
Backyard Cuckoo Hashing: Constant Worst-Case
Operations with a Succinct Representation∗

Yuriy Arbitman, Moni Naor†, and Gil Segev‡
Department of Computer Science and Applied Mathematics

Weizmann Institute of Science
Rehovot 76100, Israel

Email: yuriy.arbitman@gmail.com, {moni.naor, gil.segev}@weizmann.ac.il

Abstract—The performance of a dynamic dictionary is mea-
sured mainly by its update time, lookup time, and space con-
sumption. In terms of update time and lookup time there are
known constructions that guarantee constant-time operations in
the worst case with high probability, and in terms of space
consumption there are known constructions that use essentially
optimal space. However, although the first analysis of a dynamic
dictionary dates back more than 45 years ago (when Knuth
analyzed linear probing in 1963), the trade-off between these
aspects of performance is still not completely understood. In this
paper we settle two fundamental open problems:

• We construct the first dynamic dictionary that enjoys the
best of both worlds: it stores n elements using (1 + ϵ)n
memory words, and guarantees constant-time operations
in the worst case with high probability. Specifically, for
any ϵ = Ω((log logn/ logn)1/2) and for any sequence
of polynomially many operations, with high probability over
the randomness of the initialization phase, all operations are
performed in constant time which is independent of ϵ.
The construction is a two-level variant of cuckoo hashing,
augmented with a “backyard” that handles a large frac-
tion of the elements, together with a de-amortized perfect
hashing scheme for eliminating the dependency on ϵ.

• We present a variant of the above construction that uses
only (1 + o(1))B bits, where B is the information-theoretic
lower bound for representing a set of size n taken from a
universe of size u, and guarantees constant-time operations
in the worst case with high probability, as before. This
problem was open even in the amortized setting. One of the
main ingredients of our construction is a permutation-based
variant of cuckoo hashing, which significantly improves the
space consumption of cuckoo hashing when dealing with a
rather small universe.

I. INTRODUCTION

A dynamic dictionary is a data structure used for maintain-
ing a set of elements under insertions, deletions, and lookup
queries. The first analysis of a dynamic dictionary dates back
more than 45 years ago, when Knuth analyzed linear probing
in 1963 [31] (see also [32]). Over the years dynamic dictiona-
ries have played a fundamental role in computer science, and

∗ We refer the reader to a longer version available as [2].
† Incumbent of the Judith Kleeman Professorial Chair. Research supported

in part by a grant from the Israel Science Foundation. Part of this work was
done while visiting the Center for Computational Intractability at Princeton
University.

‡ Research supported by the Adams Fellowship Program of the Israel
Academy of Sciences and Humanities.

a significant amount of research has been devoted for their
construction and analysis.

The performance of a dynamic dictionary is measured
mainly by its update time, lookup time, and space consump-
tion. Although each of these performance aspects alone can be
made essentially optimal rather easily, it seems to be a highly
challenging task to construct dynamic dictionaries that enjoy
good performance in all three aspects. Specifically, in terms
of update time and lookup time there are known constructions
that guarantee constant-time operations in the worst case with
high probability1 (e.g., [1], [9], [11], [15]), and in terms of
space consumption there are known constructions that provide
almost full memory utilization (e.g., [18], [21], [45]) – even
with constant-time lookups, but without constant-time updates.

In this paper we address the task of constructing a dy-
namic dictionary that enjoys optimal guarantees in all of the
above aspects. This problem is motivated not only by the
natural theoretical insight that its solution may shed on the
feasibility and efficiency of dynamic dictionaries, but also
by practical considerations. First, the space consumption of
dictionary is clearly a crucial measure for its applicability
in the real world. Second, whereas amortized performance
guarantees are suitable for a very wide range of applications,
for other applications it is highly desirable that all operations
are performed in constant time in the worst case. For example,
in the setting of hardware routers and IP lookups, routers
must keep up with line speeds and memory accesses are
at a premium (see [4], [29]). An additional motivation for
the construction of dictionaries with worst case guarantees is
combatting “timing attacks”, first suggested by Lipton and
Naughton [35]. They showed that timing information may
reveal sensitive information on the randomness used by the
data structure, and this can enable an adversary to identify
elements whose insertion results in poor running time. The
concern regarding timing information is even more acute in
a cryptographic environment with an active adversary who
might use timing information to compromise the security of
the system (see, for example, [33], [50]).

1More specifically, for any sequence of operations, with high probability
over the randomness of the initialization phase of the data structure, each
operation is performed in constant time.

A. Our Contributions

In this paper we settle two fundamental open problems in
the design and analysis of dynamic dictionaries. We consider
the unit cost RAM model in which the elements are taken
from a universe of size u, and each element can be stored in
a single word of length w = ⌈log u⌉ bits. Any operation in
the standard instruction set can be executed in constant time
on w-bit operands. This includes addition, subtraction, bitwise
Boolean operations, left and right bit shifts by an arbitrary
number of positions, and multiplication2. Our contributions
are as follows:

Achieving the best of both worlds. We construct a two-level
variant of cuckoo hashing [44] that uses (1 + ϵ)n memory
words, where n is the maximal number of elements stored
at any point in time, and guarantees constant-time operations
in the worst case with high probability. Specifically, for any
0 < ϵ < 1 and for any sequence of polynomially many ope-
rations, with overwhelming probability over the randomness
of the initialization phase, all insertions are performed in time
O(log(1/ϵ)/ϵ2) in the worst case. Deletions and lookups are
always performed in time O(log(1/ϵ)/ϵ2) in the worst case.

