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Abstract—Given a set system (V,S), V = {1, . . . , n} and S =
{S1, . . . , Sm}, the minimum discrepancy problem is to find a
2-coloring X : V → {−1,+1}, such that each set is colored as
evenly as possible, i.e. find X to minimize maxj∈[m]

∣∣∣∑i∈Sj
X (i)

∣∣∣.
In this paper we give the first polynomial time algorithms for

discrepancy minimization that achieve bounds similar to those
known existentially using the so-called Entropy Method. We also
give a first approximation-like result for discrepancy. Specifically
we give efficient randomized algorithms to:

1) Construct an O(n1/2) discrepancy coloring for general sets
systems when m = O(n), matching the celebrated result
of Spencer [17] up to O(1) factors. More generally, for
m ≥ n, we obtain a discrepancy of O(n1/2 log(2m/n)).

2) Construct a coloring with discrepancy O(t1/2 logn), if each
element lies in at most t sets. This matches the (non-
constructive) result of Srinivasan [19].

3) Construct a coloring with discrepancy O(λ log(nm)),
where λ is the hereditary discrepancy of the set system.

The main idea in our algorithms is to produce a coloring over
time by letting the color of the elements perform a random walk
(with tiny increments) starting from 0 until they reach ±1. At
each step the random hops for various elements are correlated
by a solution to a semidefinite program, where this program is
determined by the current state and the entropy method.

Index Terms—Discrepancy Theory, Constructive Algorithms.

I. INTRODUCTION

Let (V,S) be a set-system, where V = {1, . . . , n} are the
elements and S = {S1, . . . , Sm} is a collection of subsets
of V . Given a {−1,+1} coloring X of elements in V , let
X (Sj) =

∑
i∈Sj
X (i) denote the discrepancy of X for set S.

The discrepancy of the collection S is defined as disc(S) =
minX maxj∈[m] |X (Sj)|.

Understanding the discrepancy of various set-systems has
been a major area of research both in mathematics and
computer science, and this study has revealed fascinating
connections to various areas of mathematics. Discrepancy also
has a range of applications to several topics in computer sci-
ence such as probabilistic and approximation algorithms, com-
putational geometry, numerical integration, derandomization,
communication complexity, machine learning, optimization
and so on. We shall not attempt to describe these connections
and applications here, but refer the reader to [6], [9], [12].

A. Discrepancy of General Set Systems

What is the discrepancy of an arbitrary set system with n
elements and m sets?

This is perhaps the most basic question in discrepancy theory.
Clearly, if we color the elements randomly, for any set S, we
expect |X (S)| to be about O(|S|1/2) = O(n1/2), i.e. about
the standard deviation. Moreover, by standard tail bounds, the
probability that X (S)| ≥ cn1/2 is at most e−Ω(c2). So, by
union bound over the m sets, the discrepancy of the set system
will be O((n logm)1/2). This bound for randomly colorings
is also tight in general.

Surprisingly, it turns out that better colorings always exist!
A celebrated result of Spencer [17] states that: Any set system
on n elements and m ≥ n sets has O((n log(2m/n))1/2) dis-
crepancy. This guarantee is most interesting when m = O(n).
In particular when m = n, Spencer showed a bound of 6n1/2

(commonly referred to as the “six standard deviations suffice”
result). This is the best possible bound up to constant factors.
Spencer’s result is one of the highlights of discrepancy theory
and is based on a clever use of the Pigeonhole Principle, a
technique first developed by Beck [4]. The technique has since
been used widely and is referred to as the Entropy Method or
the Partial Coloring Lemma (we discuss this method and its
application to obtain Spencer’s result in section II).

However, prior to our work, it was not known how to make
this result algorithmic. In fact, no better efficient algorithm
than simply random coloring was known and reducing this gap
has been a long-standing question [12], [17], [1], [19]. Due to
its fundamental use of the Pigeon Hole Principle, Spencer’s
result is widely believed to be more non-constructive than
other existential results such as those based on the probabilistic
method or the Lovasz Local Lemma. We quote

“Is there a polynomial time algorithm that gives discrep-
ancy Kn1/2 . . .. The difficulties in converting these theorems
to algorithms go back to the basic theorem of this Lecture and
lie, I feel, in the use of the Pigeonhole Principle . . . ”. –
Joel Spencer [18] (Page 69).

It is also known that any non-adaptive or online algorithm
(for details see [2], page 239) must have a discrepancy of
Ω(
√
n log n), and it has been conjectured [2], page 240, that

no polynomial time algorithm may exist for finding a coloring
with discrepancy c

√
n.

In this paper we resolve this question and show that.

Theorem I.1. Given any set system with n elements and
n sets S1, . . . , Sn, there is a randomized polynomial time
algorithm that with probability at least 1/ log n, constructs



a {−1,+1} coloring X with discrepancy O(n1/2). More
generally for m ≥ n, our algorithm achieves a bound of
O(n1/2 log(2m/n)) and succeeds with probability at least
1/ logm.

We note that for general m ≥ n, our algorithm has
a somewhat worse dependence on (m/n) than the tight
O(n1/2 log(2m/n)1/2) bound achievable non-constructively.
Also, it suffices to consider the case of m ≥ n: if m ≤ n, one
can essentially reduce n to m using standard techniques [17],
implying a (tight) discrepancy of O(

√
m).

