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Abstract— For an n-variate degree–2 real polynomial
p, we prove that Ex∼D[sign(p(x))] is determined up to an
additive ε as long as D is a k-wise independent distribution
over {−1, 1}n for k = poly(1/ε). This gives a broad
class of explicit pseudorandom generators against degree-2
boolean threshold functions, and answers an open question
of Diakonikolas et al. (FOCS 2009).
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I. INTRODUCTION

This paper is concerned with the power of limited
independence to fool low-degree polynomial thresh-
old functions. A degree-d polynomial threshold func-
tion (henceforth d-PTF), is a boolean function f :
{−1, 1}n → {−1, 1} expressible as f(x) = sign(p(x)),
where p is an n-variate degree-d real polynomial, and
sign : R → {−1, 1} is −1 for negative arguments
and 1 otherwise. PTFs have played an important role
in computer science since the early perceptron work of
Minsky and Papert [26], and have since been extensively
investigated in circuit complexity, communication com-
plexity, learning theory, and voting theory.

A distribution D on {−1, 1}n is said to ε-fool a
function f : {−1, 1}n → {−1, 1} if

|Ex∼D[f(x)]−Ex∼Un [f(x)]| ≤ ε
where Un is the uniform distribution on {−1, 1}n. We
say that D ε-fools a class F of functions if D ε-fools
every f ∈ F . A distribution D on {−1, 1}n is k-wise
independent if every restriction of D to k coordinates
is uniform on {−1, 1}k. Despite their simplicity, k-
wise independent distributions have been a surprisingly
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powerful and versatile derandomization tool, fooling
classes such as AC0 [2], [7], [30] and halfspaces [11].

Our Contributions. The problem we study is the
following: How large must k = k(n, d, ε) be in order for
every k-wise independent distribution on {−1, 1}n to ε-
fool the class of d-PTFs? The d = 1 case of this problem
was recently considered in [11], where it was shown that
k(n, 1, ε) = Θ̃(1/ε2) independent of n, where the tilde
notation hides polylog(1/ε) factors. An open problem
in [11] was to identify k = k(n, d, ε) for d ≥ 2. In this
work, we make progress on this question by proving the
following:

Theorem I.1 (Main Theorem). Any Ω̃(ε−9)-wise in-
dependent distribution on {−1, 1}n ε-fools all 2-PTFs.

Prior to this work, for d > 1 it was not even known
whether o(n)-wise independence suffices for constant
ε. Standard explicit constructions of k-wise independent
distributions over {−1, 1}n have seed length O(k·log n)
[1], [10], which is optimal up to constant factors. As
a consequence, Theorem I.1 gives a general class of
explicit pseudorandom generators (PRGs) for 2-PTFs
with seed length log n · Õ(ε−9).

Another consequence of Theorem I.1 is that bounded
independence suffices for the invariance principle of
[27] in the case of degree-2 polynomials. Roughly, this
says that for a “low influence” degree-2 polynomial p
the distribution of p(x) is essentially invariant if x is
drawn from a k-wise distribution over n uniform ran-
dom signs versus a k-wise distribution over n standard
Gaussians.

The techniques we employ to obtain our main result
are quite robust. Our approach yields for example that
Theorem I.1 holds not only over the hypercube, but
also over the n-variate Gaussian distribution. The proof
also readily extends to show that the intersection of m
halfspaces, or even m degree-2 threshold functions, is
ε-fooled by poly(1/ε)-wise independence for any con-
stant m (over both the hypercube and the multivariate
Gaussian). As a special case of the latter result, we ob-



tain that the Goemans-Williamson hyperplane rounding
scheme [16] can be derandomized using Ω(1/ε2)-wise
independence.1

A key component in our proof is a generic method
known as FT-mollification [22] for smoothing functions
while keeping control on high-order derivatives. In this
work, we both refine the FT-mollification construction
of [22] as well as generalize it to the multivariate setting.
Our new construction turns out to have independent
applications: for example, it yields a simple proof of
Jackson’s theorem in approximation theory [9], as well
as one of its multivariate generalizations to the unit `2
ball by Nathan and Shapiro [28].
Motivation and Related Work. The literature is rich
with explicit generators for various natural classes of
functions. In recent years, there has been much interest
in not only constructing PRGs for natural complexity
classes, but also in doing so with as broad and natural a
family of PRGs as possible. One example is the recent
work of Bazzi [2] on fooling depth-2 circuits (simplified
by Razborov [30]), and of Braverman [7] on fooling
AC0, with bounded independence.

During the past year there has been a flurry of
results on constructing PRGs against threshold functions
[29], [11], [25], [17], [19], [23], [4]. Most directly
related to the results of this paper is the work of
[25]. Independently and concurrently to this work, they
constructed PRGs against d-PTFs with seed length
log n · 2O(d) · (1/ε)8d+3 [25]. For d = 2 their seed-
length is qualitatively similar to ours. Their PRG is not
based on k-wise independence alone.

II. NOTATION
Let p : {−1, 1}n → R be a polynomial and

p(x) =
∑
S⊆[n] p̂SχS(x) be its Fourier-Walsh expan-

sion, where χS(x) =
∏
i∈S xi. The variance of p is

Var[p] =
∑
|S|>0 p̂

2
S . The influence of variable i on

p is Infi(p) =
∑
S3i p̂

2
S , and the total influence of

p is Inf(p) =
∑n
i=1 Infi(p). If Infi(p) ≤ τ · Inf(p)

for all i, we say that the polynomial p is τ -regular. If
f(x) = sign(p(x)), where p is τ -regular, we say that f
is a τ -regular PTF.

For R ⊆ Rd denote by IR : Rd → {0, 1} its
characteristic function, i.e. IR(x) = 1 iff x ∈ R. It
will be convenient in some of the proofs to phrase our
results in terms of ε-fooling I[0,∞)(p(x)) as opposed to
sign(p(x)); by linearity of expectation, these two tasks
are equivalent up to changing ε by a factor of 2.

1Concurrent independent work of [17] also implies
Ω(polylog(1/ε)/ε2)-independence suffices. Other derandomizations
of GW-rounding are known with better ε-dependence, though not
solely via k-wise independence [23], [24], [31].