We then show that this construction can be augmented
with a de-amortized perfect hashing scheme, resulting in a
dynamic dictionary in which all operations are performed
in constant time which is independent of ϵ, for any ϵ =
Ω((log log n/ log n)1/2). The augmentation is based on a
rather general de-amortization technique that can rely on any
perfect hashing scheme with two natural properties.

Succinct representation. The above construction stores n
elements using (1 + o(1))n memory words, which are (1 +
o(1))n log u bits. This may be rather far from the information-
theoretic bound of B(u, n) = ⌈log

(
u
n

)
⌉ bits for representing a

set of size n taken from a universe of size u. We present
a variant of our construction that uses only (1 + o(1))B
bits3, and guarantees constant-time operations in the worst
case with high probability as before. Our approach is based
on hashing elements using permutations instead of functions.
We first present a scheme assuming the availability of truly
random permutations, and then show that this assumption can
be eliminated by using k-wise δ-dependent permutations.

Permutation-based cuckoo hashing. One of the main in-
gredients of our construction is a permutation-based variant
of cuckoo hashing. This variant improves the space con-
sumption of cuckoo hashing by storing n elements using
(2 + ϵ)n log(u/n) bits instead of (2 + ϵ)n log u bits. When
dealing with a rather small universe, this improvement to the
space consumption of cuckoo hashing might be much more
significant than that guaranteed by other variants of cuckoo
hashing that store n elements using (1 + ϵ)n log u bits [18],
[21], [45]. Analyzing our permutation-based variant is more

2The unit cost RAM model has been the subject of much research, and is
considered the standard model for analyzing the efficiency of data structures
(see, for example, [16], [26], [27], [39], [41], [47] and the references therein).

3Demaine [10] classifies data structures into “implicit” (redundancy O(1)),
“succinct” (redundancy o(B)) and “compact” (redundancy O(B)).

challenging than analyzing the standard cuckoo hashing, as
permutations induce inherent dependencies among the outputs
of different inputs (these dependencies are especially signifi-
cant when dealing with a rather small universe). Our analysis
relies on subtle coupling argument between a random function
and a random permutation, that is enabled by a specific
monotonicity property of the bipartite graphs underlying the
structure of cuckoo hashing.

Application of small universes: A nearly-optimal Bloom
filter alternative. The difference between using (1 +
o(1)) log

(
u
n

)
bits and using (1+o(1))n log u bits is significant

when dealing with a small universe. An example for an
application where the universe size is small and in which
our construction yields a significant improvement arises when
applying dictionaries to solve the approximate set membership
problem: representing a set of size n in order to support lookup
queries, allowing a false positive rate of at most 0 < δ < 1,
and no false negatives. In particular, we are interested in the
dynamic setting where the elements of the set are specified one
by one via a sequence of insertions. This setting corresponds
to applications such as graph exploration where the inserted
elements correspond to nodes that have already been visited
(e.g. [8]), global deduplication-based compression systems
where the inserted elements correspond to data segments that
have already been compressed (e.g. [53]), and more. In these
applications δ has to be roughly 1/n so as not to make any
error in the whole process.

The information-theoretic lower bound for the space re-
quired by any solution to this problem is n log(1/δ) bits, and
this holds even in the static setting where the set is given in
advance [7]. The problem was first solved using a Bloom filter
[3], whose space consumption is n log(1/δ) log e bits (i.e., this
is a compact representation).

Using our succinctly-represented dictionary we present the
first solution to this problem whose space consumption is
only (1+ o(1))n log(1/δ)+O(n+log u) bits, and guarantees
constant-time lookups and insertions in the worst case with
high probability (previously such guarantees were only known
in the amortized sense). In particular, the lookup time and
insertion time are independent of δ. For any sub-constant δ
(the case in the above applications), and under the reasonable
assumption that u ≤ 2O(n), the space consumption of our solu-
tion is (1+o(1))n log(1/δ), which is optimal up to an additive
lower order term (i.e., this is a succinct representation)4.

B. Related Work

A significant amount of work was devoted to constructing
dynamic dictionaries over the years, and here we focus only
on the results that are most relevant to our setting.