B. Bounded Degree Sets: The Beck-Fiala Setting
Another significant result in discrepancy theory is a theorem

due to Beck and Fiala [5]: The discrepancy of any set system
(V,S) is at most 2t − 1, where t is the maximum degree of
(V,S), i.e. the maximum number of times an element appears
in sets in S.

The proof of this result is algorithmic. This bound was
improved slightly to 2t− 3 by Bednarchak and Helm [7], and
this is currently best known bound independent of n. Beck and
Fiala [5] conjectured that the minimum discrepancy is always
O(t1/2), and this remains a major open question. If the guar-
antee is allowed to depend on n, Beck and Spencer [4], [18]
showed that the discrepancy is O(t1/2 log t log n). Refining
their analysis, the bound was improved to O(t1/2 log n) by
Srinivasan [19]. Both these proofs are based on the entropy
method and are non-constructive. The best known result along
these lines is due to Banaszczyk [3] that achieves a bound of
O(t1/2 log1/2 n). This result is based on certain inequalities
for Gaussian measures on n-dimensional convex bodies due
to [10] and also seems to be inherently existential to the best
of our knowledge.

In this paper we give a constructive version of Srinivasan’s
result.

Theorem I.2. Given any set system (V,S) with n elements
and degree at most t, there is a randomized polynomial time
algorithm that with probability at least 1/n, constructs a
{−1,+1} coloring X with discrepancy O(t1/2 log n).

C. Pseudo-Approximation and Hereditary Discrepancy
A natural question thus is whether the discrepancy of a par-

ticular instance can be approximated efficiently. Very recently
Charikar et al.[8] have shown very strong lower bounds for this
problem. In particular, they show that there exists set systems
with m = O(n) sets, such that no polynomial time algorithm
can distinguish whether the discrepancy is 0 or Ω(

√
n), unless

P = NP .
Here we prove the following pseudo-approximation result

with respect to hereditary discrepancy. Recall that the hered-
itary discrepancy of a set system (V, S) is defined as the
maximum value of discrepancy over all subsets W of V .
Specifically, given W ⊆ V , let S|W denote the collection
{S ∩W : S ∈ S}. Then, the hereditary discrepancy of (V,S)
is defined as

herdisc(S) = max
W⊆V

disc(S|W ).

We show the following result:

Theorem I.3. Given any set system (V,S) with hereditary
discrepancy at most λ, there is a randomized polynomial time
algorithm that with probability at least 1/n, constructs a
{−1,+1} coloring X with discrepancy O(λ log(mn)).

This answers a question of Matousek [14].
A consequence of our proof of theorem I.3 is the following:

Let us define the hereditary vector discrepancy of a set system
S, denoted hervecdisc(S), as the smallest value of λ such that
for each subset W ⊆ V , the following semi-definite program
is feasible.

||
∑

i∈Sj∩W
vi||22 ≤ λ2 for each set Sj (1)

||vi||22 = 1 ∀i ∈W (2)

Being a relaxation, clearly hervecdisc(S) ≤ herdisc(S).
Our proof of theorem I.3 actually produces a coloring with
discrepancy O(hervecdic(S) · log(mn)). Applying theorem
I.3 to each restriction S|W for W ⊆ V also implies that
herdisc(S) = O(hervecdisc(S) · log(mn)). While do not
know how to compute or even approximate hervecdisc(S)
in polynomial time, it might be an interesting quantity to
investigate, as any β approximation for it would imply an
O(β log(mn)) approximation for hereditary discrepancy.

D. Organization

Our algorithms are based on an iterative application of semi-
definite programming. In particular, we construct the coloring
over time by solving a sequence of semi-definite programs,
and use the solution of the SDP to define correlated random
walks with tiny increments for each color. The walk for each
element continues until it reach −1 or +1. Interestingly, the
non-constructive entropy method is a major component in our
algorithm: The semi-definite programs that we construct at
each stage are guided by the parameters given by the entropy
method.

We give a high-level overview of our method in section
III. We begin in section II by describing some preliminary
concepts that we need. At the end of section II, we also
describe the entropy method, and show how it is applied to
obtain the results of [17] and [19]. In section IV we prove
theorem I.3 which is technically the simplest result. The ideas
developed there also imply theorem I.2 which is proved in
section IV-C. Section IV lays the basic groundwork for section
V where we eventually prove theorem I.1.

II. PRELIMINARIES

A. Gaussian Random Variables

We recall the following standard facts about Gaussian
distributions. The Gaussian distribution N(µ, σ2) with mean
µ and variance σ2 has probability distribution function

f(x) =
1

(2π)1/2σ
e−(x−µ)2/2σ2

.



Additivity: If g1 ∼ N(µ1, σ
2) and g2 ∼ N(µ2, σ

2
2) are in-

dependent Gaussian random variables, then for any t1, t2 ∈ R,
the random variable

t1g1 + t2g2 ∼ N(t1µ1 + t2µ2, t
2
1σ

2
1 + t22σ

2
2).

The additivity property of Gaussians implies that

Lemma II.1. Let g ∈ Rn be a random Gaussian, i.e. each
coordinate is chosen independently according to distribution
N(0, 1). Then for any vector v ∈ Rn, the random variable
〈g, v〉 ∼ N(0, ||v||22). Here as usual, ||v||2 = (

∑
i v(i)2)1/2

denotes the `2 norm of v.

B. Probabilistic Tail Bounds for Martingales
We will use the following probabilistic tail bound repeat-

edly.