We frequently use A ≈ε B to denote that |A−B| =
O(ε), and we let the function d2(x,R) denote the `2
distance from some x ∈ Rd to a region R ⊆ Rd.

Finally, we familiarize the reader with some multi-
index notation. A d-dimensional multi-index is a vector
β ∈ Nd (here N is the nonnegative integers). For α, β ∈
Nd, we say α ≤ β if the inequality holds coordinate-
wise, and for such α, β we define |β| =

∑
i βi,

(
β
α

)
=∏d

i=1

(
βi
αi

)
, and β! =

∏d
i=1 βi!. For x ∈ Rd we use xβ

to denote
∏d
i=1 x

βi
i , and for f : Rd → R we use ∂βf

to denote ∂|β|

∂x
β1
1 ···∂x

βd
d

f .

For A ∈ Rn×n, ‖AF ‖ = (
∑n,n
i,j=1A

2
i,j)

1/2 denotes
the Frobenius norm of A, tr(A) denotes the trace of
A, and ‖A‖2 denotes the operator norm of A, i.e.
sup‖x‖2=1 ‖Ax‖2, which also equals the largest magni-
tude of an eigenvalue of A if A is real and symmetric.
We use λmin(A) to denote the smallest magnitude of
an eigenvalue of A.

III. OVERVIEW OF OUR PROOF OF THEOREM I.1
Our proof outline follows the strategy set forth in

[11]: we first prove that bounded independence fools
the class of regular 2-PTFs (Step 1), then reduce the
general case to the regular case (Step 2) to show that
bounded independence fools all 2-PTFs. The bulk of
our proof is to establish Step 1. Step 2 is achieved by
adapting the recent results of [12].

Let f : {−1, 1}n → {−1, 1} be a boolean function.
To show that f is fooled by k-wise independence,
it suffices – and is in fact necessary – to prove the
existence of two degree-k “sandwiching” polynomials
qu, ql : {−1, 1}n → {−1, 1} that approximate f in
`1-norm (see e.g. [2], [5]). Even though this is an n-
dimensional approximation problem, it may be possible
to exploit the additional structure of the function under
consideration to reduce it to a low-dimensional problem.
This is exactly what is done in [11] (and subsequently
in [22]) for the case of regular halfspaces.

We now briefly explain the approach of [11]. Let
f(x) = sign(〈w, x〉) be an ε2-regular halfspace, i.e.
‖w‖2 = 1 and maxi |wi| ≤ ε. The works of [11],
[22] use the Berry-Esséen theorem, which states that
the random variable 〈w, x〉 behaves approximately like
a standard Gaussian and hence can be treated as if it
was one-dimensional. Thus, both [11] and [22] construct
(implicitly in the latter) a (different in each case)
univariate polynomial P : R→ R that is a good “upper
sandwich” `1-approximation to the sign function under
the normal distribution in R. The desired n-variate
sandwiching polynomials are then obtained (roughly) by
setting qu(x) = P (〈w, x〉) and ql(x) = −P (−〈w, x〉).



That is, the n-dimensional approximation problem is
reduced to a 1-dimensional one. It turns out that this
approach suffices for the case of halfspaces. In [11]
the polynomial P is constructed using classical approx-
imation theory tools. In [22] it is obtained by taking a
truncated Taylor expansion of a certain smooth approx-
imation to the sign function, constructed via a method
dubbed “Fourier Transform mollification” (henceforth
FT-mollification).

Let f(x) = sign(p(x)) be a regular 2-PTF. A first
natural attempt to handle this case would be to again
use some univariate polynomial approximation Q to
the sign function – potentially allowing its degree to
increase – and then take qu(x) = Q(p(x)), as before.
Such an approach turns out to fail for both constructions
outlined above, for essentially the same reason (namely,
that a degree–2 polynomial with variance 1 is only
guaranteed to satisfy a tail bound of exp(−O(t)) as
opposed to the exp(−Ω(t2)) of the degree-1 case).
In fact, it is conjectured [14] that no univariate `1 ε-
approximating polynomial for the sign function (i.e.,
without even requiring the sandwiching condition) can
have degree 2o(1/ε

2) (see Section 10.2 of [15] for related
lower bounds).

We now describe FT-mollification and our departure
from the univariate approach.

A. FT-mollification
FT-mollification is a general procedure to obtain a

smooth function with bounded derivatives that approxi-
mates some bounded function f . The univariate version
of the method in the context of derandomization was
introduced in [22]. In this paper we refine the technique
and generalize it to the multivariate setting, and later
use it to prove our main theorem. We remark here that
the FT-mollification construction given in the current
work is not only a generalization of that in [22], but is
redone from scratch and is simpler, while also yielding
improved bounds even in univariate applications.

For the univariate case, where f : R → R, [22]
defined f̃ c(x) = (c · b̂(c · t) ∗ f(t))(x) for a parameter
c, where b̂ has unit integral and is the Fourier transform
of a smooth function b of compact support (a so-called
bump function). Here “∗” denotes convolution. The idea
of smoothing functions via convolution with a smooth
approximation of the Dirac delta function is old, dating
back to “Friedrichs mollifiers” [13] in 1944. Indeed,
the only difference between Friedrichs mollification and
FT-mollification is that in the former, one convolves
f with the scaled bump function, and not its Fourier
transform. The switch to the Fourier transform is made
to have better control on the high-order derivatives of

the resulting smooth function, which turns out to be
crucial in making our proofs work.

The method can be illustrated as follows. Let X =∑
i aiXi for independent Xi. Suppose we would like to

argue that E[f(X)] ≈ε E[f(Y )], where Y =
∑
i aiYi

for k-wise independent Yi’s that are individually dis-
tributed as the Xi. Let f̃ c be the FT-mollified version
of f . If the parameter c = c(ε) is appropriately selected,
we can guarantee that |f(x)−f̃ c(x)| < ε “almost every-
where”, and furthermore have “good” upper bounds on
the high-order derivatives of f̃ c. We could then hope to
show the following chain of inequalities: E[f(X)] ≈ε
E[f̃ c(X)] ≈ε E[f̃ c(Y )] ≈ε E[f(Y )]. To justify the
first inequality, f and f̃ c are close almost everywhere,
and so it suffices to argue that X is sufficiently anti-
concentrated in the small region where they are not
close. The second inequality would use Taylor’s the-
orem, bounding the error via upper bounds on moment
expectations of X and the high-order derivatives of f̃ c.
Showing the final inequality would be similar to the
first, except that one needs to justify that even under k-
wise independence the distribution of Y is sufficiently
anti-concentrated. The argument outlined above was
used in [22] to provide an alternative proof that bounded
independence fools regular halfspaces, and to optimally
derandomize Indyk’s moment estimation algorithm in
data streams [20].