Dynamic dictionaries with constant-time operations in the
worst case. Dietzfelbinger and Meyer auf der Heide [15]
constructed the first dynamic dictionary with constant-time
operations in the worst case with high probability, using O(n)

4For constant δ there is a recent lower bound of Lovett and Porat [36]
showing we cannot get to (1 + o(1))n log(1/δ) bits in the dynamic setting.

memory words to store n elements (the construction is based
on the dynamic dictionary of Dietzfelbinger et al. [14]). While
this construction is a significant theoretical contribution, it may
be unsuitable for highly demanding applications. Most notably,
it suffers from large multiplicative constant factors in its
memory utilization and running time, and from an inherently
hierarchal structure. Recently, Arbitman et al. [1] presented a
de-amortization of cuckoo hashing that guarantees constant-
time operations in the worst case with high probability, and
achieves memory utilization of about 50%. Their experimental
results indicate that the scheme is efficient, and provides a
practical alternative to the construction of Dietzfelbinger and
Meyer auf der Heide.
Dynamic dictionaries with full memory utilization. Linear
probing is the most classical hashing scheme that offers full
memory utilization. When storing n elements using (1 + ϵ)n
memory words, its expected insertion time is polynomial in
1/ϵ. However, for memory utilization close to 100% it is rather
inefficient, and the average search time becomes linear in the
number of elements stored (for more details see Theorem K
and the subsequent discussion in [32, Chapter 6.4]).

Cuckoo hashing [44] achieves memory utilization of slightly
less than 50%, and its generalizations [18], [21], [45] were
shown to achieve full memory utilization. These generali-
zations follow two lines: using multiple hash functions, and
storing more than one element in each bin. To store n
elements using (1+ϵ)n memory words, the expected insertion
time when using multiple hash functions was shown to be
(1/ϵ)O(log log(1/ϵ)), and when using bins with more than one
element it was shown to be log(1/ϵ)O(log log(1/ϵ)). For further
and improved analysis see also [6], [12], [13], [20], [22], [24],
[25], [34].

Fotakis et al. [21] suggested a general approach for improv-
ing the memory utilization of a given scheme by employing a
multi-level construction: their dictionary comprises of several
levels of decreasing sizes, and elements that cannot be ac-
commodated in any of these levels are placed in an auxiliary
dictionary. Their scheme, however, does not efficiently support
deletions, and the number of levels (and thus also the insertion
time and lookup time) depends on the overall loss in memory
utilization.
Dictionaries approaching the information-theoretic space
bound. A number of dictionaries with space consumption
that approaches the information-theoretic space bound are
known. Raman and Rao [47] constructed a dynamic dictionary
that uses (1 + o(1))B bits, but provides only amortized
guarantees and does not support deletions efficiently. The
above mentioned construction of Dietzfelbinger and Meyer
auf der Heide [15] was extended by Demaine et al. [11]
to a dynamic dictionary that uses O(B) bits5, where each
operation is performed in constant time in the worst case
with high probability. Of particular interest to our setting is
their construction of quotient hash functions, that are used
to hash elements similarly to the way our construction uses

5Using the terminology of Demaine [10], this data structure is “compact”.

permutations (permutations can be viewed as a particular case
of quotient hash functions). Our approach using k-wise almost
independent permutations can be used to significantly simplify
their construction, and in addition it allows a more uniform
treatment without separately considering different ranges of
the parameters.

In the static dictionary case (with no insertions or dele-
tions) much work was done on succinct data structures. The
first to achieve a succinct representation of static dictionary
supporting O(1) retrievals were Brodnik and Munro [5].
More efficient schemes were given by [43] and [16]. Most
recently, Pǎtraşcu [46] showed a succinct dictionary where the
redundancy can be O(n/polylog(n)).

II. PRELIMINARIES AND TOOLS

k-wise independent functions. A collection F of functions
f : U → V is k-wise independent if for any distinct
x1, . . . , xk ∈ U and for any y1, . . . , yk ∈ V it holds that

Pr [f(x1) = y1 ∧ · · · ∧ f(xk) = yk] = 1/|V |k .

More generally, a collection F is k-wise δ-dependent if for any
distinct x1, . . . , xk ∈ U the distribution (f(x1), . . . , f(xk))
where f is sampled from F is δ-close in statistical distance
to the distribution (f∗(x1), . . . , f

∗(xk)) where f∗ is a truly
random function. A simple example for k-wise independent
functions is the collection of all polynomials of degree k − 1
over a finite field.

In this paper we are interested in functions that have a short
representation and can be evaluated in constant time in the unit
cost RAM model. Although there are no such constructions of
k-wise independent functions, Siegel [48] constructed a pretty
good approximation that is sufficient for our applications (see
also the recent improvement of Dietzfelbinger and Rink [17]
to Siegel’s construction). For any two sets U and V of size
polynomial in n, and for any constant c > 0, Siegel presented
a randomized algorithm outputting a collection F of functions
f : U → V with the following guarantees:

1) With probability at least 1 − n−c, the collection F is
nα-wise independent for some constant 0 < α < 1 that
depends on |U | and n.

2) Any function f ∈ F is represented using nβ bits, for
some constant α < β < 1, and evaluated in constant
time in the unit cost RAM model.

Several comments are in place regarding the applicability of
Siegel’s construction in our setting. First, whenever we use
nα-wise independent functions in this paper, we instantiate
them with Siegel’s construction, and this contributes at most an
additive n−c factor to the failure probability of our schemes6.
Second, the condition that U and V are of polynomial size
does not hurt the generality of our results: in our applications
|V | ≤ |U |, and U can always be assumed to be of sufficiently
large polynomial size by using a pairwise (almost) independent
function mapping U to a set of polynomial size without

6Note that property 1 above is stronger in general than k-wise δ-
dependence.

any collisions with high probability. Finally, each function
is represented using nβ bits, for some constant β < 1, and
this enables us in particular to store any constant number
of such functions: the additional space consumption is only
O(nβ) = o(n log(u/n)) bits which is negligible compared to
the space consumption of our schemes.