Lemma II.2. Let 0 = X0 = X1, . . . , Xn be a martingale
with increments Yi = Xi −Xi−1. Suppose for 1 ≤ i ≤ n, we
have that Yi|(Xi−1, . . . , X0) is distributed as ηiG, where G
is a standard Gaussian N(0, 1) and ηi is a constant such that
|ηi| ≤ 1 (note that ηi may depend on X0, . . . , Xi−1). Then,

Pr[|Xn| ≥ λ
√
n] ≤ 2e−λ

2/2.

Proof: Let α be a parameter to be optimized later. We
have,

E[eαYi |Xi−1, . . . , X0]

≤
∫ ∞
−∞

eαy ·
(

1

(2π)1/2ηi
e−y

2/2η2i

)
dy

= eα
2η2i /2 ·

∫ ∞
−∞

(
1

(2π)1/2ηi
e−(y−αη2i )2/2η2i

)
dy

= eα
2η2i /2 ≤ eα

2/2.

Now,

E[eαXn ] = E[eαXn−1eαYn ]

= E[eαXn−1E[eαYn |Xn−1, . . . , X0]] ≤ eα
2/2E[eαXn−1 ].

Thus it follows by induction that E[eαXn ] ≤ eα2n/2. Finally,

Pr[Xn ≥ λ
√
n] = Pr[eαXn ≥ eαλ

√
n]

≤ e−αλ
√
nE[eαXn ] ≤ e−αλ

√
n+α2n/2

Setting α = λ/
√
n and noting that Pr[Xn ≥ λ

√
n] =

Pr[Xn ≤ −λ
√
n] implies the claim.

C. Semidefinite Programming
Let Mn denote the class of all symmetric n×n matrices with

real entries. For two matrices A,B ∈ Rn×n, the Frobenius
inner product of A and B is defined as A • B = tr(ATB) =∑n
i=1

∑n
j=1 aijbij . For Y ∈ Rn×n, let Y � 0 denote that it

is semidefinite, i.e. all its eigenvalues are non-negative. Then
a general semidefinite program has the following form

max C • Y
s.t. Di • Y ≤ di, 1 ≤ i ≤ k

Y � 0

Y ∈ Mn

where C,D1, . . . , Dk ∈Mn and d1, . . . , dk are real numbers.
Semidefinite programs form an important class of convex

programs and can be solved efficiently to any desired level of
accuracy. Since Y is a symmetric semidefinite matrix, it can
be written as Y = WTW for some W ∈ Rn. Let yij denote
the (i, j)-entry of Y and let wi be the i-th column of W ,
then yij = 〈wi, wj〉 for each i, j. Thus, one can equivalently
view an SDP as an arbitrary linear program on variables of
the form 〈wi, wj〉 where wi ∈ Rm for some m (however,
in the SDP solution, one cannot control the dimension m of
the vectors wi. In general m could be as high as the number
of vectors wi). We refer the reader to [20] for further details
about semidefinite programming.

D. The Entropy Method

We recall here the partial coloring lemma of Beck [4], based
on the Entropy Method. We also describe how it is used to
obtain the results of [17] and [19]. The form we present below
is from [13].

Lemma II.3 (Entropy Method). Let S be a set system on an
n-point set V , and let a number ∆S > 0 be given for each
set S ∈ S. Suppose ∆S satisfy the condition∑

S∈S
g

(
∆S√
|S|

)
≤ n

5
(3)

where

g(λ) =

{
Ke−λ

2/9 if λ > 0.1
K ln(λ−1) if λ ≤ 0.1

and K is some absolute constant (wlog we will assume that
K > 3). Then there is a partial coloring X that assigns −1 or
+1 to at least n/2 variables (and 0 to the rest of the variables),
and satisfies |X (S)| ≤ ∆S for each S ∈ S.

This result is proved by arguing (via an entropy/counting
argument) that there are exponentially many colorings
X1, . . . ,X` such that for every i, j, 1 ≤ i < j ≤ `, the
difference in discrepancy |Xi(S) − Xj(S)| ≤ ∆S for all S.
Since ` is exponential, there must exist two colorings among
these `, say X1 and X2, that differ on Ω(n) coordinates. Then,
(X1 −X2)/2 gives the desired partial coloring.

a) Spencer’s Result [17]: The coloring is constructed in
phases. In phase i, for i = 0, . . . , log n, the number of uncol-
ored elements is at most ni ≤ n/2i. In phase i, apply lemma
II.3 to these ni elements with ∆i

S = c(ni log(2m/ni))
1/2. It

is easily verified that (3) holds for a large enough constant c.
This gives a partial coloring on at least ni/2 elements, with
discrepancy for any set S at most ∆i

S . Summing up over the
phases, the overall discrepancy for any set is at most

∆i
S =

∑
i

c

(
n2−i log

(
2m

n2−i

))1/2

= O((n log(2m/n))1/2).

b) Srinivasan’s result [19]: Again the coloring is con-
structed in phases i = 0, . . . , log n, where at most ni ≤ n/2i

elements are uncolored in phase i. In phase i, let si,j denote
the number of sets with number of uncolored elements in



[2j , 2j+1). As the degree of the set system is at most t, we have
si,j ≤ min(m,nit/2

j). Using this fact, a (careful) calculation
shows that (3) can be satisfied if we set ∆S = ct1/2 for
some large enough constant c. The log n phases imply a total
discrepancy of O(t1/2 log n).