We now describe our switch to multivariate FT-
mollification. Let f : {−1, 1}n → {−1, 1} be arbitrary,
and let S = f−1(1) ⊆ Rn. Then, fooling f(x) and
fooling IS(x) are equivalent. A natural attempt to this
end would be to generalize FT-mollification to n dimen-
sions, then FT-mollify IS and argue as above using the
multivariate Taylor’s theorem. Such an approach is per-
fectly valid, but as one might expect, there is a penalty
for working over high dimensions. Both our quantitative
bounds on the error introduced by FT-mollifying, and
the error coming from the multivariate Taylor’s theorem,
increase with the dimension. Our approach is then to
find a low-dimensional representation of such a region
S which allows us to obtain the desired bounds. We
elaborate below on how this can be accomplished in
our setting.

B. Our Approach
Let f = sign(p) be a regular multilinear degree-2

PTF with variance 1 (wlog). Let us assume for sim-
plicity that p is a quadratic form; handling the additive
linear form and constant is easier. Our approach is now
as follows. We decompose p as p1 − p2 + p3, where
p1, p2 are positive semidefinite quadratic forms with no
small nonzero eigenvalues and p3 is indefinite with all



eigenvalues small in magnitude; such a decomposition
follows from elementary linear algebra.

Then, as suggested by the aforementioned, we would
like to identify a region R ⊆ Rd for small d such that
I{z:p(z)≥0}(x) can be written as IR(F (x)) for some
F : {−1, 1}n → Rd that depends on the pi, then FT-
mollify IR. The region R is selected as follows: note
we can write p3(x) = xTAp3x, where Ap3 is a real
symmetric matrix with trace Υ. We consider the region
R = {z : z21 − z22 + z3 + Υ ≥ 0} ⊆ R3 and define
F (x) = (

√
p1(x),

√
p2(x), p3(x) − Υ), then observe

that IR(F (x)) = 1 iff p(x) ≥ 0. (Recall that p1, p2
are positive-semidefinite, hence the first two coordinates
are always real.) We then prove via FT-mollification
that E[IR(F (x))] is preserved to within ε by bounded
independence. Due to our choice of F , when applying
Taylor’s theorem our error grows only like 2O(k) · ck ·
(E[
√
p1(x)

k
]+E[

√
p2(x)

k
]+E[(p3(x)−Υ)k])/kk for

some (non-constant) c in our proof, and we want this
error to be ε. Essentially, these square roots save us
since kth moments of quadratic forms can grow like
kk, which would nullify the kk in the denominator
of Taylor’s theorem; by having square roots, we only
have to deal with (k/2)th moments. To handle p3, we
use the Hanson-Wright inequality for quadratic forms
with small eigenvalues [18]. The fact that we need
p1, p2 to not only be positive semidefinite, but to also
have no small eigenvalues, is needed because quadratic
forms with no small nonzero eigenvalues satisfy good
tail bounds. This is relevant because ĨcR(F (x)) and
IR(F (x)) are not close for F (x) near the boundary of
R, and we can show that the probability of this event
is small when p1, p2 satisfy good tail bounds.

IV. MULTIVARIATE FT-MOLLIFICATION

We now state and sketch the proof of our FT-
mollification theorem, which yields generic smoothing
guarantees for arbitrary bounded functions mapping Rd
to R. In our proof of Theorem I.1, we are concerned
with d = 4. In some of the other applications of our
technique mentioned in Section VII, d can be a growing
parameter, e.g. the number of halfspaces when fooling
intersections of halfspaces. In what follows, we refer to
F̃ c as the FT-mollification of F .

Theorem IV.1. Let F : Rd → R be bounded, c > 0
arbitrary. There exists F̃ c : Rd → R satisfying

i. ‖∂βF̃ c‖∞ ≤ ‖F‖∞ · (2c)|β| for all β ∈ Nd.
ii. Fix some x ∈ Rd. Then if |F (x) − F (y)| ≤ ε

whenever ‖x − y‖2 ≤ δ for some ε, δ ≥ 0, then
|F̃ c(x)− F (x)| ≤ ε+ ‖F‖∞ ·O(d2/(c2δ2)).

iii. F̃ c is nonnegative if F is nonnegative.

Proof (Sketch). In our full version we show the
existence of a probability density B on Rd satisfying
Ex∼B [‖x‖22] = O(d2), and ‖∂βB‖1 ≤ 2|β| for all
β ∈ Nd. This density B is obtained by taking a “smooth
enough” function b : Rd → R of compact support with∫
Rd b

2(y)dy = 1, then letting B be the square of its
Fourier transform. We then define Bc(x) = cd ·B(cx),
and F̃ c(x) = (Bc ∗ F )(x) =

∫
Rd Bc(y)F (x− y)dy.

For (i), using basic properties of convolution we show
‖F̃ c‖∞ ≤ ‖F‖∞ · c|β| ·

∥∥∂βB∥∥
1
, at which point we

use our bounds on ‖∂βB‖1. For (ii), since B is a
probability density we have

∫
Rd Bc(y)dy = 1 for all

c. Thus,
∫
Rd Bc(x − y)F (y)dy = F (x) +

∫
Rd(F (y) −

F (x))Bc(x − y)dy. We then split the domain of inte-
gration into the regions ‖x−y‖2 < δ and ‖x−y‖2 ≥ δ.
The integral over the first region is bounded by ε,
and over the second region by the product of ‖F‖∞
and a tail bound for B, which we can obtain by the
second moment method since B has bounded variance.
Item (iii) follows since for F nonnegative, F̃ c is the
convolution of two nonnegative functions. �

The following theorem is a corollary of Theorem IV.1
in the case F is the indicator function of a subset R ⊆
Rd. In Theorem IV.2, and in later invocations of the
theorem, we use the following notation: for R ⊂ Rd,
we let ∂R denote the boundary of R (specifically, ∂R
denotes the set of points x ∈ Rd such that for every
ε > 0, the ball about x of radius ε intersects both R
and Rd\R).