A significantly simpler and more efficient construction, but
with a weaker guarantee on the randomness, was provided by
Dietzfelbinger and Woelfel [19] following Pagh and Pagh [41]
(see also [17]). For any two sets U and V of size polynomial
in n, and for any integer k ≤ n and constant c > 0, they
presented a randomized algorithm outputting a collection F
of functions f : U → V with the following guarantees:

1) For any specific set S ⊂ U of size k, there is an n−c

probability of failure (i.e., choosing a “bad” function for
this set), but if failure does not occur, then a randomly
chosen f ∈ F is fully random on S.

2) Any function f ∈ F is represented using O(k logn)
bits, and evaluated in constant time in the unit cost RAM
model.

Note that such a guarantee is indeed slightly weaker than
that provided by Siegel’s construction: in general, we cannot
identify a bad event whose probability is polynomially small
in n, so that if it does not occur then the resulting distribution
is k-wise independent. Therefore it is harder to plug in such a
distribution instead of an exact k-wise independent distribution
(e.g., it is not clear that the k-th moments remain the same).
Specifically, this type of guarantee implies that for a set of
size n, if one considers all its subsets of size k, then a
randomly chosen function from the collection behaves close
to a truly random function on each set, but this does not
necessary hold simultaneously for all subsets of size k, as we
would like in many applications. Nevertheless, inspired by the
approach of [17], in the longer version of this paper [2] we
show that our constructions can in fact rely on such a weaker
guarantee, resulting in significantly simpler and more efficient
instantiations.

k-wise almost independent permutations. A collection Π of
permutations π : U → U is k-wise δ-dependent if for any
distinct x1, . . . , xk ∈ U the distribution (π(x1), . . . , π(xk))
where π is sampled from Π is δ-close in statistical distance
to the distribution (π∗(x1), . . . , π

∗(xk)) where π∗ is a truly
random permutation. For k > 3 no explicit construction
is known for k-wise exactly independent permutations (i.e.,
δ = 0), and therefore it seems rather necessary to currently
settle for almost independence (see [28] for a more elaborated
discussion).

In the longer version of this paper [2] we observe a
construction of k-wise δ-dependent permutations with a short
description and constant evaluation time. The construction is
obtained by combining known results from two independent
lines of research: constructions of pseudorandom permutations
(see, for example, [37], [40]), and constructions of k-wise
independent functions with short descriptions and constant
evaluation time as discussed above.

III. THE BACKYARD CONSTRUCTION

Our construction is based on two-level hashing, where the
first level consists of a collection of bins of constant size
each, and the second level consists of cuckoo hashing. One
of the main observations underlying our construction is that
the specific structure of cuckoo hashing enables a very efficient
interplay between the two levels.

Full memory utilization via two-level hashing. Given an
upper bound n on the number of elements stored at any point
in time, and a memory utilization parameter 0 < ϵ < 1, set d =
⌈c log(1/ϵ)/ϵ2⌉ for some constant c > 1, m = ⌈(1+ϵ/2)n/d⌉,
and k = ⌈nα⌉ for some constant 0 < α < 1. The first level of
our dictionary is a table T0 containing m entries (referred to
as bins), each of which contains d memory words. The table is
equipped with a hash function h0 : U → [m] that is sampled
from a collection of k-wise independent hash functions (see
Section II for constructions of such functions with succinct
representation and constant evaluation time). Any element
x ∈ U is stored either in the bin T0[h0(x)] or in the second
level. The lookup procedure is straightforward: when given an
element x, perform a lookup in the bin T0[h0(x)] and in the
second level. The deletion procedure simply deletes x from
its current location. As for inserting an element x, if the bin
T0[h0(x)] contains less than d elements then we store x there,
and otherwise we store x in the second level. We show that the
number of elements that cannot be stored in the first level after
exactly n insertions is at most ϵn/16 with high probability.
Thus, the second level should be constructed to store only
ϵn/16 elements.

Supporting deletions efficiently: cuckoo hashing. When
dealing with long sequences of operations (as opposed to only
n insertions as considered in the previous paragraph), we must
be able to move elements from the second level back to the
first level. Otherwise, when elements are deleted from the first
level, and new elements are inserted into the second level, it
is no longer true that the second level contains at most ϵn/16
elements at any point in time. One possible solution to this
problem is to equip each first-level bin with a doubly-linked
list, pointing to all the “overflowing” elements of the bin (these
elements are stored in the second level). Upon every deletion
from a bin in the first level we move one of these overflowing
elements from the second level to this bin. We prefer, however,
to avoid such a solution due to its extensive usage of pointers
and the rather inefficient maintenance of the linked lists.

