is at most n/α1/3 in expectation.

Proof: Let S be the set of vertices v with B�
C(u)∩

B�
C(v) �= ∅. By changing from B�

C(v) to B�
A(v), this

becomes a superset of what we want to count.

Imagine a Dijkstra exploration around u. Whenever

a vertex is added to the ball, all its incident edges are

added to B�
C(u). This means that all vertices v whose

balls B�
A(v) contain one of these edges are added to S.

The process certainly stops before v ∈ B would be

added. Indeed, C contains all balls B�
A(v) for v ∈ B.

Thus, the edge that would cause v to be added is in C,

marking the end of B�
C(u).

This means that |S| is bounded from above by the

first occurrence of a vertex from B. The order in which

vertices are considered is independent of B (since we

changed to using B�
A). Thus, |S| is bounded by a

geometric random variable with rate α1/3/n.

IV. THE LOWER BOUND

In this section, we prove Theorem 5: a 2-approximate

distance oracle for unweighted graphs with m =
O(n2/α) edges requires space Ω̃(n2/

√
α), assuming

Conjecture 7 about the hardness of set intersection.

A. Graph Structure

Our instances will be graphs with four layers of

vertices, with a rather particular structure; see Figure 2.

Let A and X be parameters to be decided; we will set

|X| = lgO(1) n and A ∈ [√
n, n

X

]
.

The first and last levels will each have a vertex set of

[A] × [n
A]. We denote a node in these levels by (a, b)i,

where i ∈ {1, 4}. The middle two levels each have a

vertex set of [A] × [X]2, and we denote a vertex by

(a, x, y)i for i ∈ {2, 3}.

The edges are build from four families of sets: Sab

and S′
ab(∀)(a, b) ∈ [A] × [n

A]; Ta and T ′
a(∀)a ∈ [A].

The three layers of edges are:

Left: A vertex (a, b)1 is connected to (a, x, y)2 iff

x ∈ Sab and y ∈ T ′
a. That is, the neighbors of

(a, b)1 are {a} × Sab × T ′
a.

Middle: A vertex (a, x, y)2 is connected to all vertices

(c, x, y)3, (∀)c ∈ [A].
Right: A vertex (c, d)4 is connected to (c, x, y)3 iff

x ∈ Tc and y ∈ S′
cd. That is, the neighbors of

(c, d)4 are {c} × Tc × S′
cd.

The query will always have the source on level one,

and the destination on level four. The minimum distance

between them is thus 3. The following characterizes

paths of length 3:

Fact 12. Source (a, b)1 and destination (c, d)4 are con-
nected by a path of length 3 if and only if Sab ∩Tc �= ∅
and S′

cd ∩ T ′
a �= ∅.

Proof: A path of length 3, if it exists, has the

form (a, b)1 � (a, x, y)2 � (c, x, y)3 � (c, d)4. By

construction, x ∈ Sab and x ∈ Tc; also y ∈ T ′
a and

y ∈ S′
cd.

When a path of length 3 exists, the distance oracle

must find a path of length at most 2 · 3 = 6. However,

our level structure forces all paths between sources and

destinations to be of odd length. Thus, if a path of length

3 exists, the oracle is forced to return a path of length

at most 5. The following characterizes such paths:

Fact 13. Source (a, b)1 and destination (c, d)4 are con-
nected by a path of length 5 if and only if Sab ∩Tc �= ∅
or S′

cd ∩ T ′
a �= ∅.

Proof: On two levels, the path must spend only one

edge per level; it may spend 3 edges on the remaining

“bad level.” The bad level could be:

1) One can traverse (a, b)1 � (a, x, y)2 �

(a, b′)1 � (a, x′, y′). We have no limitation on

x′ in this setting, but it must be that y′ ∈ T ′
a.

The path must continue (a, x′, y′) � (c, x′, y′) �

(c, d)1, so y′ ∈ Scd. Therefore, T ′
a and S′

cd

intersect.

2) One can traverse (a, x, y)2 � (c′, x, y)2 �

(a′, x, y)2 � (c, x, y)2. However, the values of x
and y cannot change by moving inside the second

level. Thus, it must be that x ∈ Sab ∩ Tc and

y ∈ S′
cd ∩ T ′

a.

3) Analogous to case 1, we have x ∈ Sab ∩Tc.