Theorem IV.2. For any R ⊆ Rd and x ∈ Rd, |IR(x)−
ĨcR(x)| ≤ min{1, O(( d

c·d2(x,∂R) )
2)}.

V. WARMUP: FOOLING REGULAR HALFSPACES

As a warmup to our main result, we show how
to use Theorem IV.2 to provide a simple proof that
Ω(1/ε2)-wise independence fools the class of ε2-regular
halfspaces, i.e. halfspaces {x : 〈w, x〉 ≥ θ} ⊆ {−1, 1}n
where |wi| ≤ ε for all i and ‖w‖2 = 1. This improves
upon the bounds of [11], [22] by polylog(1/ε) factors,
and is optimal up to constant factors [11].

Theorem V.1. Let Hw,θ = {x : 〈w, x〉 ≥ θ} ⊆
{−1, 1}n such that |wi| ≤ ε for all i ∈ [n] with
‖w‖2 = 1, i.e. Hw,θ is ε2-regular. Suppose x1, . . . , xn
are independent Bernoulli, and y1, . . . , yn are k-wise
independent Bernoulli for k ≥ C/ε2 for a sufficiently
large even constant C. For x = (x1, . . . , xn) and y =
(y1, . . . , yn), |Pr[x ∈ Hw,θ]−Pr[y ∈ Hw,θ]| = O(ε).

Proof: Let X = 〈w, x〉 , Y = 〈w, y〉. It is equiva-
lent to show |E[I[θ,∞)(X)]−E[I[θ,∞)(Y )]| = O(ε). We



show the following chain of inequalities for c = 1/ε:

E[I[θ,∞)(X)] ≈ε E[Ĩc[θ,∞)(X)]

≈ε E[Ĩc[θ,∞)(Y )] ≈ε E[Iθ,∞)(Y )]

Here Ĩc[θ,∞) is as in Theorem IV.2, where R = [θ,∞)
and d = 1. Note then d2(z, ∂R) is just |z − θ|.

(A) E[I[θ,∞)(X)] ≈ε E[̃Ic[θ,∞)(X)] :

|E[I[θ,∞)(X)]−E[Ĩc[θ,∞)(X)]|
≤ E[|I[θ,∞)(X)− Ĩc[θ,∞)(X)|]
≤ Pr[|X − θ| < ε]

+

∞∑
s=0

Pr[2sε ≤ |X − θ| < 2s+1ε]

×O(c−22−2sε−2)

≤ O(ε) +
∞∑
s=0

2−2s ·Pr[|X − θ| < 2s+1ε]

= O(ε)

since Pr[|X − θ| ≤ t] = O(t + ε) for any t > 0, by
ε2-regularity and the Berry-Esséen Theorem.

(B) E[̃Ic[θ,∞)(X)] ≈ε E[̃Ic[θ,∞)(Y)] : By Taylor’s theo-
rem, Ĩc[θ,∞)(z) = Pk−1(z) ± ‖(Ĩc[θ,∞))

(k)‖∞ · |z|k/k!

for z ∈ R and f (k) being the kth derivative of f ,
where Pk−1 is a degree-(k − 1) polynomial. By k-
wise independence, E[Pk−1(X)] = E[Pk−1(Y )] and
E[Xk] = E[Y k]. For k even, |z|k = zk. Hence,

|E[Ĩc[θ,∞)(X)]−E[Ĩc[θ,∞)(Y )]|

≤ 2 ·
‖(Ĩc[θ,∞))

(k)‖∞ ·E[Xk]

k!
≤ 2O(k) · c

k · kk/2

kk
,

which is O(ε) since k = Ω(c2). The last inequality
used Theorem IV.2 to bound ‖(Ĩc[θ,∞))

(k)‖∞, and Khint-
chine’s inequality gives E[Xk] ≤ kk/2.

(C) E[I[θ,∞)(Y)] ≈ε E[̃Ic[θ,∞)(Y)] : This is argued
identically as in the first inequality, but we now must
show that even under Ω(1/ε2)-wise independence we
still have Pr[|Y − θ| ≤ ε] = O(ε). Suppose we had
a function f : R → R such that (1) f ≥ I[θ−ε,θ+ε] on
R (implying for example E[f(Y )] ≥ E[I[θ−ε,θ+ε](Y )]),
(2) E[f(X)] = O(ε), and (3) ‖f (`)‖∞ ≤ O(1/ε)` for
all ` ≥ 0. Given (2) and (3), we can apply Taylor’s theo-
rem just as above to show |E[f(X)]−E[f(Y )]| = O(ε),
i.e. E[f(Y )] = O(ε). Using (1) then gives our desired
upper bound on E[I[θ−ε,θ+ε](Y )] = Pr[|Y − θ| ≤ ε].

It only remains to exhibit such an f : we take
f = 2 · Ĩc′[θ−2ε,θ+2ε] for c′ a sufficiently large con-
stant times 1/ε. For (1), if x /∈ [θ − ε, θ + ε] then

I[θ−ε,θ+ε] = 0, whereas f ≥ 0. If x ∈ [θ − ε, θ + ε],
then min{x − (θ − 2ε), x − (θ + 2ε)} ≥ ε, implying
f(x) ≥ 1 by Theorem IV.2, choice of c′, and the fact
that I[θ−2ε,θ+2ε](x) = 1. Item (2) follows by applying
(A) above; (3) follows from (i) of Theorem IV.1 and
Taylor’s theorem (as in (B) above).