III. OUR APPROACH

We consider a linear variant of colorings, where a coloring
is a vector x ∈ [−1, 1]n instead of {−1,+1}n. Our algorithm
constructs the final coloring iteratively in several steps. Let
xt ∈ Rn denote the coloring at time t. We start with the
coloring x0 = (0, 0, . . . , 0) initially. We update the coloring
over time as xt = xt−1 +γt by applying suitably chosen (tiny)
updates γt ∈ Rn. Thus the color xt(i) of each element i ∈ [n]
evolves over time, until it reaches −1 or +1. At that time the
color of i is considered fixed and is never updated again. The
procedure continues until all the elements are colored either
−1 or +1.

The updates γt are chosen carefully (by rounding a certain
SDP) and are related to the parameters in the partial coloring
lemma as follows: Consider the floating elements at time t, i.e.
whose color has not been fixed thus far until time t− 1. For
ease of discussion here, let us assume that all the n elements
are floating. Suppose we know the existence (using entropy
method or otherwise) of a partial coloring X on these floating
elements, such that |X (S)| ≤ ∆S for each S ∈ S . Then we
find a collection of real numbers ηt(i), for i ∈ [n] that satisfy
the following properties.

1) Unbiased Gaussian: Conditioned upon the evolution
of the algorithm until time t − 1, each entry ηt(i)
is distributed as an unbiased Gaussian with standard
deviation at most 1.

2) Large Progress: The sum of standard deviations of ηt(i)
over i ∈ [n] is at least n/2.

3) Low Discrepancy: The entries ηt(i) are correlated such
that for every set Sj , conditional on the evolution of the
algorithm until t−1, the sum

∑
i∈Sj

ηt(i) is distributed
as an unbiased Gaussian with standard deviation at most
∆S .

Then we set γt(i) = γ · ηt(i), where γ is a small scaling
parameter, say for example γ = 1/n, and update xt(i) =
xt−1(i) + γt(i) for all i ∈ [n]. By property 1, note the color
xt(i) of each element i forms a martingale, that stops upon
reaching −1 or +1. By properties 1 and 2, at each time
step, at least Ω(n) elements have an increment of magnitude
Ω(γ). So after about O(1/γ2) steps, in expectation, about
Ω(n) elements will reach −1 or +1 and get fixed. Moreover,
by property 3, the discrepancy of each set S also forms a
martingale with increments of magnitude roughly O(γ∆S).
Thus in O(1/γ2) steps, the expected discrepancy of set S will
be about O(∆S). Note that this gives a procedure that roughly
corresponds to the partial coloring lemma: In particular, given
any coloring x ∈ [−1, 1]n with a floating variables, it produces
another coloring (in O(1/γ2) steps) with at most a/2 floating
variables, such that each set S incurs an additional discrepancy
of ∆S in expectation.

This already suffices to show theorems I.3 and I.2. Let
us consider theorem I.3. We apply the above procedure for
O((log n)/γ2) time steps, until all the variables are fixed to
{−1,+1}. As the hereditary discrepancy is λ, we can always
set ∆S = λ, irrespective of the elements fixed to {−1,+1}
thus far. This implies an expected discrepancy of O(λ

√
log n)

for each set S. By standard tail bounds and taking union
over the m sets, this implies an O(λ log(mn)) discrepancy
coloring.

However the above idea by itself does not suffice for
theorem I.1. The problem is that here we want to guarantee
that the discrepancy for every set is O(n1/2), whereas the
above idea only gives us discrepancy O(n1/2) in expectation.
So would end up losing a O(log1/2 n) factor due to the union
bound over the sets (obtaining nothing better than a random
coloring). So, our second idea is to observe that we can control
the parameters ∆S for each set. We refine the probabilistic
procedure above by finely adjusting the parameter ∆S for
each set S over time, depending on how “dangerous” S has
become, while ensuring that ∆S’s still satisfy the entropy
condition (3). To illustrate the idea, we sketch below a simpler
O((n log log log n)1/2) constructive bound.

Consider the following: Initially, we set all ∆S = cn1/2

for large enough c so that (3) is satisfied easily and has some
slack. As previously, we obtain a corresponding vector γt and
add it to the coloring thus far. We repeat this for O(1/γ2)
steps, at which point we expect half the colors to reach either
−1 or +1. During these steps, if the discrepancy |xt(S)|
reaches 2c(n log log log n)1/2 for some set S, we label S
dangerous and set its ∆S = n1/2/ log n. This ensures that the
discrepancy increment γt(S) will have standard deviation at
most γ(n1/2/ log n) henceforth, making S extremely unlikely
to incur an additional cn1/2 discrepancy over the next O(1/γ2)
steps. However, reducing the ∆S comes at the price of
increasing the entropy contribution of set S in the left hand
side of (3). Indeed, for the algorithm to be able to proceed,
we need to ensure that (3) still holds with these reduced ∆S

(otherwise, we cannot guarantee the existence of the update
vectors γt with required properties).

To show that (3) still holds, we use two facts. First, that
only a small fraction of sets will get dangerous. Second, the
entropy contribution of each dangerous set is not too high. In
particular, by Lemma II.2, at most 2 exp (−2 log log log n) =
2(log logn)−2 fraction of sets ever get dangerous during the
1/γ2 steps. So, with probability at least 1/2, the number of
dangerous sets never exceeds 4n(log log n)−2. We condition
on this event. On the other hand, each dangerous set S
contributes g(∆S/|S|1/2) ≤ g(1/ log n) ≤ K log log n to
(3), and hence the total entropy contribution of dangerous
sets (conditioned on the event above) is O(n/(log log n)2) ·
K log log n = o(n). Thus (3) will continue to hold, if there
was some (reasonably small) slack to begin with.