We provide an efficient solution to this problem by using
cuckoo hashing as the second level dictionary. Cuckoo hashing
uses two tables T1 and T2, each consisting of r = (1 + δ)ℓ
entries for some small constant δ > 0 for storing at most
ℓ = ϵn/16 elements, and two hash functions h1, h2 : U →
{1, . . . , r}. An element x is stored either in entry h1(x) of
table T1 or in entry h2(x) of table T2, but never in both. The
lookup and deletion procedure are naturally defined, and as
for insertions, Pagh and Rodler [44] proved that the “cuckoo
approach”, kicking other elements away until every element
has its own “nest”, leads to an efficient insertion procedure.

More specifically, in order to insert an element x we store it in
entry T1[h1(x)]. If this entry is not occupied, then we are done,
and otherwise we make its previous occupant “nestless”. This
element is then inserted to T2 using h2 in the same manner,
and so forth iteratively. We refer the reader to [44] for a more
comprehensive description of cuckoo hashing.

A very useful property of cuckoo hashing in our setting
is that in its insertion procedure, whenever stored elements
are encountered we add a test to check whether they actually
“belong” to the main table T0 (i.e., whether their correspond-
ing bin has an available entry). The key property is that if
we ever encounter such an element, the insertion procedure is
over (since an available position is found for storing the current
nestless element). Therefore, as far as the cuckoo hashing is
concerned, it stores at most ϵn/16 elements at any point in
time. This guarantees that any insert operation leads to at most
one insert operation in the cuckoo hashing, and one insert
operation in the first-level bins.

Constant worst-case operations: de-amortized cuckoo
hashing. Instead of using the classical cuckoo hashing we
use the recent construction of Arbitman et al. [1] who showed
how to de-amortize the insertion time of cuckoo hashing using
a queue. The insertion procedure in the second level is now
parameterized by a constant L, and is defined as follows.
Given a new element x (which cannot be stored in the first
level), we place the pair (x, 1) at the back of the queue (the
additional value indicates to which of the two cuckoo tables
the element should be inserted next). Then, we carry out the
following procedure as long as no more than L moves are
performed in the cuckoo tables: we take the pair (y, b) from
the head of the queue, and check whether y can be inserted
into the first level. If its bin in the first level is not full then
we store y there, and otherwise we place y in entry Tb[hb(y)].
If this entry was unoccupied (or if y was successfully moved
to the first level of the dictionary), then we are done with the
current element y, this is counted as one move and the next
element is fetched from the head of the queue. However, if the
entry Tb[hb(y)] was occupied, we check whether its previous
occupant z can be stored in the first level and otherwise we
store z in entry T3−b[h3−b(z)] and so on, as in the above
description of the standard cuckoo hashing. After L elements
have been moved, we place the current “nestless” element
at the head of the queue, together with a bit indicating the
next table to which it should be inserted, and terminate the
insertion procedure (note that it may take less than L moves,
if the queue becomes empty). An important ingredient in the
construction of Arbitman et al. is the use of a small auxiliary
data structure called “stash” that enables to avoid rehashing,
as suggested by Kirsch et al. [30].

A schematic diagram of our construction and a formal
description of its procedures are provided in the longer version
of this paper [2], where we prove the following theorem:

Theorem III.1. For any n and 0 < ϵ < 1 there exists a
dynamic dictionary with the following properties:

1) The dictionary stores n elements using (1+ϵ)n memory

words.
2) For any polynomial p(n) and for any sequence of at

most p(n) operations in which at any point in time
at most n elements are stored in the dictionary, with
probability at least 1− 1/p(n) over the randomness of
the initialization phase, all insertions are performed in
time O(log(1/ϵ)/ϵ2) in the worst case. Deletions and
lookups are always performed in time O(log(1/ϵ)/ϵ2)
in the worst case.

IV. DE-AMORTIZED PERFECT HASHING: ELIMINATING
THE DEPENDENCY ON ϵ

The dependency on ϵ in the deletion and lookup times
can be eliminated by using a perfect hashing scheme (with
a succinct representation) in each of the first-level bins. Upon
storing an element in one of the bins, the insertion procedure
reconstructs the perfect hash function for this bin. As long
as the reconstruction can be done in time linear in the
size of a bin, then the insertion procedure still takes time
O(d) = O(log(1/ϵ)/ϵ2) in the worst case, and the deletion and
lookup procedures take constant time that is independent of ϵ.
Such a solution, however, does not eliminate the dependency
on ϵ in the insertion time.

In this section we present an augmentation that completely
eliminates the dependency on ϵ. We present a rather general
technique for de-amortizing a perfect hashing scheme to be
used in each of the first-level bins. Our approach relies on
the fact that the same scheme is employed in a rather large
number of bins at the same time, and this enables us to use a
single queue to guarantee that even insertions are performed
in constant time that is independent of ϵ. Using this augmen-
tation we immediately obtain the following refined variant of
Theorem III.1 (the restriction ϵ = Θ((log logn/ log n)1/2) is
due to the specific scheme that we de-amortize – see more
details below):

Theorem IV.1. For any integer n there exists a dynamic
dictionary with the following properties:

1) The dictionary stores n elements using (1+ϵ)n memory
words, for ϵ = Θ((log log n/ log n)1/2).