The proof structure of Theorem V.1 is similar to
that in [22]. In particular, both use the same chain
of inequalities. However, due to differences in the FT-
mollification guarantees of [22], the proof there gave a
worse bound on k by a polylog(1/ε) factor. The main
reason for this is that the FT-mollification construction
of [22] gave an Ĩc[a,b] approximating I[a,b] such that the
guarantee was only that the two functions were within
ε for x “far” from {a, b}, and differed by at most a
constant for x “close” to the boundary. Meanwhile, in
our current FT-mollification construction, the quality of
Ĩc[a,b] gracefully degrades as x approaches the boundary.
Furthermore, the proof of (C) given here is arguably
more intuitive than the argument in [22], which relied
on some complex analysis.

One consequence of Theorem V.1 is that the
Berry-Esséen theorem is derandomized by Ω(1/ε2)-
independence, which is asymptotically optimal [11].
Specifically, Theorem V.1 implies, after also carrying
out the same argument under the Gaussian measure, that
supt∈R |Pr[〈w, x〉 ≤ t] − Pr[〈w, g〉 ≤ t]| ≤ ε as long
as the xi and gi are each Ω(1/ε2)-wise independent
and ‖w‖∞ ≤ ε, where the xi are Bernoulli and the
gi are Gaussian. The original Berry-Esséen theorem
required independent xi and gi, and [11], [22] required
polylog(1/ε)/ε2-wise independence.

VI. PROOF OF THEOREM I.1

We now give our proof of Theorem I.1. In Sec-
tion VI-A we analyze the regular case of our main
theorem, and Section VI-B reduces the general case to
the regular case.

A. Fooling regular degree-2 threshold functions

In this section we show the following.

Theorem VI.1. Let 0 < ε < 1 be given. Let
X1, . . . , Xn be independent Bernoulli and Y1, . . . , Yn
be 2k-wise independent Bernoulli for k a sufficiently
large multiple of 1/ε8. If p is multilinear and of degree
2 with

∑
|S|>0 p̂

2
S = 1, and Infi(p) ≤ τ for all i, then

E[sign(p(X))]−E[sign(p(Y ))] = O(ε+ τ1/9).

Throughout this section, p always refers to the poly-
nomial of Theorem VI.1, and τ refers to the maximum
influence of any variable in p. Observe p (over the



hypercube) can be written as q + p4 + C, where q is a
multilinear quadratic form, p4 is a linear form, and C is
a constant. For a quadratic form q, we can write a real
symmetric matrix Aq such that q(x) = xTAqx, where
xT denotes the transpose of x. Since we can assume
the sum of squared coefficients in p (ignoring C) is 1,
this implies ‖Aq‖F ≤ 1/2 and

∑
S p̂4

2
S ≤ 1. Using

the spectral theorem for real symmetric matrices, we
write p = p1 − p2 + p3 + p4 + C where p1, p2, p3 are
quadratic forms satisfying λmin(Ap1), λmin(Ap2) ≥ δ,
‖Ap3‖2 < δ, and ‖Api‖F ≤ 1/2 for 1 ≤ i ≤ 3, and
also with p1, p2 positive semidefinite. Such a decom-
position follows by writing Aq = QTΛqQ for some
diagonal matrix Λq and orthogonal Q, then writing
Λq = Λp1 − Λp2 + Λp3 , where Λp1 contains the
eigenvalues of Λq above δ, Λp2 contains the negation
of those below −δ, and Λp3 contains the remaining
eigenvalues. Then, set Api = QΛpiQ

T . Throughout this
section we let p1, . . . , p4, C, δ be as discussed here. We
use Υ to denote tr(Ap3). The value δ will be set later
in the proof of Theorem VI.1.

It will be convenient to define the map Mp : Rn →
R4 for Mp(x) = (

√
p1(x),

√
p2(x), p3(x)−Υ, p4(x)).

Note the the first two coordinates of Mp(x) are indeed
real since p1, p2 are positive semidefinite. To show
Theorem VI.1, we follow the template of Section V, by
showing that E[IR(Mp(X))] is determined by k-wise
independence for R = {z : z21−z22 +z3 +z4 +C+Υ ≥
0} ⊂ R4 (note IR(Mp(x)) iff p(x) ≥ 1).

Before giving the proof of Theorem VI.1, we first
state Lemma VI.3, which says that for F : R4 → R,
F (Mp(x)) is fooled by bounded independence as long
as F is even in x1, x2 and certain technical conditions
are satisfied.

The proof of Lemma VI.3 crucially uses the following
moment bound for quadratic forms:
Theorem VI.2 (Hanson-Wright inequality [18]). Let
A ∈ Rn×n be symmetric and x ∈ {−1, 1}n be random.
Then for all k ≥ 2, E[|(xTAx) − tr(A)|k] ≤ Ck ·
max{

√
k‖A‖F , k‖A‖2}k for C an absolute constant.

We note that while [18] give a tail bound, the above
moment bound can be easily derived via integration. In
the full version of our paper, we also provide a new
proof of Theorem VI.2.
Lemma VI.3. Let ε > 0 be arbitrary. Let F : R4 → R
be even in each of its first two arguments such that
‖∂βF̃ c‖∞ = O(α|β|) for all multi-indices β ∈ N4 and
some α > 1. Suppose 1/δ ≥ Bα for a sufficiently large
constant B. Let X1, . . . , Xn be independent Bernoulli,
and Y1, . . . , Yn be k′-independent Bernoulli for k′ = 2k
with k ≥ max{log(1/ε), Bα/

√
δ,Bα2} an even inte-

ger. Write X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn).
Then |E[F (Mp(X))]−E[F (Mp(Y ))]| < ε.

Proof: We Taylor-expand F to obtain a polynomial
Pk−1 containing all monomials up to degree k−1. Since
F (x) is even in x1, x2, we can assume Pk−1 is a polyno-
mial in x21, x

2
2, x3, x4. Let x ∈ R4 be arbitrary. We apply

Taylor’s theorem to bound R(x) = |F (x) − Pk−1(x)|.
Define x∗ = maxi{|xi|}. Then

R(x) ≤ αk ·
∑
|β|=k

|x1|β1 · |x2|β2 · |x3|β3 · |x4|β4

β1! · β2! · β3! · β4!

≤ αkxk∗ ·
∑
|β|=k

1

β1! · β2! · β3! · β4!