A refinement of this idea, by considering multiple dangerous
levels, allows us to reduce the discrepancy down to O(n1/2)
implying theorem I.1.



IV. AN PSEUDO-APPROXIMATION FOR DISCREPANCY

We prove theorem I.3. Let (V,S) be a set system, V =
[n], S = {S1, . . . , Sm} with hereditary discrepancy λ. For
any x ∈ Rn, let x(Sj) denote the

∑
i∈Sj

x(i). Our algorithm
will construct the final coloring iteratively in several steps.
Let xt ∈ Rn denote the coloring at time t. We start with
x0 = (0, 0, . . . , 0) initially. At each time step t, we update
xt = xt−1 + γt for some suitably chosen vector γt ∈ Rn. At
the end, the final solution xf ∈ {−1,+1}n will satisfy that
xf (Sj) = O(λ log(mn)) for each j ∈ [m].

During the algorithm, if element i reaches +1 or −1 at time
t, i.e. xt(i) becomes +1 or −1, we say that i is fixed and it
will never be updated again. A variable is alive at beginning
of time t, if it has not been fixed by time t−1. Let A(t) denote
the set of alive variables at end of time t. So, A(0) = [n], and
A = ∅ at the end, and moreover |A(t)| is non-increasing with
t. Let us assume that the algorithm knows λ (it can try out all
possible values for λ). We now describe the algorithm.

A. Algorithm

Initialize, x0(i) = 0 for all i ∈ [n]. Let s =
1/(4n(log(mn))1/2). Let ` = 8 log n/s2.
For each time step t = 1, 2, . . . , ` repeat the following:

1) Find a feasible solution to the following semidefinite
program:

||
∑
i∈Sj

vi||22 ≤ λ2 for each set Sj (4)

||vi||22 = 1 ∀i ∈ A(t− 1) (5)
||vi||22 = 0 ∀i /∈ A(t− 1) (6)

This SDP is feasible as setting vi · vj = X (i)X (j),
where X is the minimum discrepancy coloring of the
set system restricted to A(t− 1) is a valid solution. Let
vi ∈ Rn, i ∈ [n] denote some arbitrary feasible solution
to the SDP above.

2) Construct γt ∈ Rn as follows: Let g ∈ Rn be obtained
by choosing each coordinate g(i) independently from
the distribution N (0, 1). For each i ∈ [n], let γt(i) =
s〈g, vi〉.
Update xt = xt−1 + γt.
If |xt(i)| > 1, for any i, abort the algorithm.

3) For each i, set xt(i) = 1 if xt(i) ≥ 1 − 1/n or set
xt(i) = −1 if xt(i) < −1 + 1/n.
Update A(t) accordingly.

Return the final coloring x`.

B. Analysis

We begin with some simple observations.
1) At each time step t, we have ||vi||22 = 1 for each i ∈

A(t−1) and ||vi||20 = 0 for i /∈ A(t−1). Thus, by lemma
II.1, conditioned on i ∈ A(t − 1), we have γt(i) ∼
N(0, s2) for i ∈ A(t − 1) and γt(i) = 0 otherwise.
Similarly, conditioned on the evolution of the algorithm
until t − 1, the increment γt(Sj) for Sj at time t is
an unbiased Gaussian with variance at most s2λ2 (the

precise value of the variance will depend on v(Sj) =∑
i∈Sj :i∈A(t−1) vi, which depends on the SDP solution

at time t, which in turn depends on the evolution of the
algorithm until time t − 1, in particular on the set of
alive variables A(t− 1)).

2) The rounding in step 3 of the algorithm can effect the
overall discrepancy by at most n · (1/n) = 1, as each
variable is rounded up or down at most once and is never
modified thereafter. Note λ ≥ 1, unless the set system
is empty, so we will ignore the effect of this rounding
step henceforth.

3) For the algorithm to abort in step 2 at time t, it
is necessary that γt(i) > 1/n = 4s(log n)1/2, as
step 3 ensures that |xt−1(i)| < 1 − 1/n. Since γt(i)
is distributed as N(0, s2), this probability is at most
exp (−8 lnmn) = (mn)−8. Since there at most n
variables and only ` = O(n2 log2(mn)) time steps,
by union bound the probability that the algorithm ever
aborts due to this step is at most 1/(mn)4.

The following key lemma shows that the number of alive
variables halves in O(1/s2) steps with reasonable probability.
The proof below follows a simpler presentation due to Joel
Spencer.

Lemma IV.1. Suppose y ∈ [−1,+1]n be an arbitrary coloring
with at most k alive variables. Let z be the coloring obtained
after applying steps (1)-(3) of our algorithm for 8/s2 time
units. Then the probability that z has k/2 or more alive
variables is at most 1/4.

Proof: For 1 ≤ t ≤ u = 8/s2, let yt denote the coloring
at time t starting from y, i.e. after t applications of steps (1)-
(3). Let K be the set of alive variables at t = 0. Let kt denote
the number of variables alive the end of time t. For each time
t, let us define rt =

∑
i yt(i)

2 if kt−1 ≥ k/2. Otherwise,
define rt = rt−1 + s2k/2. Now, we claim that conditioned on
any coloring yt−1, the increment rt − rt−1 is at least s2k/2
in expectation (over the gaussian g ∈ Rn at time t). This is
clearly true if kt < k/2. Otherwise if kt ≥ k/2, then

E[rt − rt−1|yt−1] = E[rt|yt−1]− r(t− 1)

= Eg

[∑
i

(yt−1(i) + γt(i))
2

]
−
∑
i

yt−1(i)2

=
∑
i

(
2yt−1E[γt(i)] + E[γt(i)

2]
)
≥ s2kt−1 ≥ s2k/2.

