
Deciding first-order properties for sparse graphs

Zdeněk Dvořák and Daniel Král’
Deparment of Applied Mathematics and

Institute for Theoretical Computer Science (ITI)
Faculty of Mathematics and Physics, Charles University

Malostranské náměstı́ 25, 118 00 Prague, Czech Republic.
Email: {rakdver,kral}@kam.mff.cuni.cz

Robin Thomas
School of Mathematics

Georgia Institute of Technology
686 Cherry St, Atlanta, GA 30332-0160, USA.

Email: thomas@math.gatech.edu

Abstract—We present a linear-time algorithm for deciding
first-order logic (FOL) properties in classes of graphs with
bounded expansion. Many natural classes of graphs have
bounded expansion: graphs of bounded tree-width, all proper
minor-closed classes of graphs, graphs of bounded degree,
graphs with no subgraph isomorphic to a subdivision of a fixed
graph, and graphs that can be drawn in a fixed surface in such
a way that each edge crosses at most a constant number of
other edges. We also develop an almost linear-time algorithm
for deciding FOL properties in classes of graphs with locally
bounded expansion; those include classes of graphs with locally
bounded tree-width or locally excluding a minor.

More generally, we design a dynamic data structure for
graphs belonging to a fixed class of graphs of bounded
expansion. After a linear-time initialization the data structure
allows us to test an FOL property in constant time, and
the data structure can be updated in constant time after
addition/deletion of an edge, provided the list of possible edges
to be added is known in advance and their addition results
in a graph in the class. In addition, we design a dynamic
data structure for testing existential properties or the existence
of short paths between prescribed vertices in such classes of
graphs. All our results also hold for relational structures and
are based on the seminal result of Nešetřil and Ossona de
Mendez on the existence of low tree-depth colorings.

Keywords-algorithmic metatheorems; graphs with bounded
expansion; graphs with bounded degree; minor-closed classes
of graphs; graphs with locally bounded tree-width

I. INTRODUCTION

A celebrated theorem of Courcelle [1] states that for
every integer k ≥ 1 and every property Π definable in
monadic second-order logic (MSOL) there is a linear-time
algorithm to decide whether a graph of tree-width at most k
satisfies Π. While the theorem itself is probably not useful
in practice because of the large constants involved, it does
provide an easily verifiable condition that a certain problem
is efficiently solvable. Courcelle’s result led to the developo-
ment of a whole new area of algorithmic results, known as
algorithmic meta-theorems, see the survey [18]. For specific
problems there is often a more efficient implementation, for
instance following the axiomatic approach of [27].

While the class of graphs of tree-width at most k is fairly
large, it does not include some important graph classes, such
as planar graphs or graphs of bounded degree. Courcelle’s

theorem cannot be extended to these classes unless P=NP,
because testing 3-colorability is NP-hard for planar graphs
of maximum degree at most four [13] and yet 3-colorability
is expressible in monadic second order logic.

Thus in an attempt at enlarging the class of input graphs,
we have to restrict the set of properties we want to test.
One of the first results in this direction was a linear-time
algorithm of Eppstein [8], [9] for testing the existence of
a fixed subgraph in planar graphs. He then extended his
algorithm to minor-closed classes of graphs with locally
bounded tree-width [10]. Testing a fixed subgraph can be
defined in first order logic (FOL) by a Σ1-sentence and
several generalization of Eppstein’s work in this direction
appeared. The most general results include:
• a linear time algorithm of Frick and Grohe [11] for

deciding FOL properties of planar graphs,
• an almost linear-time algorithm of Frick and Grohe [11]

for deciding FOL properties for classes of graphs with
locally bounded tree-width,

• a fixed parameter algorithm of Dawar, Grohe and
Kreutzer [2] for deciding FOL properties for classes
of graphs locally excluding a minor, and

• a linear-time algorithm of Nešetřil and Ossona de
Mendez [22] for deciding Σ1-properties for classes of
graphs with bounded expansion.

We generalize all these results in two different ways: we
consider classes of graphs with bounded expansion, which
generalize the results mentioned above, and we also con-
sider dynamic setting where the input can change during
computation.

A. Classes of sparse graphs

We now present the concept of classes of graphs of
bounded expansion, introduced by Nešetřil and Ossona de
Mendez in [20], [21], [22], [23]. Examples of such classes of
graphs include proper minor-closed classes of graphs, classes
of graphs with bounded maximum degree, classes of graphs
excluding a subdivision of a fixed graph, classes of graphs
that can be embedded on a fixed surface with bounded
number of crossings per each edge and many others [25].
Many structural and algorithmic properties generalize from

proper minor-closed classes of graphs to classes of graphs
with bounded expansion [5], [26]. Let us clarify here that
there does not seem to be a close relation between this
concept and the well-known notion of expander graphs.

All graphs considered in this paper are simple and finite.
A class of graphs is hereditary if it is closed under taking
subgraphs. An r-shallow minor of a graph G is a graph
that can be obtained from G by removing some of the
vertices and edges of G and then contracting vertex-disjoint
subgraphs of radius at most r to single vertices (removing
arising loops and parallel edges). The grad (greatest reduced
average density) of rank r of a graph G is equal to the largest
average density of an r-shallow minor of G. The grad of
rank r of G is denoted by ∇r(G). In particular, 2∇0(G) is
the maximum average degree of a subgraph of G. If G is a
class of graphs, then the class of r-shallow minors of graphs
contained in G is denoted by G∇r.

A function f : N → R+ bounds expansion of a graph
G if ∇r(G) ≤ f(r) for every integer r ≥ 0. A class G
of graphs has bounded expansion if there exists a function
f : N→ R+ that bounds the expansion of all graphs in G.

If g0 is a real-valued function on a class G of graphs, then

lim sup
G∈G

g0(G)

is the supremum of all reals α such that G contains infinitely
many graphs G with g0(G) ≥ α. A class G of graphs is
nowhere-dense if

lim
r→∞

lim sup
G∈G∇r

log ||G||
log |G|

≤ 1.

Every class of graphs with bounded expansion is nowhere-
dense [24], but the converse is not true.

On the other hand, every class of graphs with locally
bounded tree-width or locally excluding a minor is nowhere-
dense. Recall that a class G of graphs has locally bounded
tree-width if there exists a function f : N→ N such that the
subgraph induced by the r-neighborhood of every vertex v of
a graph G ∈ G has tree-width at most f(r) for every r ≥ 0.
A class G locally excludes a minor if there exist graphs
H1, H2, . . . such that no subgraph of any graph G ∈ G
induced by the r-neighborhood of any vertex v of G contains
Hr as a minor. Finally, a class G of graphs has locally
bounded expansion if there exists function f : N×N→ R+

such that the ∇r(G) ≤ f(d, r) for every graph G that is a
subgraph of the d-neighborhood of a vertex in a graph from
G. Similarly, one can define classes of locally nowhere-dense
graphs, but it turns out that every such class is a class of
nowhere-dense graphs, too.