= αkxk∗ ·
1

k!
·
∑
|β|=k

(
k

β1, . . . , β4

)

≤ αk4k · x
k
1 + xk2 + xk3 + xk4

k!
, (VI.1)

with the absolute values unnecessary in the last inequal-
ity since k is even. We now observe

|E[F (Mp(X))]−E[F (Mp(Y ))]|
≤ αk2O(k)k−k · (E[(p1(X))k/2] + E[(p2(X))k/2]

+ E[(p3(X)−Υ)k] + E[(p4(X))k])

since (a) every term in Pk−1(Mp(X)) is a monomial of
degree at most 2k−2 in the Xi, by evenness of Pk−1 in
x1, x2, and is thus determined by 2k-independence, (b)√
p1(X),

√
p2(X) are real by positive semidefiniteness

of p1, p2 (note that we are only given that the high order
partial derivatives are bounded by O(αk) on the reals;
we have no guarantees for complex arguments), and (c)
the moment expectations above are equal for X and Y
since they are determined by 2k-independence.

We now bound the error term above. We have

E[(p1(X))k/2] = 2O(k)(kk/2 + δ−k/2)

by Lemma A.1 and Lemma A.3, with the same bound
holding for E[(p2(X))k/2]. We also have

E[(p3(X)−Υ)k] ≤ 2O(k) ·max
{√

k, (δk)
}k

by Theorem VI.2. We finally have E[(p4(X))k] ≤ kk/2
by Khintchine’s inequality. Thus in total,

|E[F (Mp(X))]−E[F (Mp(Y ))]|
≤ 2O(k) · ((α/

√
k)k + (α/(k

√
δ))k + (αδ)k),

which is at most ε for sufficiently large B by our lower
bounds on k and 1/δ.



In proving Theorem VI.1, we will need a lemma
which states that p is anticoncentrated even when eval-
uated on Bernoulli random variables which are k-wise
independent. We show this in Lemma VI.5, whose
proof invokes Lemma VI.4. We defer the proof of
Lemma VI.4 to the full version, which relies on the
invariance principle [27], Gaussian anticoncentration
[8], and Theorem A.2.
Lemma VI.4. Let η, η′ ≥ 0, t ∈ R be given, and let
X1, . . . , Xn be independent Bernoulli. Then

Pr[|p(X)− t| ≤ η · (
√
p1(X) +

√
p2(X) + 1) + η′]

= O(
√
η′ + (η2/δ)1/4 + τ1/9 + exp(−Ω(1/δ))).

Lemma VI.5. For ε′ > 0, let k ≥ D/(ε′)4 for a
universal constant D > 0. Let Y1, . . . , Yn be k-wise
independent Bernoulli, and let t ∈ R be arbitrary. Then
Pr[|p(Y )− t| < ε′] ≤ O(

√
ε′ + τ1/9).

Proof: The proof in spirit works similarly to step
(C) in the proof of Theorem V.1. We define the region
Tt,ε′ = {z : |z21 − z22 + z3 + z4 + C + Υ − t| < ε′} ⊂
R4 and note Pr[|p(Y ) − t| < ε′] = E[ITt,ε′ (Mp(Y ))].
Then, just as when proving Theorem V.1, we would like
a smooth function f which upper bounds ITt,ε′ and has
small expectation under full independence, so that we
may apply Taylor’s theorem (specifically, Lemma VI.3)
to show that its expectation is also small under bounded
independence. To accomplish this, we define the region
Sρ,t,ε′ = {z : d2(z, Tt,ε′) ≤ ρ} then take f to be 2 ·
ĨcSρ,t,ε′ for some ρ > 0 and c = Ω(1/ρ).

Noting Pr[|p(Z) − t| < ε′] = E[ITt,ε′ (Mp(Z))] for
any random variable Z = (Z1, . . . , Zn),

Pr[|p(Z)− t| ≤ ε′] ≤ 2 ·E[ĨcSρ,t,ε′ (Mp(Z))]. (VI.2)

We now proceed in two steps. We first show
E[ĨcSρ,t,ε′ (Mp(X))] = O(

√
ε′ + τ1/9), then show

E[ĨcSρ,t,ε′ (Mp(Y ))] ≈ε′ E[ĨcSρ,t,ε′ (Mp(X))] by apply-
ing Lemma VI.3, then conclude via Eq. (VI.2).

E[̃IcSρ,t,ε′ (Mp(X))] = O(
√
ε′ + τ1/9): For x /∈ Tt,ε′ ,

d2(x, Tt,ε′)

≥ 1

2
·min

{
|x21 − x22 + x3 + x4 + C + Υ− t| − ε′

2(|x1|+ |x2|+ 1)
,

√
|x21 − x22 + x3 + x4 + C + Υ− t| − ε′

}
.

This is because by adding a vector v to x, we can change
each individual coordinate of x by at most ‖v‖2, and
can thus change the value of |x21−x22 +x3 +x4 +C +
Υ− t| − ε′ by at most 2‖v‖2 · (|x1|+ |x2|+ 1) + ‖v‖22.

Now let X ∈ {−1, 1}n be uniformly random. We
thus have that, for any particular w > 0,

Pr[0 < d2(Mp(X), Tt,ε′) ≤ w]

≤ Pr

[
min

{
|p(X)− t| − ε′

2(
√
p1(X) +

√
p2(X) + 1)

,

√
|p(X)− t| − ε′

}
≤ 2w

]
≤ Pr[|p(X)− t| ≤ 4w · (√p1(X) +

√
p2(X) + 1) + ε′]

+ Pr[|p(X)− t| ≤ 4w2 + ε′]

= O(
√
ε′ + w +

√
w + (w2/δ)1/4 + τ1/9 + exp(−Ω(1/δ)))

(VI.3)

with the last inequality holding by Lemma VI.4.
By Theorem IV.1 and our setting of c, ĨcSρ,t,ε′ (x) =

max{1, O((c·d2(x, Tt,ε′))
−2)} when d2(x, Tt,ε′) ≥ 2ρ.