The last step follows as Eg[γt(i)] = 0 and Eg[γt(i)2] = s2

for each alive variable in yt−1 and is 0 otherwise.
If there are still at least k/2 alive variables at t = u,

then ru =
∑
i∈K yt(i)

2 ≤ k. Moreover, for any run of the
algorithm, it holds that ru ≤ k + us2k/2. This is because as
long as kt ≥ k/2 it must be that rt ≤ k, but if kt becomes
less than k/2, rt increases by exactly s2k/2 at each subsequent
time step. Combining these facts we have,

us2k/2 ≤ E[ru]

≤ Pr[ku ≥ k/2] · k + (1− Pr[ku ≥ k/2]) · (k + us2k/2)



and hence Pr[ku ≥ k/2] ≤ k
us2k/2 = 1/4.

Let E denote the event that the final coloring x` is a proper
{−1,+1} coloring.

Lemma IV.2. Pr[E] ≥ 1/n. That is, a proper coloring is
produced with probability at least 1/n.

Proof: We apply lemma IV.1 with y = xt at epochs t =
0, 8/s2, 16/s2, . . . , (8 log n)/s2 = `. As the number of alive
variables initially is n, with probability at least (1−1/4)logn ≥
1/n, the number of alive variables reduces more than half at
each epoch, and hence the number of alive variables is zero
at t = `.

We now prove theorem I.3. Let Bj denote the (bad) event
that set Sj has discrepancy more than 2 log1/2(mn) · λs`1/2
at the end of time step `. Let B = B1 ∨ B2 ∨ . . . ∨ Bm, and
let Bc denote the complement of B. To prove theorem I.3, it
suffices to show that Pr[Bc∩E] ≥ 1/(2n). Since Pr[Bc∩E] ≥
Pr[E] − Pr[B] and Pr[E] ≥ 1/n by Lemma IV.2, it suffices
to show that Pr[B] ≤ 1/2n.

As xt(Sj) =
∑t
t′=1 γt′(Sj) forms a martingale, with each

increment γt distributed (conditional upon the history until
t − 1) as unbiased Gaussian with variance at most λ2s2, by
lemma II.2 we have Pr[Bj ] = Pr[|x`(Sj)| ≥ 2 log1/2(mn) ·
λs`1/2] ≤ 2 exp(−2 log(mn)) = 2/(m2n2). By union bound
over the m sets, Pr[B] ≤ 2/(mn2) ≤ 1/(2n) which implies
the result.

C. Constructive version of Srinivasan’s result

We prove theorem I.2. Let n denote the number of elements,
and let m denote the number of sets. Since, each element lies
in at most t sets, we can assume that m ≤ nt. The algorithm is
essentially identical to that in section IV. The only difference
is that, at any step t in the algorithm, the entropy method, as
applied in [19], only guarantees us a partial coloring (instead
of a complete coloring) of the alive variables A(t − 1) with
discrepancy ct1/2. So we modify the first step of the algorithm
above as follows:

Find a feasible solution to the following semidefinite pro-
gram:

||
∑
i∈Sj

vi||22 ≤ c2t for each set Sj (7)

∑
i∈A(t−1)

||vi||22 ≥ |A(t− 1)|/2 (8)

||vi||22 ≤ 1 ∀i ∈ A(t− 1) (9)
||vi||22 = 0 ∀i /∈ A(t− 1) (10)

The constant c is not stated explicitly in [19], but it can be
calculated (in fact our algorithm can do a binary search on c
do determine the smallest value c for which the SDP has a
feasible solution). This program is feasible, as vi(1) = X (i),
where X is the partial coloring of A(t− 1) with discrepancy
ct1/2, is a feasible solution.

The analysis is essentially identical to that in section V.
As in lemma IV.1, during 16/s2 steps, the number of alive
variables reduces by a factor of 2, with probability at least

1/2 (note that we have 16/s2 steps above instead of 8/s2

steps in Lemma IV.1, because of the partial coloring instead
of complete coloring of A(t − 1)). Thus, there is a proper
coloring with probability at least 1/n at end of (16/s2) · log n
steps. The expected discrepancy of each set S in this coloring
is at most t1/2(log n)1/2. As there at most nt sets, arguing
as at the end of section IV-B, conditioned on obtaining a
proper coloring at the end, each set has discrepancy at most
O((t log n)1/2(log(nt))1/2) = O(t1/2 log n).

V. CONSTRUCTIVE VERSION OF SPENCER’S RESULT

In this section we prove theorem I.1. In fact, we will prove
the more general guarantee for O(n1/2 log(2m/n)) for set
systems with n elements and m sets, where m ≥ n.

To show this, we will design an algorithmic subroutine with
the following property.

Theorem V.1. Let x ∈ [−1, 1]n be some fractional coloring
with at most a alive variables (i.e. i with x(i) /∈ {−1,+1}).
Then, there is an algorithm that with probability at least 1/2,
produces a fractional coloring y ∈ [−1, 1]n with at most a/2
alive variables, and the discrepancy of any set increases by at
most O(a1/2 log(2m/a)).

Given theorem V.1, the main result follows easily.