If L is a language with relational and functional symbols,
an L-structure A is a structure where these symbols are
interpreted. The Gaifman graph of A is the undirected graph
GA with V (GA) = V (A) where two vertices a and b are
adjacent if a and b are contained in the same tuple of a
relation in A or b = f(a) for a function f of A. We say

that A is guarded by a graph G if GA ⊆ G. The size of A,
which is defined to be the sum of sizes of relations of A, is
O(|V (A)|) if A is guarded by a graph belonging to a fixed
class of graphs with bounded expansion. This follows from
the result that if G belongs to a class of graphs with bounded
expansion, then its maximum average degree is bounded and
thus G contains a linear number of complete subgraphs [28].

B. Our results

We study complexity of deciding properties that can be
expressed in terms of a first-order logic formula for classes
of sparse graphs and sparse relational structures. Our two
algorithmic results that unify the results mentioned at the
beginning are the following. We say that an algorithm is
almost linear if its running time is bounded by O(n1+ε) for
every ε > 0, where n is the size of the input instance1.

Theorem 1. Let G be a class of graphs with bounded
expansion, L a language and ϕ an L-sentence. There exists
a linear time algorithm that decides whether an L-structure
guarded by a graph G ∈ G satisfies ϕ.

Theorem 2. Let G be a class of graphs with locally bounded
expansion, L a language and ϕ an L-sentence. There exists
an almost linear time algorithm that decides whether an
L-structure guarded by a graph G ∈ G satisfies ϕ.

Our approach differs from the methods used in [2], [11]
and is based on structural results on the existence of low tree-
depth colorings for graphs with bounded expansion. After
we announced our results in the survey paper [5], Dawar
and Kreutzer [3] announced a proof of Theorem 1 and a
proof of Theorem 2 for more general classes of nowhere-
dense graphs. However, the proofs in the original version
of [3] are incorrect. Kreutzer [19] informed us that they can
prove Theorems 1 and 2 as stated in this paper using our
notion of templates defined further.

We also consider dynamic setting and design the follow-
ing data structures (the first can be viewed as a dynamic
version of Theorem 1):
• for every class G of graphs with bounded expansion, a

language L and an L-sentence ϕ, a data structure that
is initialized with a graph G ∈ G and an L-structure A
guarded by G in time O(n) where n is the number of
vertices of G and that supports:

– adding a tuple to a relation of A in time O(1)
provided A stays guarded by G,

– removing a tuple from a relation of A in time O(1),
– answering whether A |= ϕ in time O(1),

• for every class G of graphs with bounded expansion, an
integer d0 and a language L with no function symbols,
a data structure that for an n-vertex graph G ∈ G is

1Some authors use a weaker notion, namely that for every ε > 0, there
exists an algorithm with running time O(n1+ε). All results stated in this
paper hold with either of these two definitions.

initialized in time O(n), and it supports the following
operations starting with the empty L-structure A with
V (A) = V (G):

– adding a tuple to a relation of A in time O(1)
provided A stays guarded by G,

– removing a tuple from relation of A in time O(1),
– answering whether A |= ϕ for any Σ1-L-sentence
ϕ with at most d0 variables in time O(|ϕ|) and
outputting one of the satisfying assignments, and

if G is only a class of nowhere-dense graphs, then the
data structure supports:

– adding a tuple to a relation of A in time O(nε)
provided A stays guarded by G,

– removing a tuple from a relation of A in time
O(nε), and

– answering whether A |= ϕ for any Σ1-L-sentence
ϕ with at most d0 variables in time O(|ϕ|+nε) and
if so, outputting one of the satisfying assignments,

where ε is any positive real number, and
• for every class G of graphs with bounded expansion

and an integer d, a data structure supporting queries
whether two vertices are at distance at most d provided
the input graph stays in G with the running times:

– initialization time O(n),
– amortized time O(logd n) for adding an edge,
– time O(1) for removing an edge,

where n is the order of the stored graph, and, if G is
only a class of nowhere-dense graphs, then the data
structure has the following running times:

– initialization time O(n1+ε),
– amortized time O(nε) for adding an edge,
– time O(nε) for removing an edge,

where ε is any positive real number.
The second of these data structures is needed in our

linear-time algorithm for 3-coloring triangle-free graphs on
surfaces [7], also see [6]. The last one is inspired by a data
structure of Kowalik and Kurowski [15], [17] for deciding
whether two vertices of a planar graph are connected by a
path of length at most k, where k is a fixed constant.

II. CLASSES OF GRAPHS WITH BOUNDED EXPANSION

We briefly survey structural results that we need. A rooted
forest F is a forest where every tree is an out-branching.
The depth of F is the number of vertices of its longest
directed path. The closure of F is the undirected graph
obtained by adding all edges between vertices joined by a
directed path and forgetting the orientation. The tree-depth
of an (undirected) graph G is the smallest integer d such
that G is a subgraph of the closure of a rooted forest of
depth d. A vertex coloring of a graph G is a low tree-depth
coloring of order K if the union of any s color classes,
s ≤ K, induces a subgraph with tree-depth at most s. The
existence of low tree-depth colorings with bounded numbers

of colors for graphs with bounded expansion is guaranteed
by a seminal result of Nešetřil and Ossona de Mendez [21].

Before we state this result formally, we have to introduce
more definitions. Consider an orientation of G. Let G′ be
the graph obtained from G by adding all edges xy such that:
• there exists a vertex z such that G contains an edge

oriented from x to z and an edge oriented from z to y
(transitivity), or

• there exists a vertex z such that G contains an edge
oriented from x to z and an edge oriented from y to z
(fraternality).

We call G′ the augmentation of the orientation of G. The fol-
lowing was shown by Nešetřil and Ossona de Mendez [21]:

Theorem 3. There exist functions f1 and f2 with the fol-
lowing property. Let G be a graph with expansion bounded
by g. Consider an orientation of G such that each vertex
has in-degree at most D, and let G′ be the augmentation of
this orientation of G. Then the expansion of G′ is bounded
by a function g′(r) = f1(g(f2(r)), D).

Let G be a graph from a class G with bounded expansion.
Consider the following series of graphs: G0 is obtained from
G by orienting edges in such a way that the maximum in-
degree of G0 is at most 2∇0(G). Let G1 be the augmentation
of this orientation of G0, and orient G1 so that the maximum
in-degree of G1 is at most 2∇0(G1); the edges present in
G0 do not necessarily have to preserve their orientation. In
general, Gk is the augmentation of an orientation of Gk−1

with maximum in-degree 2∇0(Gk−1). A greedy algorithm
can be used to find such an orientation of Gk−1. The
graph Gk is referred to as a k-th augmentation of G.
By Theorem 3, the class Gk consisting of the graphs Gk
obtained in the described way from the graphs in G has
bounded expansion. It follows that 2∇0(Gk) ≤ d for some
constant d depending only on the class G and k, and thus
Gk is d-degenerate. In particular, the chromatic number of
a k-th augmentation of a graph G ∈ G is bounded by a
constant that depends on G only.