2) For any polynomial p(n) and for any sequence of at most
p(n) operations in which at any point in time at most n
elements are stored in the dictionary, with probability at
least 1−1/p(n) over the randomness of the initialization
phase, all operations are performed in constant time,
independent of ϵ, in the worst case.

This augmentation is rather general and we can use any
perfect hashing scheme with two natural properties. We require
that for any sequence σ of operations leading to a set S of
size at most d−1, for any sequence of memory configurations
and rehashing times occurring during the execution of σ, and
for any element x /∈ S that is currently being inserted it holds
that:

• Property 1: With probability 1−O(1/d) the current hash
function can be adjusted to support the set S ∪ {x} in

expected constant time. In addition, the adjustment time
in this case is always upper bounded by O(d).

• Property 2: With probability O(1/d) rehashing is re-
quired, and the rehashing time is dominated by O(d) ·Z
where Z is a geometric random variable with a constant
expectation.

Our augmentation introduces an overhead which imposes a
restriction on the range of possible values for ϵ. The restriction
comes from two sources: the description length of the perfect
hash function in every bin, and the computation time of
the hash function and its adjustment on every insertion. We
propose a specific scheme that satisfies the above properties,
and can handle ϵ = Ω((log log n/ log n)1/2). It is rather likely
that various other schemes such as [14], [23] can be slightly
modified to satisfy these properties. In particular, the schemes
[42], [51] seem especially suitable for this purpose.

To de-amortize any scheme that satisfies these two proper-
ties we use an auxiliary queue (the same queue is used for all
bins), and the insertion procedure to the bins is now defined
as follows: upon insertion, the new element is placed at the
back of the queue, and we perform a constant number of steps
(denoted by L) on the element currently located at the head
of the queue. If these L steps are not enough to insert this
element into its bin, we return it to the head of the queue, and
continue working on this element upon the next insertion. If
we managed to insert this element by using less than L steps,
we continue with the next element and so on until we complete
L steps7. As for deletions, these are also processed using the
queue, and when deleting an element we simply locate the
element inside its bin and mark it as deleted (i.e., deletions
are always performed in constant time). For more details we
refer the reader to the longer version of this paper [2].

A. A Specific Scheme for ϵ = Ω((log log n/ log n)1/2)

The scheme uses exactly d memory words to store d
elements, and 3 additional words to store the description of its
hash function. The elements are mapped into the set [d] using
two functions. The first is a pairwise independent function h
mapping the elements into the set [d2]. This function can be
described using 2 memory words and evaluated in constant
time. The second is a function g that records for each r ∈ [d2]
for which there is a stored element x with h(x) = r the
location of x in [d]. The description of g consists of at most
d pairs taken from [d2]× [d] and therefore can be represented
using 3d log d bits.

The lookup operation of an element x computes h(x) = r
and then g(r) to check if x is stored in that location. In
general, we cannot assume that the function g can be evaluated
in constant time, and therefore we also store a lookup table
for its evaluation. This table is shared by all the bins, and
it represents the function that takes as input the description

7A comment is in place regarding rehashing. If rehashing is needed, then
we copy the content of the rehashed bin to a dedicated memory location,
perform the rehash, and then copy back the content of the bin, and all this is
done in several phases of L steps. Note that the usage of the queue guarantees
that at any point in time we rehash at most one bin.

of g and a value r, and outputs g(r) or null. The size of
this lookup table is 23d log d+2 log d · log d bits. The deletion
operation performs a lookup for x, and then updates the
description of g. Again, for updating the description of g we
use another lookup table (shared among all bins) that takes as
input the current description of g and a value r = h(x), and
outputs a new description for g. The size of this lookup table
is 23d log d+2 log d · 3d log d bits.

As for the insert operation, in the longer version of this
paper [2] we prove that with probability 1 − O(1/d) a new
element will not introduce a collision for the function h. In
this case we store the new element in the next available entry
of [d], and update the description of g. For identifying the next
available entry we use a global lookup table of size 2d log d
bits (each row in the table corresponds to an array of d bits
describing the occupied entries of a bin), and for updating the
description of g we use a lookup table of size 23d log d+2 log d ·
3d log d bits as before. With probability O(1/d) when inserting
a new element we need to rehash by sampling a new function
h, and executing the insert operation on all the elements. In this
case the rehashing time is upper bounded by O(d) · Z where
Z is a geometric random variable with a constant expectation.
Thus, this scheme satisfies the two properties stated in the
beginning of the section.

The total amount of space used by the global lookup
tables is O(23d log d+2 log d · d log d) bits. For ϵ =
Ω((log log n/ log n)1/2) this is at most nα bits for some
constant 0 < α < 1, and therefore negligible compared
to our space consumption. In addition, the hash function
of every bin is described using 2 log u + d log d bits, and
therefore summing over all m = ⌈(1 + ϵ/2)n/d⌉ bins this
is O(n/d · log u + n log d). For ϵ = Ω(log log n/ log n) this
is at most ϵn log u bits, which is again negligible compared
to our space consumption. Thus, this forces the restriction
ϵ = Ω((log log n/ log n)1/2).