Thus, returning an approximate path of length 5 is as

hard as solving one of two intersection queries “does Si

intersect Tj?”, where i ∈ [n] and j ∈ [A]. Intuitively,

this will require space Ω̃(n·A). To understand this lower

bound in terms of n and m, note that our graph has

O(n) vertices and m = 2nX2 + X2A2 edges. We will

fix X = lgc n for a large enough constant c to make set

intersection hard. Then, the number of edges is m =
Õ(A2). When aiming for graphs of density m = n2/α,

we set A = Õ(n/
√

α) and thus the space lower bound

is Ω̃(nA) = Ω̃(n2/
√

α).

B. A Formal Reduction

We now give a formal reduction from Conjecture 7

to the distance oracle problem in the layered graphs

defined above. First we convert to the asymmetric ver-

sion of the problem: we are given sets S1, . . . , Sn and

T1, . . . , TA, where A ≤ N , and we are asked queries of

the form “does Si intersect Tj?” Conjecture 7 trivially

implies a lower bound of Ω̃(nA) on the space, since we

can solve the original problem using
 n
A� instances of

this problem.

Let p1 be the probability, according to D, that Si and

Tj intersect (the correct query answer is affirmative). We

must have 0.1 ≤ p1 ≤ 0.9, since otherwise an algorithm

could have constant output, and have small error.

We will now describe an algorithm for the set in-

tersection problem on D × [n]2. First toss a random

coin R to determine whether you will use your input as

(S, T) or as (S′, T ′). Assume the former by symmetry

(R = 0). At construction time, the algorithm sees S, T ,

but does not know i, j yet. Pick (S′, T ′) from D. (Since

we made Conjecture 7 in the cell-probe model, it does

not matter is D is easy to sample algorithmically.) Per-

mute S, T, S′, T ′ randomly, and build a graph based on

them. At query time, (i, j) is given. After applying the

same permutation as for S and T , i translates into (a, b)
and j translates into c. Now choose d randomly; through

the permutation of S′ and T ′, this gives (i′, j′). Query

the distance oracle for the distance (a, b)1 � (c, d)4.

We claim that the distance oracle has no information

about R: the marginal distribution it sees is identical if

(c, x, y)3

Tc

Sab × T ′

a

Tc × S′

cd

T ′

a

Sab (a, x, y)2

S′

cd

Figure 2. The structure of a source–destination path in our 4-level graphs.

R = 0 and R = 1. Indeed, (S, T, S′, T ′) are always

chosen from D×D. Since (i, j) is uniform in [n]× [A]
and d is uniform in [n/A], the distribution of (i, j, i′, j′)
is completely uniform.

Let us now reason from the point of view of the

distance oracle. The probability that there is a path of

length 3 (Si ∩ Tj �= ∅ and S′
i′ ∩ T ′

j′ �= ∅) is precisely

p2
1. Indeed, fix a, b, c, d. Since the permutations for

S, T, S′, T ′ were independently random, the queries

(i, j) and (i′, j′) are independently random. Thus, they

each have probability p1 to hit intersecting sets.

Similarly, the probability that the shortest path has

length 5 is 2p1(1−p1). Let P5 be the probability that the

distance oracle answers 5 conditioned on the shortest

path having length 5. The algorithm must answer 3 or

5 if a length-3 path exists, and cannot if the shortest path

is ≥ 7. Then, the overall probability that it answers 5

is p2
1 + P5 · 2p1(1 − p1).

Now we switch to the view of the set intersection

algorithm. If the true answer to the query is “disjoint,”

we will have a path of length 5 with probability p1,

and a path of length ≥ 7 otherwise. If the true answer

is “intersect,” we will have a path of length 3 with

probability p1, and a path of length 5 otherwise. Since

the distance oracle cannot predict R, it must behave

the same whether a path of length 5 arises for the

first reason (the query sets are disjoint, but in the

manufactured input, the query is positive) or the second

reason (the query sets intersect, but in the manufactured

input the query is negative). Thus, if the original query

should be answered “disjoint,” the probability that a path

of length 5 is reported is p1 · P5. If the original query

should be answered “intersect,” the probability that a

path of length 3 or 5 is reported is p1 + (1 − p1)P5.

Now observe that p1+(1−p1)P5 � p1P5. Indeed, the

gap between them is p1 +(1− 2p1)P5. This expression

has minimum value p1 if p1 ≤ 1
2 , and 1 − p1 if

p1 ≥ 1
2 . Since p1 ∈ [0.1, 0.9], the gap is at least

1
10 . Thus, the algorithm can repeat the reduction a

constant number of times, and differentiate between

“intersect” and “disjoint” queries with any constant

success probability. Observe that p1 and p5 are absolute

constants, so they can be fixed into the algorithm.