If G is an orientation of a graph, then any proper coloring
of its (3d2 +1)-th augmentation G′ of G is a low tree-depth
coloring of order d [21], also see [5] for further details.
Moreover, the subgraph H of G′ induced by the vertices of
any s ≤ d color classes contains a rooted forest F with depth
at most s such that H is a subgraph of the closure of F . We
refer to this property of the augmentation as depth-certifying
and call F a depth-certifying forest. Hence, we obtain the
following for classes of graphs with bounded expansion [21]
and classes of nowhere-dense graphs [24].

Theorem 4. Let G be a class of graphs with bounded expan-
sion and d an integer. There exists k such that any proper
coloring of a k-th augmentation of G ∈ G is a low tree-depth
coloring of order d and the k-th augmentation is depth-
certifying. In particular, G has a low tree-depth coloring

of order d with at most K colors where K depends on G
and d only. Such a coloring of G ∈ G and corresponding
depth-certifying forests can be found in linear time.

Theorem 5. Let G be a class of nowhere-dense graphs and
d an integer. There exists k such that any proper coloring of
a k-th augmentation of a graph G ∈ G is a low tree-depth
coloring of order d and the k-th augmentation is depth-
certifying. In particular, G has a low tree-depth coloring
of order d with at most O(nε) colors for every ε > 0.
Moreover, such a coloring of G ∈ G and corresponding
depth-certifying forests can be found in almost linear time.

III. DECIDING FOL PROPERTIES

We now present a proof of Theorem 1; here, we consider
languages L with unary function symbols only.

We start with a lemma for removing quantifiers from an
FOL formula (Lemma 9). If X is a set of L-terms (variables
and compositions of unary functions applied to variables),
an X-template T is a rooted forest with vertex set V (T)
with a mapping αT : X → V (T) such that α−1

T (w) 6= ∅ for
every leaf w of T . If ϕ is a quantifier-free L-formula, then a
ϕ-template is an X-template where X is the set of all terms
appearing in ϕ. The depth of T is the maximum depth of
a tree of T . Two X-templates T and T ′ are isomorphic if
there exists a bijection f : V (T)→ V (T ′) such that
• f is an isomorphism of T and T ′ as rooted forests, in

particular, w is a root iff f(w) is a root, and
• f(αT (t)) = αT ′(t) for every L-term t ∈ X .
The number of X-templates with a given depth is finite:

Proposition 6. For every finite set of terms X and every
integer d, there exist only finitely many non-isomorphic X-
templates of depth at most d.

Let X be a set of terms with variables {x1, . . . , xn}.
An embedding of an X-template T in a rooted forest F
is a mapping ν : V (T) → V (F) such that ν(r) is a
root of F for every root r of a tree of T and ν is an
isomorphism of T and the subforest of F induced by
ν(V (T)). Let S be an L-structure guarded by the closure of
F , and v1, . . . , vn ∈ V (S). We say that the embedding ν is
(v1, . . . , vn)-admissible for S if for every term t ∈ X , we
have ν(αT (t)) = t(v1, . . . , vn) where t(v1, . . . , vn) denotes
the element of V (S) obtained by substituting vi for xi in
the term t and evaluating the functions forming the term t
(in particular, if xi ∈ X , then ν(xi) = vi). Note that ν is
uniquely determined by S and the values v1, . . . , vn.

If F is a rooted forest, then the function p : V (F) →
V (F) is the F -predecessor function if p(v) is the parent of
v unless v is a root of F ; if v is a root of F , p(v) is v.

It is not hard to show that there exists a quantifier-formula
testing whether an embedding is admissible.

Lemma 7 (Testing admissibility). Let d ≥ 0 be an integer,
L a language including a function symbol p and X a finite

set of terms with variables x1, . . ., xn. If T is an X-
template of depth at most d, then there exists a quantifier-
free formula ξT (x1, . . . , xn) such that for every rooted forest
F and every L-structure S guarded by the closure of F
such that pS is the F -predecessor function in S, and for
every n-tuple v1, . . . , vn ∈ V (S), the L-structure S satisfies
ξT (v1, . . . , vn) if and only if there exists a (v1, . . . , vn)-
admissible embedding of T in the forest F for S.

The core of our argument is formed by the next lemma.
Throughout the paper, we call a formula simple if it does
not contain a composition of two or more functions.

Lemma 8. Let d be an integer, L a language, ϕ(x0, . . . , xn)
a simple quantifier-free L-formula that is a conjunction of
atomic formulas and their negations, and T a ϕ-template.
There exist an integer K and an L-formula ϕT such that
• L is the language with L

r
= Lr ∪ {U1, . . . , Uk} and

L
f

= Lf ∪ {p} where U1, . . . , Uk are new nullary or
unary relations, k ≤ K,

• ϕT is quantifier-free and the variables x1, . . . , xn are
the only variables that appear in ϕT , but ϕT need not
be simple, and

• for every rooted forest F with depth at most d and
every L-structure S guarded by the closure of F , there
exists an L-structure S with V (S) = V (S) such that
for every v1, . . . , vn ∈ V (S),
S |= ϕ(v0, v1, . . . , vn) for some v0 ∈ V (S) such that
there exists a (v0, . . . , vn)-admissible embedding of T

in F for S if and only if S |= ϕT (v1, . . . , vn)
where pS is the F -predecessor function and the re-
lations US1 , . . . , U

S
k can be computed (by listing the

singletons they contain) in linear time given F and S.
The interpretation of other symbols of L is preserved.

Proof: Fix a ϕ-template T and let q be the T -
predecessor function. Let X be the set of all terms appearing
in ϕ. Let ξT be the formula from Lemma 7. Finally, let
K = max(∆, c) + 1 where ∆ is the maximum degree of T
and c is the number of components of T .