V. MATCHING THE INFORMATION-THEORETIC SPACE
BOUND

In this section we present a variant of our construction
that uses only (1 + o(1))B bits, where B = B(u, n) is the
information-theoretic bound for representing a set of size n
taken from a universe of size u, and guarantees constant-time
operations in the worst case with high probability. We first
present a scheme that is based on truly random permutations,
and then present a scheme that is based on k-wise δ-dependent
permutations. We prove the following theorem:

Theorem V.1. For any integers u and n ≤ u there exists a
dynamic dictionary with the following properties:

1) The dictionary stores n elements taken from a universe
of size u using (1 + ϵ)B bits, where B = ⌈log

(
u
n

)
⌉ and

ϵ = Θ(log log n/(logn)1/3).
2) For any polynomial p(n) and for any sequence of at most

p(n) operations in which at any point in time at most n
elements are stored in the dictionary, with probability at
least 1−1/p(n) over the randomness of the initialization

phase, all operations are performed in constant time,
independent of ϵ, in the worst case.

One of the ideas we will utilize is that when we apply a
permutation π to an element x we may think of π(x) as a
new identity for x, provided that we are also able to compute
π−1(x). The advantage is that we can now store explicitly
only part of π(x), where the remainder is stored implicitly by
the location where the value is stored. This is the idea behind
quotient hash functions, as suggested previously by Pagh [43]
and Demaine et al. [11].

A. A Scheme based on Truly Random Permutations

Recall that our construction consists of two levels: a table in
the first level that contains m ≈ n/d bins, each of which stores
at most d elements, and the de-amortized cuckoo hashing in
the second level for dealing with the overflowing elements.
The construction described in this section shares the same
structure, while refining the memory consumptions in each
of the two levels separately. In turn, Theorem V.1 (assum-
ing truly random permutations for now) follows immediately
by plugging in the following modifications to our previous
schemes.

1) First-Level Hashing Using Permutations: We reduce
the space consumption in the first level of our construction
by hashing the elements into the first-level table using a
“chopped” permutation π over the universe U as follows. For
simplicity we assume here that u and m are powers of 2, and
refer the reader to the longer version of this paper [2] for
an extension to the more general case. Given a permutation
π and an element x ∈ U , we denote by πL(x) the left-most
logm bits of π(x), and by πR(x) the right-most log(u/m)
bits of π(x). That is, π(x) is the concatenation of the bit-
strings πL(x) and πR(x). We use πL as the function mapping
elements into bins, and πR as the identity of the elements
inside the bins: any element x is stored either in the first level
in bin πL(x) using the identity πR(x), or in the second level if
its first-level bin already contains d other elements. The update
and lookup procedures remain exactly the same, and note that
the correctness of the lookup procedure is guaranteed by the
fact that π is a permutation, and therefore the function πR is
one-to-one inside every bin.

In the following lemma we bound the number of overflow-
ing elements in the first level when using a truly random
permutation. Recall that an element is overflowing if it is
mapped to a bin with at least d other elements. The lemma
guarantees that by setting d = O(log(1/ϵ)/ϵ2) there are
at most ϵn/16 overflowing elements with an overwhelming
probability, exactly as in Section III.

Lemma V.2. Fix any n, d, ϵ, and a set S ⊆ U of n
elements. With probability 1 − 2−ω(log n) over the choice of
a truly random permutation π, when using the function πL

for mapping the elements of S into m = ⌈(1 + ϵ)n/d⌉ bins
of size d, the number of non-overflowing elements is at least
(1− ϵ/32)(1− 4e−Ω(ϵ2d))n.

2) The Bins in the First-Level Table: We follow the general
approach presented in Section IV to guarantee that the update
and lookup operations on the first-level bins are performed
in constant time that is independent of the size of the bins
(and thus independent of ϵ). Depending on the ratio between
the size of the universe u and the number of elements n, we
present hashing schemes that satisfy the two properties stated
in the beginning of Section IV. Our task here is a bit more
subtle than in Section IV, since we must guarantee that the
descriptions of the hash functions inside the bins (and any
global lookup tables that are used) do not occupy too much
space compared to the information-theoretic bound. This puts
a restriction on the size of the bins. We consider two cases
(these cases are not necessarily mutually exclusive):

Case 1: u ≤ n · 2(logn)β for some β < 1. In this case we
store all elements in a single word using the information-
theoretic representation, and use lookup tables to guarantee
constant time operations. Specifically, recall that the elements
in each bin are now taken from a universe of size u/m, and
each bin contains at most d elements. Thus, the content of a bin
can be represented using ⌈log

(
u/m
d

)
⌉ bits. Insertions and dele-

tions are performed using a global lookup table that is shared
among all bins. The table represents a function that receives
as input a description of a bin, and an additional element, and
outputs an updated description for the bin. This lookup table
can be represented using 2⌈log (

u/m
d)⌉+⌈log u/m

d ⌉ · ⌈log
(
u/m
d

)
⌉

bits. Similarly, lookups are performed using a global table that
occupies 2⌈log (

u/m
d)⌉+⌈log u/m

d ⌉ bits.
These force two restrictions on d. First, the description of a

bin has to fit into one memory word, to enable constant-time
evaluation using the lookup tables. Second, the two lookup
tables have to fit into at most, say, (ϵ/6) · n log(u/n) bits.
When assuming that u ≤ n · 2(log n)β for some β < 1, these
two restrictions allow d = O((log n)1−β). Recall that d =

O(log(1/ϵ)/ϵ2), and this implies that ϵ = Ω
(

(log log n)1/2

(logn)(1−β)/2

)
.