Lemma V.2. The procedure in theorem V.1 implies an algo-
rithm to find a proper {−1,+1} coloring with discrepancy
O(n1/2 log(2m/n)). Moreover, the algorithm succeeds with
probability at least 1/(2 logm).

Proof: We start with the coloring x = (0, 0, . . . , 0), and
apply theorem V.1 for ` = log logm steps. With probability at
least 2−` = 1/ logm, this gives a fractional coloring y with at
most n/2` = n/ logm alive variables, with the property that
the discrepancy y(S) of any set is at most

∑̀
k=1

O

(( n
2k

)1/2

log

(
m2k+1

n

))
= O

(
n1/2 log

(
2m

n

))
.

Finally, to obtain a proper coloring z from y, we randomly
round each alive variable i, i.e. set z(i) = −1 with probability
(1− y(i))/2 or to +1 with probability (1 + y(i))/2.

In expectation, E[z(i)] = y(i). Since there at most n/ logm
variables, by Chernoff bounds, the probability that a set S
incurs an additional discrepancy of c(n/ logm)1/2 is at most
2e−c

2/2. Thus, choosing c = 2 log1/2m, with high probability
every set incurs an additional discrepancy of O(n1/2) ≤
O(n1/2 log(2m/n)).

We will focus on proving theorem V.1 henceforth. We first
describe the subroutine, and then analyze it.

A. Algorithmic Subroutine

Consider the following subroutine. The input is a color-
ing x0 ∈ [−1,+1]n with at most a alive variables. Let
s = 1/(4 log3/2(mn)), and let q = log(2m/a). Let d =
9 log(20K) and let c = 64(d(1+lnK))1/2 be constants where
K is defined as in (3). For each time t = 1, 2, . . . repeat the



following steps until t = 16/s2 or fewer than a/2 variables
are alive, whichever occurs earlier.

1) For each set Sj , let ηj denote the total discrepancy
incurred by Sj thus far, i.e. ηj =

∣∣∣∑t−1
s=1 γs(Sj)

∣∣∣.
Define β(0) = 0 and for k = 1, 2, . . . , define

β(k) = ca1/2(q + 1)

(
2− 1

k

)
.

For k = 0, 1, 2, . . . , we say that Sj is k-dangerous at
time t if ηj ∈ [β(k), β(k + 1)).
If ηj > 2β(1) ( note that 2β(1) ≥ β(k) for any k) for
any j, abort the algorithm and return fail.

2) For k = 0, 1, 2 . . . , let S(k) ⊆ S denote the sub-
collection of sets that are currently k-dangerous. Let
A(t − 1) denote the set of variables that are currently
alive. For k = 0, 1, . . . , define

α(k) =
da(q + 1)

(k + 1)5
.

Find a feasible solution to the following semidefinite
program:∑
i∈[n]

||vi||22 ≥ A(t− 1)/2 (11)

||
∑
i∈Sj

vi||22 ≤ α(k) ∀k = 0, 1, . . . , ∀Sj ∈ S(k)(12)

||vi||22 ≤ 1 ∀i ∈ A(t− 1) (13)
||vi||22 = 0 ∀i /∈ A(t− 1) (14)

If the SDP does not have feasible solution, abort the
algorithm and return fail.
Otherwise, let vi ∈ Rn, i = 1, . . . , n be the solution
returned by the SDP.

3) We construct γt from these vi as follows: Let g ∈ Rn
be obtained by choosing each coordinate g(i) indepen-
dently N (0, 1). For each i ∈ [i], let γt(i) = s〈g, vi〉. Up-
date xt = xt−1 + γt. Abort the algorithm if |xt(i)| > 1
for any i.

4) For each i, if xt(i) ≥ 1−1/ log(mn), set xt(i) = 1 with
probability (1 + xt(i))/2 or to −1 otherwise. Similarly,
if xt(i) < −1 + 1/ log(mn), set xt(i) = −1 with
probability (1 − xt(i))/2 or to +1 otherwise. Update
A(t) accordingly.

B. Analysis

We first note some simple observations.
1) For the algorithm to abort in step 3, it must be the

case that γt(i) > 1/ log(mn) for some t, i (this is
ensured by step 4 of the algorithm). However, since
s = 1/(4 log3/2(mn)), this happens with probability at
most 1/(m4n4) and hence we ignore its effect hence-
forth.

2) The rounding in step 4 adds an overall discrepancy of
O(a1/2) to every set, during the course of the subroutine.
This is because, the variance incurred when a variable
is rounded in step 4 is O(1/ log(mn)). Since at most

a variables will ever be rounded, the variance for any
constraint is O(a/ logmn). The result now follows by
standard tail bounds and taking union over the m sets.

The following lemma gives a sufficient condition for the
SDP to be feasible.

Lemma V.3. Consider any time t. If for every k = 1, 2, . . .
no more than mk = a2−10(k+1)/K sets are k-dangerous at t,
then the SDP defined by (11)-(14) has a feasible solution.

Proof: We will show that if the conditions of the lemma
hold, then by the entropy method, there exists a feasible
partial coloring X on at least |A(t− 1)|/2 elements such that
|X (Sj)| ≤ ∆Sj

= (α(k))1/2 is satisfied for each k-dangerous
set Sj , for k = 0, 1, 2, . . . . As X gives a feasible solution to
the SDP constraints (11)-(14), this will imply the result.