Let t = f(xi) be a term appearing in ϕ. If αT (t) is
neither an ancestor nor a descendant of αT (xi), then for
any choice of v1, . . . , vn ∈ V (S), there is no (v0, . . . , vn)-
admissible embedding of T for S because vi and fS(vi) are
adjacent in the Gaifmann graph of S; in particular, one is a
descendent of the other in F . Hence, we can set ϕT to ⊥.
So, we can assume the following:

The images under αT of all function images of
each xi are ancestors or descendants of αT (xi). (1)

If αT (x0) is an ancestor of αT (t), say qk(αT (t)) =
αT (x0) for k ≥ 0, where t is a term such that x0 does
not appear in t, then ϕT will be the formula obtained from
ϕ ∧ ξT by replacing each x0 with the term pk(t). Clearly,
S |= ϕT (v1, . . . , vn) if and only if there is a choice of

v0 in V (F) such that S |= ϕ(v0, . . . , vn) and there is a
(v0, . . . , vn)-admissible embedding of T in F for S. So, we
can assume the following:

Every t such that αT (t) is contained in the subtree
of T rooted at αT (x0) is a function image of x0. (2)

We now define an auxiliary formula ϕ′ to be the formula
obtained from ϕ by replacing all subformulas of the form:
• t = t′ where t and t′ are terms and αT (t) 6= αT (t′),
• t 6= t′ where t and t′ are terms and αT (t) = αT (t′), or
• R(t1, . . . , tm) such that αT (t1), . . . , αT (tm) are not

vertices of a clique in the closure of T ,
with ⊥ since such a subformula is not satisfied for any
choice of v0 for which there exists a (v0, . . . , vn)-admissible
embedding of T in F for S. It follows that for every v0 such
that there is a (v0, . . . , vn)-admissible embedding of T in F
for S, S |= ϕ(v0, . . . , vn) if and only if S |= ϕ′(v0, . . . , vn).

Suppose first that the tree of T containing αT (x0) also
contains an αT -image of another variable. Let v be the
nearest ancestor of αT (x0) in T such that there exists a
term tv ∈ X that does not contain x0 and v is an ancestor
of αT (tv). Note that v 6= αT (x0) by (2). Let dv be the
depth of v in T , dx0 the depth of αT (x0) and m the number
of children of v in T . Let t1, . . . , tm−1 be terms such that
αT (ti), 1 ≤ i ≤ m − 1, are vertices of different subtrees
rooted at a child of v not containing αT (x0). Observe that
the variable x0 does not appear in t1, . . . , tm−1 by (1).

Let X0 be the subset of X consisting of terms in which
x0 appears, and let T0 be the X0-template obtained from
T by taking the minimal rooted subtree containing αT (X0)
and the root of the tree containing αT (x0), and restricting
the function αT to X0. Further, let X ′0 be the subset of X
consisting of X0 and the terms t such that αT (t) lies on the
path between the root and αT (x0), and let X ′′0 be the subset
of X0 consisting of the terms mapped to a descendant of v.

We define a unary relation U1(w) to be the set of elements
w of F at depth dv + 1 such that the subtree of w in F
contains an element v0 at depth dx0 (in F) such that
• there is a (v0)-admissible embedding of the template
T0 in F for S, and

• all clauses appearing in the conjunction ϕ′ with terms
from X ′0 only and with at least one term from X ′′0 are
true with x0 = v0 and the terms t ∈ X ′0 \ X0, say
αT (t) = qk(αT (x0)), replaced with pS,k(v0).

The relation U1(w) can be computed as follows: for every
element v0 ∈ V (S) at depth dx0 of F , evaluate all terms in
X0 and test whether the tree T0 and the rooted subtree of F
containing the values of the terms are isomorphic as rooted
trees (this can be done in time linear in the size of T0 which
is constant). If they are isomorphic, evaluate the clauses in
the conjunction ϕ′ with terms from X ′0 only and with at
least one term from X ′′0 with the terms in X ′0 \X0 replaced
with pS,k(v0). If all of them are true, add the predecessor

w of v0 at depth dv + 1 in F to U1. Since the time spent
by checking every vertex v0 at depth dx0 of F is constant,
the time needed to compute U1 is linear.

We define the unary relation Ui(w), 2 ≤ i ≤ m + 1, to
contain all w at depth dv such that U1(w′) for at least i− 1
children w′ of w. The relations Ui(w), 2 ≤ i ≤ m+ 1, can
be computed in linear time from U1.

Let ϕ′′ be the formula obtained from ϕ′ by removing all
clauses with terms from X ′0 only that contain at least one
term from X ′′0 . Observe that if t is a term in ϕ′′ such that
x0 appears in t, i.e., t ∈ X0 \ X ′′0 , then αT (t) lies on the
path between v and the root. Let ϕ′′′ be the formula obtained
from ϕ′′ by replacing every term t, in which x0 appears, with
pk(tv), where k is the integer such that αT (t) = qk(αT (tv)).
Let T ′ be the (X \X0)-template obtained from T by taking
the minimal rooted subtree containing αT (X \ X0) and
restricting the function αT to X \X0. The formula ϕT will
then be the conjunction of the following formulas:
• the formula ϕ′′′(x1, . . . , xn),
• the formula ξT ′ from Lemma 7 for the (X \ X0)-

template T ′, and
• the formulas(∧

i∈Y
U1(pki−1(ti))

)
⇒ U|Y |+2(pk(tv))

for all subsets Y of the set {1, . . . ,m − 1} where k
is the integer such that qk(αT (tv)) = v and ki, i =
1, . . . ,m−1, are the integers such that qki(αT (ti)) = v.

If S |= ϕT (v1, . . . , vn), then there is a (v1, . . . , vn)-
admissible embedding of T ′ in F and the vertex v =
pk(tv) has a son w such that U1(w) and the subtree of
F rooted in w does not contain the value of any term
appearing in X \ X0 (this is guaranteed by the last type
of formulas in the definition of ϕT). In particular, the
subtree rooted in w contains a vertex v0 such that the
(v1, . . . , vn)-admissible embedding of T ′ can be extended
to a (v0, . . . , vn)-admissible embedding of T in F for S and
all clauses in the conjunction of ϕ′ containing terms from
X ′0 are satisfied with x0 = v0. Since S |= ϕ′(v1, . . . , vn),
it follows that S |= ϕ(v0, . . . , vn). The argument that
the existence of v0 such that S |= ϕ(v0, . . . , vn) and the
existence of a (v0, . . . , vn)-admissible embedding of T in
F for S implies that S |= ϕT (v1, . . . , vn) follows the same
lines.

The case that the tree of T that contains the vertex αT (x0)
does not contain αT -image of another variable is handled
similarly. In this case, the predicate U1 is defined for the
roots of the trees of F , and the predicates U2, . . . , Um+1

are nullary predicates such that Ui is true if U1 is satisfied
for at least i− 1 roots of F .

Lemma 8 yields the following.

Lemma 9 (Quantifier elimination lemma). Let d ≥ 0 be
an integer, L a language and ϕ a simple L-formula of the

form ∃x0 ϕ
′ such that ϕ′ is a quantifier-free L-formula with

free variables x0, . . . , xn. There exists an integer K and an
L-formula ϕ such that the following holds:
• L is the language with L

r
= Lr ∪ {U1, . . . , Uk} and

L
f

= Lf ∪ {p} where U1, . . . , Uk are new nullary or
unary relations and k ≤ K,

• ϕ is quantifier-free and the variables x1, . . . , xn are
the only variables that appear in ϕ, and

• for every rooted forest F with depth at most d and
every L-structure S guarded by the closure of F , there
exists an L-structure S with V (S) = V (S) such that
for every v1, . . . , vn ∈ V (S),
S |= ϕ(v1, . . . , vn) if and only if S |= ϕ(v1, . . . , vn)

where pS is the F -predecessor function and the re-
lations US1 , . . . , U

S
K can be computed (by listing the

singletons they contain) in linear time given F and S.
The interpretation of other symbols of L is preserved.