V. CONCLUSIONS

By breaking the status quo in the field of distance

oracles, our work potentially opens a road to a large

number of exciting problems:

• Can the space of the Thorup–Zwick distance ora-

cles [TZ05] be improved for approximation greater

than 2? For instance, can one achieve approxima-

tion 3 with space o(n1.5) whenever the graph has

o(n1.5) edges?

• Can one derive lower bounds for approximation

above 2 based on the hardness of set intersec-

tion queries? This would significantly improve the

lower bound of Sommer et al. [SVY09].

• So far, work has focused on constant-time data

structures. It would also be interesting to study

the regime of linear-space data structures, allowing

polynomial query times. For example, by apply-

ing the techniques of Section III, we can obtain

a data structure with linear space that answers

3-approximate distance queries in O(
√

m) time.

What else is possible?

REFERENCES

[ADD+93] Ingo Althöfer, Gautam Das, David P. Dobkin,
Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete & Com-
putational Geometry, 9(1):81–100, 1993.

[BGSU08] Surender Baswana, Akshay Gaur, Sandeep Sen,
and Jayant Upadhyay. Distance oracles for un-
weighted graphs: Breaking the quadratic bar-
rier with constant additive error. In Proc.

35th International Colloquium on Automata, Lan-
guages and Programming (ICALP), pages 609–
621, 2008.

[BK06] Surender Baswana and Telikepalli Kavitha. Faster
algorithms for approximate distance oracles and
all-pairs small stretch paths. In Proc. 47th IEEE
Symposium on Foundations of Computer Science
(FOCS), pages 591–602, 2006.

[BKMP05] Surender Baswana, Telikepalli Kavitha, Kurt
Mehlhorn, and Seth Pettie. New constructions
of (α, β)-spanners and purely additive spanners.
In Proc. 16th ACM/SIAM Symposium on Discrete
Algorithms (SODA), pages 672–681, 2005.

[BS06] Surender Baswana and Sandeep Sen. Approx-
imate distance oracles for unweighted graphs
in expected O(n2) time. ACM Transactions
on Algorithms, 2(4):557–577, 2006. See also
SODA’04.

[CP10] Hagai Cohen and Ely Porat. On the hard-
ness of distance oracle for sparse graph.
arXiv:1006.1117v1, 2010.

[CSTW09] Wei Chen, Christian Sommer, Shang-Hua Teng,
and Yajun Wang. Compact routing in power-law
graphs. In Proc. 23rd International Symposium on
Distributed Computing (DISC), pages 379–391,
2009.

[DHZ00] Dorit Dor, Shay Halperin, and Uri Zwick. All-
pairs almost shortest paths. SIAM Journal on
Computing, 29(5):1740–1759, 2000. See also
FOCS’96.

[EP04] Michael Elkin and David Peleg. (1 + ε, β)-
spanner constructions for general graphs. SIAM
Journal on Computing, 33(3):608–631, 2004. See
also STOC’01.

[EWG08] Mihaela Enǎchescu, Mei Wang, and Ashish Goel.
Reducing maximum stretch in compact routing.
In Proc. IEEE INFOCOM, pages 336–340, 2008.

[KFY04] Dmitri V. Krioukov, Kevin R. Fall, and Xiaowei
Yang. Compact routing on internet-like graphs.
In Proc. IEEE INFOCOM, 2004.

[MN07] Manor Mendel and Assaf Naor. Ramsey par-
titions and proximity data structures. Journal
of the European Mathematical Society, 9(2):253–
275, 2007. See also FOCS’06.

[SVY09] Christian Sommer, Elad Verbin, and Wei Yu.
Distance oracles for sparse graphs. In Proc. 50th
IEEE Symposium on Foundations of Computer
Science (FOCS), pages 703–712, 2009.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate
distance oracles. Journal of the ACM, 52(1):1–24,
2005. See also STOC’01.

[TZ06] Mikkel Thorup and Uri Zwick. Spanners and
emulators with sublinear distance errors. In
Proc. 17th ACM/SIAM Symposium on Discrete
Algorithms (SODA), pages 802–809, 2006.

[Woo06] David P. Woodruff. Lower bounds for additive
spanners, emulators, and more. In Proc. 47th
IEEE Symposium on Foundations of Computer
Science (FOCS), pages 389–398, 2006.

[Yao77] Andrew Chi-Chih Yao. Probabilistic computa-
tions: Toward a unified measure of complexity.
In Proc. 18th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 222–227, 1977.