Then,

E[ĨcSρ,t,ε′ (Mp(X))]

≤ Pr[d2(Mp(X), Tt,ε′) ≤ 2ρ]

+O

( ∞∑
s=1

2−2s ·Pr[d2(Mp(X), Tt,ε′) ≤ 2s+1ρ]

)
≤ O(

√
ε′ +
√
ρ+ (ρ2/δ)1/4 + τ1/9 + exp(−Ω(1/δ))

+O

( ∞∑
s=1

2−2s · (
√
ε′ + 2s+1ρ+

√
2s+1ρ

+ (22s+2ρ2/δ)1/4 + τ1/9 + exp(−Ω(1/δ)))

)
= O(

√
ε′ +
√
ρ+ (ρ2/δ)1/4 + τ1/9 + exp(−Ω(1/δ))

(VI.4)

We now make the settings ρ = (ε′)2, 1/δ = 2Bc, where
B > 1 is the sufficiently large constant in Lemma VI.3.
Thus Eq. (VI.4) is now O(

√
ε′+τ1/9). (We remark that

a different δ is used when proving Theorem VI.1.)

E[̃IcSρ,t,ε′ (Mp(Y))] ≈ε′ E[̃IcSρ,t,ε′ (Mp(X))]: We re-
mark that ĨcSρ,t,ε′ can be assumed to be even in both
x1, x2. If not, then consider the symmetrization

(1/4) · (ĨcSρ,t,ε′ (x1, x2, x3, x4) + ĨcSρ,t,ε′ (−x1, x2, x3, x4)

+ ĨcSρ,t,ε′ (x1,−x2, x3, x4) + ĨcSρ,t,ε′ (−x1,−x2, x3, x4)).

(VI.5)

The inequality follows by Lemma VI.3, given our
choice of k, δ. This completes our proof by applying
Eq. (VI.2) with Z = Y .



The following lemma follows from Lemma VI.4 and
Lemma VI.5. The proof is in the full version.

Lemma VI.6. Let η, η′ ≥ 0 be given, and let
Y1, . . . , Yn be k-independent Bernoulli for k as in
Lemma VI.5 with ε′ = min{η/

√
δ, η′}. Also assume

k ≥ d2/δe. Then

Pr[|p(X)− t| ≤ η · (
√
p1(X) +

√
p2(X) + 1) + η′]

= O(
√
η′ + (η2/δ)1/4 + τ1/9 + exp(−Ω(1/δ))).

We are now ready to prove the main theorem of this
section.

Proof (of Theorem VI.1). Consider the region R ⊂
R4 defined by R = {z : z21 − z22 + z3 + z4 + C +
Υ ≥ 0}. Then note that I[0,∞)(p(x)) = 1 if and only
if IR(Mp(x)) = 1. It thus suffices to show that IR is
fooled in expectation by bounded independence.

We set ρ = ε4, c = 1/ρ, and 1/δ = 2Bc for B the
constant in the statement of Lemma VI.3. We now show
a chain of inequalities to give our theorem:

E[IR(Mp(X))] ≈ε+τ1/9 E[ĨcR(Mp(X))]

≈ε E[ĨcR(Mp(Y ))] ≈ε+τ1/9 E[IR(Mp(Y ))].

E[IR(Mp(X))] ≈ε+τ1/9 E[̃IcR(Mp(X))] : We have

Pr[d2(Mp(X), ∂R) ≤ w]

≤ Pr[|p(X)| ≤ 4w · (
√
p1(X) +

√
p2(X) + 1)]

+ Pr[|p(X)| ≤ 4w2]

= O(w +
√
w + (w2/δ)1/4 + τ1/9 + exp(−Ω(1/δ))),

as in Eq. (VI.3). Then,

|E[IR(Mp(X))]−E[ĨcR(Mp(X))]|
≤ E[|IR(Mp(X))]− ĨcR(Mp(X))|]
≤ Pr[d2(Mp(X), ∂R) ≤ 2ρ]

+O

( ∞∑
s=1

2−2s ·Pr[d2(Mp(X), ∂R) ≤ 2s+1ρ]

)
≤ O(

√
ρ+ (ρ2/δ)1/4 + τ1/9 + exp(−Ω(1/δ))

+O

( ∞∑
s=1

2−2s · (
√

2s+1ρ+ (22s+2ρ2/δ)1/4 + τ1/9

+ exp(−Ω(1/δ)))

)
= O(ε+ τ1/9)

by choice of ρ, δ, and Theorem IV.2 and Lemma VI.6.

E[̃IcR(Mp(X))] ≈ε E[̃IcR(Mp(Y))] : We can assume
ĨcR is even in x1, x2 as in Eq. (VI.5). We apply

Lemma VI.3 with α = 2c, noting that 1/δ = Bα and
that our setting of k is sufficiently large.

E[̃IcR(Mp(Y))] ≈ε+τ1/9 E[IR(Mp(Y))] : The argu-
ment is identical as with the first inequality. We re-
mark that we do have sufficient independence to apply
Lemma VI.6 since, mimicking our analysis of the first
inequality, we have

Pr[|p(Y )| ≤ 4ρ · (
√
p1(Y ) +

√
p2(Y ) + 1)]

+ Pr[|p(Y )| ≤ 4ρ2]

≤ Pr[|p(Y )| ≤ 4ρ · (
√
p1(Y ) +

√
p2(Y ) + 1)]

+ Pr[|p(Y )| ≤ ε2] (VI.6)

since ρ2 = o(ε2). We can apply Lemma VI.6 to
Eq. (VI.6) since k ≥ d2/δe and k = Ω(1/(ε′′)4)
for ε′′ = min{ρ/

√
δ, ε2} = ε2. Thus, Eq. (VI.6) is

O(ε+ τ1/9).
�

Our main theorem of this Section (Theorem VI.1)
also holds under the case that the Xi, Yi are standard
normal, and without any error term depending on τ . See
our full version for a proof.

B. Reduction to the regular case
In this section, we complete the proof of Theorem I.1.

We accomplish this by providing a reduction from the
general case to the regular case. In fact, such a reduction
can be shown to hold for any degree d ≥ 1 and
establishes the following:
Theorem VI.7. Suppose K-wise independence ε-fools
the class of τ -regular d-PTFs, for some parameter 0 <
τ ≤ ε. Then (K + L)-wise independence ε-fools all
d-PTFs, where L = L(d, τ) = (1/τ) ·

(
d log(1/τ)

)O(d)
.