Proof: Let d, L and ϕ′ be fixed. Without loss of
generality, the formula ϕ′ is in the disjunctive normal form
and all the variables x0, . . . , xn appear in ϕ′. If n = 0,
set K = 1, enhance L with a nullary relation U1 and set
ϕ = U1. The value of U1 can be determined in linear time
by testing all possible choices for x0 ∈ V (S).

If n ≥ 1, the proof proceeds by induction on the length
of ϕ′. If ϕ′ is a disjunction of two or more conjunctions,
i.e., ϕ′ = ϕ1∨ϕ2, we apply induction to ∃x0ϕ1 and ∃x0ϕ2.

In the rest, we assume that ϕ′ is a conjunction. By
Lemma 8, for every ϕ′-template T of depth at most d, there
exists a quantifier-free L-formula ϕT such that for every
v1, . . . , vn ∈ V (S), S |= ϕT (v1, . . . , vn) if and only if there
exists v0 such that there is a (v0, v1, . . . , vn)-admissible
embedding of T in F for S and S |= ϕ′(v0, v1, . . . , vn).
The desired formula ϕ is then obtained as the disjunction of
the finitely many (see Proposition 6) L-formulas ϕT where
the disjunction runs over all choices of ϕ′-templates T .

We are now ready to prove Theorem 1.
Proof of Theorem 1: The proof proceeds by induc-

tion on the number of quantifiers contained in ϕ. If ϕ is
quantifier-free, then there is nothing to prove. Hence, assume
that ϕ contains at least one quantifier. Let A be the input L-
structure and G a graph guarding A. We can assume that ϕ is
simple: add an edge oriented from u to v to the graph G for
every u, v ∈ V (A) such that u = fA(v); since the number
of function symbols f is bounded, the maximum in-degree
is increased by a constant only. For each composition of
functions, we define a new functional symbol. The resulting
structure is guarded by a graph H = G(k) where k is the
maximum number of compositions of functions in ϕ.

Since ∀x ψ is equivalent to ¬∃x ¬ψ, we can assume
that ϕ contains a subformula of the form ∃x0ψ, where
ψ is a formula with variables x0, x1, . . . , xN and with no
quantifiers. Let N0 be the number N + 1 increased by
the number of distinct function images of x0, x1, . . . , xN

appearing in ψ. Let K = 3N2
0 +1 and consider a coloring of

a K-th augmentation H(K) of H; this coloring is a depth-
certifying low-tree-depth coloring of H of order N0 (see
the discussion before Theorem 4). Let K0 be the number of
colors used by this coloring and Ci, i = 1, . . . ,K0, a unary
relation containing vertices with the i-th color.

For each function symbol f and i = 1, . . . ,K0, let Cfi be
the predicate such that Cfi (v) is true for v ∈ V (A) if and
only if the color of f(v) is i. The colors of the variables
and their function images appearing in ψ can be described
by an N0-tuple α of numbers between 1 and K0. For such
an N0-tuple α, let ϕα be the conjunction of the terms of
form Cαi

(xi) and Cfαj
(xi) that verifies that the colors of

x0, . . . , xN and their function images are consistent with α.
Clearly, ∃x0ψ is equivalent to the disjunction of the formulas
∃x0(ψ ∧ ϕα) ranging through all choices of α.

For each function symbol f ∈ Lf , we introduce a new
function symbol fα defined by fα(v) = f(v) if both v and
f(v) have a color in α and by fα(v) = v otherwise. For
each relation symbol R ∈ Lr of arity greater than one, let
Rα be defined by restricting R to the vertices with color α.
Let Aα be the corresponding relational structure. Let ϕ′′α be
the formula obtained from ∃x0(ψ ∧ ϕα) by replacing each
function symbol f by fα and each relation symbol R of
arity greater than one by Rα. For a fixed N0-tuple α, the
formula ∃x0(ψ ∧ϕα) is true for A if and only if ϕ′′α is true
for Aα. Note that Aα is guarded by the graph Hα obtained
from H by removing the edges incident with the colors not
in α. Since N0 ≤ K, H(K) contains an out-branching Fα
of depth at most N0 whose closure contains Hα.

Apply Lemma 9 to ϕ′′α and Fα, obtaining a formula
ψα and a structure A′α. We claim that for any choice of
x1, . . . , xN , A′α |= ψα is satisfied in A′α if and only if
∃x0(ψ ∧ ϕα) is satisfied in A. If the colors of x1, . . . , xN
and their function images do not agree with α, then both for-
mulas are not satisfied. Otherwise, the values of x1, . . . , xN
correspond to the vertices of Fα and the formula ψα is in
A′α satisfied if and only if ∃x0(ψ ∧ ϕα) is satisfied in A.

Note that the application of Lemma 9 for each N0-tuple α
extends the language L by a single unary function, which is
determined by Fα, and several nullary and unary relations,
in addition to the new symbols defined in Aα. Since the
number of choices of α is bounded by a function of N0 and
K0, the number of new functional and relational symbols
depends only on the formula ψ and the class G.

Replace now the subformula ∃x0ψ in ϕ by the disjunction
of ψα with all choices of α. The resulting formula is guarded
by a graph H(K) = G(k+K), and because it contains one
less quantifier than ϕ, we can apply induction.

Since each application of Lemmas 9 in the induction
can be performed in linear time and the number of their
applications is bounded by a function depending on ϕ and
G only, the statement of the theorem follows.

The proof of Theorem 2 is based on locality of first order

formulas as formalized in Gaifman’s theorem. Following
the approach from [11], the graph G is covered with
neighborhoods in which localized sentences are evaluated
and then combined to determine the value of ϕ. Due to
space limitations, details have to be omitted.

IV. DYNAMIC DATA STRUCTURES

We start with data structures for testing Σ1-properties.

Theorem 10. Let L be a language with no function symbols,
d0 a fixed integer and G a class of graphs with bounded
expansion. There exists a data structure representing an L-
structure S such that
• given a graph G ∈ G, the data structure is initialized

in linear time with S being initially empty,
• the data structure representing an L-structure S can be

changed to represent an L-structure S′ by adding or
removing a tuple from one of the relations in constant
time provided that both S and S′ are guarded by G,

• the data structure determines in time bounded by
O(|ϕ|) whether a given Σ1-L-sentence ϕ with at most
d0 variables is satisfied by S, and if so, it outputs one
of the satisfying assignments.