Thus, it suffices to show that condition (3) holds for the
given choice of mk and ∆Sj . That is,∑

j∈[m]

g(λj) ≤
1

5
(a/2) ≤ 1

5
|A(t− 1)| (15)

where λj = ∆Sj
· (|Sj ∩ A(t− 1)|)−1/2. Since g(λ) is a

decreasing function of λ, to prove (15), we can use any lower
bound on λj . For any k-dangerous set Sj , for k = 0, 1, . . .,

λj = ∆Sj · (|Sj ∩A(t− 1)|)−1/2

≥ (α(k))1/2(|A(t− 1)|)−1/2 ≥ (d(q + 1)(k + 1)−5)1/2.

Let us define ζ(k) = (d(q + 1)(k + 1)−5)1/2.
We now upper bound the left hand side of (15). As ζ(0) =

(d(q + 1))1/2 ≥ 0.1, the contribution of 0-dangerous sets to
the left hand side of (15) is at most

m ·K · exp (−ζ(0)2/9) = m ·K · exp(−d(q + 1)/9)

≤ 1

20
m exp(−q − 1) ≤ a

20
. (16)

We now bound
∑
k≥1mk · g(ζ(k)). For any k ≥ 1, we have

g(ζ(k)) ≤ K ·max(ln(10), ln(1/ζ(k)))

≤ K ·max(ln(10), ln((k + 1)5/2)) ≤ 5K ln(k + 1).

Thus,∑
k≥1

mk · g(ζ(k)) ≤
∑
k≥1

1

K
a2−10(k+1) · 5K ln(k+ 1) ≤ a/20.

(17)
By (16) and (17) it follows that (15) holds, which proves the
lemma.

Lemma V.4. For k = 1, 2, . . ., let Dk denote the event that
more than mk = a2−10(k+1)/K sets ever become k-dangerous
during t = 1, . . . , 16/s2. It holds that Pr[Dk] ≤ 2−5(k+1).

Proof: We first prove the claim for k = 1. Suppose some
set Sj becomes 1-dangerous at some time. Then, there must
be a time t̂ when |ηj | first exceeds β(1). However, until t̂, ηj
was evolving as martingale, with each conditional increment



distributed as an unbiased Gaussian with variance at most
α(0)s2. By lemma II.2, this has probability at most

2 exp

(
− β(1)2

2α(0)s2(16/s2)

)
≤ exp

(
−c

2(q + 1)

64d

)
= exp(−64(q + 1)(1 + ln(K))) ≤ 1

K
2−602−q−1 (18)

=
1

K
2−60 a

m
. (19)

Thus the expected number of such sets is at most a(1/K)2−60

and hence the claim for k = 1 holds by Markov’s inequality.
For k ≥ 2, the argument is similar. For Sj to become

k-dangerous during phase q, it must have become k − 1-
dangerous at some time t̂ during phase q and then traversed the
distance β(k) − β(k − 1) during at most 16/s2 time steps1.
Since γt(Sj) (the conditional increment of ηj) has variance
most α(k − 1)s2 whenever ηj ∈ [β(k − 1), β(k)], due to the
SDP constraint (12), Lemma II.2 implies that the probability
that Sj becomes k-dangerous at any time is at most

exp
(
−(β(k)− β(k − 1))2/(4α(k − 1)s2 · (16/s2))

)
≤ exp

(
−(c2(q + 1)k)/(64d)

)
= exp(−64(q + 1)(1 + lnK)k)

≤ 1

K
· 2−q−1 · 2−32(k+1)

By Markov’s inequality, Pr[Dk] ≤ 2−5(k+1), which proves the
lemma.

We can now finish off the proof of theorem V.1. Let
D = ∨∞k=1Dk, and let E denote the event that the number
of alive variables is more than a/2 at t = u = 16/s2. Let Dc

and Ec denote the complement of D and E. Note that if Dc

holds, then by Lemma V.3, the SDP is always feasible, and the
algorithm never aborts in step 2 of the algorithm. Moreover,
as mk � 1 for k = c(logm) for large enough c, it follows
that if Dc

k holds then no set ever incurs a discrepancy of more
than β(k) ≤ 2β(1).

Now to prove theorem V.1 it suffices to show that
Pr[Dc|Ec] ≥ 1/2.

By Lemma V.4, Pr[D] ≤
∑
k≥1 Pr[Dk] ≤ 1/16. Also,

Pr[E] ≤ 1/4 follows by an argument identical to that in
the proof of lemma IV.1. In particular, if the number of alive
variables at t is at least a/2, we set rt =

∑
i xt(i)

2, otherwise,
we set rt = rt−1 + s2a/4. Thus, irrespective of xt−1, the
increment rt − rt−1 increases in expectation by∑

i

γt(i)
2 =

∑
i∈A(t−1)

s2||vi||22 ≥ s2a/4.

Moreover, as rt can never exceed a+ ts2a/4, it follows that
after u steps,

us2a/4 ≤ E[rt] ≤ Pr(E) · a+ (1− Pr(E)) · (a+ us2a/4)

1Strictly speaking, there is a non-zero probability that a k − 2 or less
dangerous set may become k-dangerous at next step, however this probability
is super-polynomially small as (β(k + 1) − β(k))/s2α(k) ≥ log3 n (and
α(k) ≈ α(k − 1)). Moreover, it can be made arbitrarily small by setting s
arbitrarily small, say 1/n. So, we can ignore this event in the analysis.

implying that Pr[E] ≤ 4/(us2) = 1/4.
Thus, Pr[Dc|Ec] ≥ Pr[Dc ∩ Ec] ≥ 1 − Pr[D] − Pr[E] ≥

1/2, and the result follows.
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