Noting that τ -regularity implies that the maximum
influence of any particular variable is at most d · τ ,
Theorem VI.1 yields that 2-PTFs that are τ -regular, for
τ = O(ε9), are ε-fooled by Ω(ε−8)-wise independence.
By plugging in τ = O(ε9) in the above theorem we
obtain Theorem I.1. The proof of Theorem VI.7 is
obtained by a simple adaptation of the regularity lemma
in [12]2.
Proof (Sketch). (of Theorem VI.7). Any boolean
function f on {−1, 1}n can be expressed as a binary
decision tree where each internal node is labeled by
a variable, every root-to-leaf path corresponds to a
restriction ρ that fixes the variables as they are set on
the path, and every leaf is labeled with the restricted

2We note that [25] prove a very similar regularity lemma to obtain
their PRGs for d- PTFs. One could alternatively use this instead
of [12]. For d = 2 this would give a worse bound of Ω̃(ε−18).



subfunction fρ. The main claim is that, if f is a d-
PTF, then it has such a decision-tree representation
with certain strong properties. In particular, by [12], an
arbitrary d-PTF f = sign(p) can be represented as a
decision tree T of depth L(d, τ), so that with probability
1−τ over the choice of a uniformly random root-to-leaf
path ρ, the restricted subfunction (leaf) fρ = sign(pρ)
is either a τ -regular d-PTF or is τ -close to a constant
function.

Our proof of Theorem VI.7 is based on the above
structural lemma. Under the uniform distribution, there
is some particular distribution on the leaves (the tree
is not of uniform height); then conditioned on the re-
stricted variables the variables still undetermined at the
leaf are still uniform. With (K+L)-wise independence,
a random walk down the tree arrives at each leaf with
the same probability as in the uniform case (since the
depth of the tree is at most L). Hence, the probability
mass of the “bad” leaves is at most τ ≤ ε even
under bounded independence. Furthermore, the induced
distribution on each leaf (over the unrestricted variables)
is K-wise independent. Consider a good leaf. Either the
leaf is τ -regular, in which case we can apply Theo-
rem VI.1, or it is τ -close to a constant function. At this
point though we arrive at a technical issue. The state-
ment and proof in [12] concerning “close-to-constant”
leaves holds only under the uniform distribution, though
we observe that a simple modification of their proof
(in particular, Lemmas 3 and 5 in [12]) shows that
the statement holds even under O(d · log(1/τ))-wise
independence; see the full version for details. �

VII. OTHER APPLICATIONS

We briefly sketch several other applications of our
techniques here; details are in the full version. Our
approach implies that poly(m)/ε2-wise independence
ε-fools intersections of m halfspaces under the Gaussian
measure. If the halfspaces are Hi = {x : 〈ai, x〉 ≥ θi},
then one simply needs to fool IR(F (x)) for R = {z :
zi ≥ θi} ⊂ Rm, and F (x) = (〈ai, x〉 , . . . , 〈am, x〉).
This is carried out as in the proof of Theorem V.1, but
using a union bound to bound the probability of F (x)
being near ∂R, and using the multivariate Taylor’s the-
orem. Note this implies that the randomized hyperplane
rounding scheme of Goemans and Williamson [16] only
requires that the coefficient vector defining the hyper-
plane need only have Ω(1/ε2)-wise independent entries.
Also, one can generalize our proof in Section VI-A
to show that poly(m/ε)-wise independence fools the
intersection of m degree-2 threshold functions.

Our new FT-mollification construction, which refines
that of [22], also improves a bound given in [22].

Namely, plugging our construction into their argument
shows that Ω(1/εp)-wise independence suffices to fool
Indyk’s median estimator for moment estimation in data
streams, improving their bound by polylog(1/ε) factors.

Our FT-mollification also recovers a generalization
due to [28] of Jackson’s theorem in approximation
theory to the higher-dimensional unit `2 ball.

Theorem VII.1 ([28]). For F : Rm → R define

ω(F, δ) = sup
‖x‖2,‖y‖2≤1
‖x−y‖2≤δ

|F (x)− F (y)|.

For any k ≥ 1 there exists a polynomial pk of degree
k with sup‖x‖2≤1 |F (x)− pk(x)| = O(ω(F,m/k)).

Our proof is simple: to obtain pk, FT-mollify F then
Taylor-expand to degree k; details are in the full version.

Finally, FT-mollification followed by Taylor expan-
sion shows that there exists a degree-k polynomial pk
for k = O(1/ε2) that ε-approximates in `1 the sign
function under the Gaussian distribution on the real line,
i.e. such that Ex∼N(0,1)[|sign(x)− pk(x)|] ≤ ε.

Using the framework of [21] the aforementioned
implies that halfspaces can be agnostically learned
with error ε under the Gaussian distribution in time
poly(nk/ε), improving the previously best known
achievable k [11] by a log2(1/ε) factor.

VIII. CONCLUSIONS

By a probabilistic argument, there exist generators
with seed-length O(d log n + log(1/ε)) for degree-d
PTFs (see [25]). Hence, there is still a substantial gap
between probabilistic and explicit constructions, and
resolving this issue even for d = 1 remains an open
problem.
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APPENDIX

Lemma A.1. Let A ∈ Rn×n be symmetric with
λmin(A) > 0. Then |tr(A)| ≤ ‖A‖2F /λmin(A).

For f : {−1, 1}n → R and r ≥ 1, we denote ‖f‖r =
(Ex∼Un [|f(x)|r])1/r.
Theorem A.2 (Hypercontractivity [3], [6]). If f :
{−1, 1}n → R is a degree-d polynomial and 1 ≤ r <
q ≤ ∞, then ‖f‖q ≤ ((q − 1)/(r − 1))d/2 · ‖f‖r.
Lemma A.3. Let f(x) be a quadratic form. Then, for
X = (X1, . . . , Xn) a vector of independent Bernoullis,

E[|f(X)|k] ≤ 2k(‖Af‖F kk + |tr(Af )|k).