Theorem 11. Let L be a language with no function symbols,
k0 a fixed integer, ε a positive real and G a class of nowhere-
dense graphs. There exists a data structure representing an
L-structure S such that
• given a graph G ∈ G, the data structure is initialized

in time O(n1+ε) with S being initially empty,
• the data structure representing an L-structure S can

be changed to represent an L-structure S′ by adding
or removing a tuple from one of the relations in time
O(nε) provided that both S and S′ are guarded by G,

• the data structure determines in time bounded by
O(|ϕ|+ nε) whether a given Σ1-L-sentence ϕ with at
most k0 variables is satisfied by S, and if so, it outputs
one of the satisfying assignments.

Theorems 10 and 11 follow from Lemma 12 which we
prove further. To do so, we need additional definitions.

Let L be a language with no function symbols. For an
integer k, a k-labelled L-structure is an L-structure S with
a partial injective mapping α : [1, k] → V (S), i.e., α need
not be defined for all integers between 1 and k.

The trunk of a k-labelled L-structure S is the L-structure
obtained from S by removing all relations with elements
only from α([1, k]). A k-labelled L-structure S is hollow if
it is equal to its trunk. Two k-labelled L-structures S1 and
S2 are k-isomorphic if their trunks are isomorphic through
an isomorphism commuting with mappings α1 and α2.

Suppose now that an L-structure S is guarded by the
closure of a rooted tree T . For a vertex v of T at depth
d, let PT (v) denote the path from the root of T to v and
T 〈v〉 the elements the subtree of v (including v itself).

Then, S〈v〉 denotes the set of all d-labelled L-structures S′

such that S′ is an induced substructure of S with elements
only in PT (v) ∪ T 〈v〉 and α(i) = w for every vertex
w ∈ PT (v) ∩ V (S′) at depth i− 1. If a vertex of PT (v) at
depth i− 1 is not contained in S′, then α(i) is not defined.

Lemma 12. Let L be a language with no function symbols,
d0 a fixed integer and F a rooted forest of depth at most d0.
There exists a data structure representing an L-structure S
guarded by the closure of F such that
• the data structure is initialized in linear time,
• the data structure representing an L-structure S can be

changed to represent an L-structure S′ by adding or
removing a tuple from one of the relations in constant
time provided that both S and S′ are guarded by the
closure of F , and

• the data structure determines in time bounded by
O(|ϕ|) whether a given Σ1-L-sentence ϕ with at most
d0 variables is satisfied by S, and if so, it outputs one
of the satisfying assignments.

Proof: For every vertex v of F at depth d, we will store
• the list of all relations from S that contain v and all

their elements are in PF (v), and
• the list of non-d-isomorphic d-labelled hollow L-stru-

ctures with at most d0 elements that are d-isomorphic
to a d-labelled L-structure contained in S〈v〉.

Observe that there are only finitely many non-d-isomorphic
d-labelled L-structures with at most d0. If v is a non-leaf
vertex of F , there will be a third list associated with v:
• the list of non-isomorphic (d + 1)-labelled hollow L-

structures S′ with at most d0 elements that appear in
the second list of at least one child of v; for each such
S′, there will be stored the list of all such children v.

In addition, there will be a global list of all non-isomorphic
induced L-substructures of S with at most d0 elements.

Let us describe how these lists are initialized. The initial-
ization of the first type of lists is trivial: put each relation
to the list of its element that is farthest from the root.

Initialization of other lists is more difficult. We proceed
from the leaves. If v is a leaf at depth d, then the second list
of v contains only those hollow d-labelled L-structures S′

that are formed by vertices on P (v) such that if v ∈ V (S′),
then S′ contains precisely all unary relations of S containing
v, and if v 6∈ V (S′), then S′ contains no relations at all.

Suppose now that v is not a leaf. The third list associated
with v can be initialized by merging the second type of lists
of children of v. We describe how it can be decided whether
a d-labelled hollow L-structure S′ should be contained in the
list of v of the second type. Assume that S〈v〉 contains a
d-labelled hollow L-structure S′′ that is d-isomorphic to S′.

Then, V (S′′) can be decomposed into disjoint subsets
V0, V1, . . . , Vm such that V0 = V (S′′) ∩ P (v), each of the
sets Vi, i = 1, . . . ,m, is fully contained in a subtree of a

child vi of v, and different subsets V1, . . . , Vm are contained
in different subtrees. Observe that every relation of S′′ must
be contained in V0∪Vi for some i = 1, . . . ,m, and the only
relations of S′′ contained in V0 are those that contain v.

Hence, the existence of S′′ can be tested by considering all
partitions of V (S′) into disjoint subsets V0, V1, . . . , Vm such
that α([1, d]) ⊆ V0, |V0 \ α([1, d])| ≤ 1 and every relation
of S′ is contained in V0 ∪ Vi for some i = 1, . . . ,m, and
then testing the existence of children v1, . . . , vm such that
the second list of vi contains a (d + 1)-labelled hollow L-
structure (d+ 1)-isomorphic to the (d+ 1)-labelled hollow
L-structure of S′ induced by V0 ∪Vi; if |V0 \α([1, d])| = 1,
then α(d+ 1) is defined to be equal to the unique element
of V0 \ α([1, d]) and we also test whether the relations of
S′ containing α(d + 1) are precisely those relations of S
restricted to P (v) that contain v (those in the first list of v).

We now describe how to test the existence of children
v1, . . . , vm. Let W be the set of children of v such that: if
v has at most m children with their second list containing a
(d+1)-labelled hollow L-structure (d+1)-isomorphic to the
substructure of S′ induced by V0 ∪ Vi, then W contains all
such children of v. If v has more than m such children, then
W contains arbitrary m of these children. Clearly, |W | ≤
m2 ≤ d2

0. In order to test the existence of such children
v1, . . . , vm of v, we form an auxiliary bipartite subgraph
B: one part of B is formed by numbers 1, . . . ,m and the
other part by children of v contained in W . A child w ∈W
is joined to a number i if the second list of w contains a
(d + 1)-labelled hollow L-structure (d + 1)-isomorphic to
the substructure of S′ induced by V0 ∪ Vi.

Now observe that the children v1, . . . , vm exist if and only
if B has a matching of size m. Since the number of disjoint
non-empty partitions of V (S′) to V0, . . . , Vm is bounded,
testing the existence of a d-labelled hollow L-structure S′′

can be performed in constant time for v.
It remains to construct the global list of induced L-

substructures S0 with at most d0 elements. For every L-
structure S′ with at most d0 elements, we compute the
list of trees of F that contain S′. Since S0 is an induced
substructure of S′ if and only if there exist element-disjoint
L-structures S1, . . . , Sm contained in distinct trees of F such
that S0 = S1 ∪ · · · ∪ Sm, we can compute the global list
using the auxiliary bipartite graph described earlier. Since all
structures involved contain at most d0 elements, this phase
requires time linear in the number of trees of F .

We have shown that the data structure can be initialized
in linear time. Let us now focus on updating the structure
and answering queries. Consider a tuple (v1, . . . , vk) that is
added to a relation R or removed from a relation R. Let
r be the root of a tree in F that contains all the elements
v1, . . . , vk and assume that v1, . . . , vk appear in this order on
a path from r. By the definition, the only lists affected by the
change are those associated with vertices on the path P (vk).
Recomputing each of these lists requires constant time (we

proceed in the same way as in the initialization phase except
we do not have to swap through the children of the vertices
on the path to determine which of them contain particular
k-labelled hollow L-substructure S′ in their lists). Since the
number of vertices on the path P (vk) is at most d0, updating
the data structure requires constant time only.

It remains to describe how queries are answered. Since a
Σ1-sentence with d ≤ d0 variables is satisfied if and only
if an L-structure contains an induced L-substructure with
at d elements that satisfies the sentence, the queries can
be answered in constant by inspecting the global list. The
satisfying assignment can be provided in constant time if
during the computation for each substructure a certificate
why it was included in the list is stored (this requires
constant time overhead only).

We now give a data structure for testing FOL properties.

Theorem 13. Let G be a class of graphs with bounded
expansion, L a language and ϕ an L-sentence. There exists
a data structure that is initialized with an n-vertex graph
G ∈ G and an L-structure A guarded by G in time O(n)
and supports the following operations:
• adding a tuple to a relation of A in constant time

provided A stays guarded by G,
• removing a tuple from a relation of A in constant time,
• determining in constant time whether A |= ϕ.

In Theorem 13, we do not allow to change function values
of functions from L to simplify our exposition; this does
not present a loss of generality as one can model functions
as binary relations. Theorem 13 follows from a dynamized
version of Theorem 1.

Theorem 14. Let G be a class of graphs with bounded
expansion, L a language and ϕ an L-sentence. There exists
a language L′ and a quantifier-free L′-sentence ϕ′ and a
data structure representing an L′-structure A′ that can be
initialized with an n-vertex graph G ∈ G and an L-structure
A guarded by G in time O(n), V (A) = V (A′), such that
• A |= ϕ if and only if A′ |= ϕ′, in particular, testing

whether A |= ϕ can be performed in constant time,
• adding a tuple to a relation of A can be done in

constant time provided A stays guarded by G, and
• removing a tuple from a relation of A can be done in

constant time.

Theorem 14 is based on a dynamization of Lemma 8.

Lemma 15. Let d be a positive integer, L a language,
ϕ(x0, . . . , xn) a simple quantifier-free L-formula that is a
conjunction of atomic formulas and their negations, and T
a ϕ-template. There exists an integer K and an L-formula
ϕT such that
• L is the language with L

r
= Lr ∪ {U1, . . . , Uk} and

L
f

= Lf ∪ {p} where U1, . . . , Uk are new nullary or
unary relations, k ≤ K,

• ϕT is quantifier-free and the variables x1, . . . , xn are
the only variables that appear freely in ϕT , but ϕT
need not be simple, and

• for every rooted forest F with depth at most d and
every L-structure S guarded by the closure of F , there
exists an L-structure S with V (S) = V (S) such that
for every v1, . . . , vn ∈ V (S)
S |= ϕ(v0, v1, . . . , vn) for some v0 ∈ V (S) such that
there exists a (v0, . . . , vn)-admissible embedding of T

in F for S if and only if S |= ϕT (v1, . . . , vn)
where pS is the F -predecessor function and the re-
lations US1 , . . . , U

S
k can be computed (by listing the

singletons they contain) in linear time given F and S.
The interpretation of other symbols is preserved in S,

• adding to or removing a tuple from a relation of S
results in adding and removing a constant number of
singletons from unary relations among US1 , . . . , U

S
k ,

and these changes can be computed in constant time,
provided S stays guarded by the closure of F .

Proof: We need to describe how the relations US1 , . . .,
USk can be updated in constant time after adding or removing
a tuple to a relation of S. Let us consider in more detail
the case analyzed in the proof of Lemma 8 and leave to
the reader the case mentioned at the end of the proof of
Lemma 8. Recall (see the proof of Lemma 8 for notation)
that U1(w) is a unary relation containing elements w of F
at depth dv + 1 such that the subtree of w in F contains an
element v0 at depth dx0 (in F) with the following properties:
• there is a (v0)-admissible embedding of the template
T0 in F for S, and

• all clauses appearing in the conjunction ϕ′ with terms
from X ′0 only and with at least one term from X ′′0 are
true with x0 = v0 and the terms t ∈ X ′0 \ X0, say
αT (t) = qk(αT (x0)), replaced with pS,k(v0).

Since none of the functions of S changes, the first condition
cannot change when adding or removing a tuple to a relation
of S. The second one can change only when a tuple
containing a term from X ′′0 with x0 = v0 is added or
removed. Since the values of the terms in X ′′0 with x0 = v0
appear only in a subtree of w, only a single element can
be added to or removed from U1. Based on the tuple we
add or remove, we can identify which w can be added
to or removed from U1 and, using the data structure from
the proof of Lemma 12, we can test in constant time the
existence of v0 satisfying the second condition (the values
of all terms from X0 with x0 = v0 are in the subtree of w
and of those in X ′0 \X0 are on the path from w to the root).

Once the relation U1 is updated, the relations U2, . . . , Uk
can be updated in constant time as well: keep a counter
determining the number of children in U1.

We are now ready to prove Theorem 14.
Proof of Theorem 14: When the L-sentence ϕ is fixed

in Theorem 1, the language L′ and the L′-sentence ϕ′ are

also fixed. Hence, the only object that changes when the
relations of A changes are relations in A′; since the functions
in A′ stay the same and thus the m-th augmentation of the
graph G from Theorem 1 that guards A′ stays the same.

We now have to inspect the proofs of Lemma 9 and
Theorem 1 in more detail. Since the graph G and all its
augmentations stay the same, the coloring used in Lemma 9
also does not change. In particular, at each step of the
inductive proof of Theorem 1, every rooted forest F to
which Lemma 9 is applied stays the same. In the proof
of Lemma 9, we replace use of Lemma 8 with use of
Lemma 15 and observe that every change in S results in
a constant number of changes in S which can be identified
in constant time. Hence, in the inductive proof of Theorem 1,
a single change in A results in constantly many changes to
the structure obtained in the first inductive step, which result
in constantly many changes to the structure obtained in the
second inductive step, etc. Since time to update the final L′-
structure A′ is constant for each of constantly many choices
that propagates through the induction from a single change
of A, the overall update time is constant.

At the end of this section, we present our generalization of
the data structure designed by Kowalik and Kurowski [15],
[17].

Theorem 16. Let L be a language containing only binary
relation symbols, ` an integer, and G a hereditary class
of graphs with bounded expansion. There exists a data
structure representing an L-structure S with GS ∈ G such
that

• the data structure can be initialized in time O(|S|),
• it can be transformed to represent S+R(u, v), R ∈ Lr,

in amortized time O(log` |S|), given that GS+R(u,v) ∈
G,

• it can be transformed to represent S−R(u, v), R ∈ Lr,
in constant time, and

• a query whether

(∃x1) . . . (∃x`−1)R1(u, x1) ∧ . . . ∧R`(x`−1, v)

for a given pair of elements u and v and a given
sequence R1, . . . , R` can be answered in constant time.
Moreover, in the positive case, a choice of x1, . . . , x`−1

that satisfy R1(u, x1) ∧ . . . ∧ R`(x`−1, v) can also be
found in constant time.

For classes of nowhere-dense graphs, we obtain:

Theorem 17. Let L be a language containing only binary
relation symbols, ` an integer, ε a positive real, and G a
hereditary class of nowhere-dense graphs. There exists a
data structure representing an L-structure S, where n =
|V (S)|, with GS ∈ G such that

• the initial data structure representing S can be built in
time O(n1+ε),

• it can be transformed to represent S+R(u, v), R ∈ Lr,
in amortized time O(nε), assuming that GS+R(u,v) ∈
G,

• it can be transformed to represent S−R(u, v), R ∈ Lr,
in time O(nε), and

• it answers queries whether

(∃x1) . . . (∃x`−1)R1(u, x1) ∧ . . . ∧R`(x`−1, v)

for a given pair of vertices u and v and a given
sequence R1, . . . , R` in time O(nε). Moreover, in the
positive case, a choice of x1, . . . , x`−1 that satisfy
R1(u, x1)∧ . . .∧R`(x`−1, v) can also be found in time
O(nε).

ACKNOWLEDGEMENT

The authors have been supported by Institute for Theo-
retical Computer Science (ITI), the project 1M0545 of the
Ministry of Education of Czech Republic. The third author
was partially supported by NSF under Grant No. DMS-
0701077.

REFERENCES

[1] B. Courcelle, The monadic second-order logic of graph
I. Recognizable sets of finite graphs, Inform. and Comput. 85
(1990), 12–75.

[2] A. Dawar, M. Grohe and S. Kreutzer, Locally excluding a
minor, in: Proc. LICS’07, IEEE Computer Society Press,
270–279.

[3] A. Dawar and S. Kreutzer, Parameterized Complexity of
First-Order Logic, Electronic Colloquium on Computational
Complexity, TR09-131 (2009).

[4] Z. Dvořák, K. Kawarabayashi and R. Thomas, Three-coloring
triangle-free planar graphs in linear time, in: Proc. SODA’09,
ACM&SIAM, 2009, 1176–1182.

[5] Z. Dvořák and D. Král’, Algorithms for classes of graphs
with bounded expansion, in: Proc. WG’09, LNCS vol. 5911,
Springer, 2009, 17–32.

[6] Z. Dvořák, D. Král’ and R. Thomas, Coloring triangle-free
graphs on surfaces, in: Proc. SODA’09, ACM&SIAM, 2009,
120–129.

[7] Z. Dvořák, D. Král’ and R. Thomas, Three-coloring triangle-
free graphs on surfaces VI. A linear-time algorithm, in
preparation.

[8] D. Eppstein, Subgraph isomorphism in planar graphs and
related problems, in: Proc. SODA’95, ACM&SIAM, 632–
640.

[9] D. Eppstein, Subgraph isomorphism in planar graphs and
related problems, J. Graph Algorithms Appl. 3 (1999), 1–27.

[10] D. Eppstein, Diameter and treewidth in minor-closed graph
families, Algorithmica 27 (2000), 275–291.

[11] M. Frick and M. Grohe, Deciding first-order properties of
locally tree-decomposable structures, J. ACM 48 (2001),
1184–1206.

[12] H. Gaifman, On local and non-local properties, in: Proc.
Herbrands Symp. Logic Coloq., North-Holland, 1982.

[13] M. Garey, D. Johnson and L. Stockmeyer, Some simplified
NP-complete graph problems, Theoret. Comput. Sci. 1 (1976)
237–267.

[14] H. Grötzsch, Ein Dreifarbensatz für dreikreisfreie Netze auf
der Kugel, Wiss. Z. Martin-Luther-Universität, Halle, Witten-
berg, Math.-Nat. Reihe 8 (1959), 109–120.

[15] L. Kowalik and M. Kurowski, Short path queries in planar
graphs in constant time, in: Proc. STOC’03, 143–148.

[16] L. Kowalik, Fast 3-coloring triangle-free planar graphs, in:
Proc. ESA’04, LNCS vol. 3221, Springer, 2004, 436–447.

[17] L. Kowalik and M. Kurowski, Oracles for bounded length
shortest paths in planar graphs, ACM Trans. Algorithms 2
(2006), 335–363.

[18] S. Kreutzer, Algorithmic meta-theorems, to appear in a work-
shop volume for a workshop held in Durham 2006 as part of
the Newton institute special programme on Logic and Algo-
rithms. An extended abstract appeared in: Proc. IWPEC’08,
LNCS vol. 5018, Springer, 2008, 10–12.

[19] S. Kreutzer, private communication, July 2010.

[20] J. Nešetřil and P. Ossona de Mendez, Linear time low tree-
width partitions and algorithmic consequences, in: Proc.
STOC’06, 391–400.

[21] J. Nešetřil and P. Ossona de Mendez, Grad and classes with
bounded expansion I. Decompositions., Eur. J. Comb. 29
(2008), 760–776.

[22] J. Nešetřil and P. Ossona de Mendez, Grad and classes with
bounded expansion II. Algorithmic aspects., Eur. J. Comb. 29
(2008), 777–791.

[23] J. Nešetřil and P. Ossona de Mendez, Grad and classes
with bounded expansion III. Restricted graph homomorphism
dualities., Eur. J. Comb. 29 (2008), 1012–1024.

[24] J. Nešetřil and P. Ossona de Mendéz, On nowhere dense
graphs, manuscript, 2008.

[25] J. Nešetřil, P. Ossona de Mendez and D. Wood, Charac-
terisations and Examples of Graph Classes with Bounded
Expansion, preprint (arXiv:0902.3265v2).

[26] J. Nešetřil and P. Ossona de Mendez, Structural properties
of sparse graphs, in: M. Grötschel, G. O. H. Katona (eds.):
Building Bridges Between Mathematics and Computer Sci-
ence, Bolyai Society Mathematical Studies vol. 19, Springer,
2008.

[27] N. Roberson and P. D. Seymour, Graph minors. XIII: the
disjoint paths problem, J. Combin. Theory Ser. B 63 (1995),
65–110.

[28] D. Wood, On the maximum number of cliques in a graph,
Graphs Combin. 23 (2007), 337–352.