Case 2: u > n · 2(logn)β for some β < 1. In this case
we use the scheme described in Section IV-A. In every bin
the pairwise independent function f can be represented using
2⌈log(u/m)⌉ bits (as opposed to 2⌈log u⌉ bits in Section
IV-A), and the function g can be represented using 3d⌈log d⌉
bits (as in Section IV-A). Summing these over all m bins re-
sults in O(n/d · log(u/n)+n log d) bits, and therefore the first
restriction is that the latter is at most, say, (ϵ/12) ·n log(u/n)

bits. Assuming that u > n · 2(log n)β for some β < 1 (and
recall that d = O(log(1/ϵ)/ϵ2)) this allows ϵ = Ω

(
log log n
(log n)β

)
.

In addition, as discussed in Section IV-A, the scheme
requires global lookup tables that occupy a total
O(23d log d+2 log d · d log d) bits, and therefore the second
restriction is that the latter is again at most (ϵ/12) ·n log(u/n)
bits. This allows d = O(logn/ log log n), and therefore

ϵ = Ω

((
log log n
logn

)1/2
)

. Thus, in this case we can deal with

ϵ = Ω

(
max

{
log log n
(log n)β

,
(

log log n
logn

)1/2
})

.

An essentially optimal trade off (asymptotically) between
these two cases occurs for β = 1/3, which allows ϵ =

Ω
(

(log log n)1/2

(log n)1/3

)
in the first case, and ϵ = Ω

(
log log n
(log n)1/3

)
in

the second case. Therefore, regardless of the ratio between u

and n, our construction can always allow ϵ = Ω
(

log log n
(log n)1/3

)
.

3) The Second Level: Permutation-based Cuckoo Hashing:
First of all note that if u > n1+α for some constant α < 1,
then log u ≤ (1/α+ 1) log(u/n), and therefore we can allow
ourselves to store αϵn overflowing elements using log u bits
each as before. For the general case, we present a variant
of the de-amortized cuckoo hashing scheme that is based
on permutations, where each element is stored using roughly
log(u/n) bits instead of log u bits8. Recall that cuckoo hashing
uses two tables T1 and T2, each consisting of r = (1 + δ)ℓ
entries for some small constant δ > 0 for storing a set S ⊆ U
of at most ℓ elements, and two hash functions h1, h2 : U → [r].
An element x is stored either in entry h1(x) of table T1 or
in entry h2(x) of table T2. This naturally defines the cuckoo
graph, which is the bipartite graph defined on [r] × [r] with
edges {(h1(x), h2(x))} for every x ∈ S.

We modify cuckoo hashing to use permutations as follows
(for simplicity we again assume that u and r are powers of
2, but this is not essential). Given two permutations π1 and
π2 over U , we define h1 as the left-most log r bits of π1, and
h2 as the left-most log r bits of π2. An element x is stored
either in entry h1(x) of table T1 using the right-most log(u/r)
bits of π1(x) as its new identity, or in entry h2(x) of table T2

using the right-most log(u/r) bits of π2(x) as its new identity.
The update and lookup procedures are naturally defined as
before. Note that the permutations π1 and π2 have to be easily
invertible to allow moving elements between the two tables,
and this is satisfied by our constructions of k-wise δ-dependent
permutations. We now argue that by slightly increasing the
size r of each table, the de-amortization of cuckoo hashing
(and, in particular, cuckoo hashing itself) still has the same
performance guarantees when using permutations instead of
functions. The de-amortization of [1] relies on two properties
of the cuckoo graph:

1) With high probability the sum of sizes of any log ℓ
connected components is O(log ℓ).

2) The probability that there are at least s edges that close
a second cycle is O(r−s).

These properties are known to be satisfied when h1 and h2

are truly random functions, and here we present a coupling
argument showing that they are satisfied also when h1 and
h2 are defined as above using truly random permutations. Our
argument relies on the monotonicity of these properties: if they
are satisfied by a graph, then they are also satisfied by all its
subgraphs. In the longer version of this paper [2] we prove
the following claim:

Claim V.3. Let ℓ = ⌈ϵn/16⌉ and r = ⌈(1 + δ)(1 + ϵ)ℓ⌉ for
some constant 0 < δ < 1. There exists a joint distribution

8There is also an auxiliary data structure (a queue) that contains roughly
logn elements, each of which can be represented using log u bits.

D = (Gf1,f2 ,Gπ1,π2) such that:
• Gf1,f2 is identical to the distribution of cuckoo graphs

over [r] × [r] with ⌈(1 + ϵ)ℓ⌉ edges, defined by h1 and
h2 that are the left-most log r bits of two truly random
functions f1, f2 : U → U .

• Gπ1,π2 is identical to the distribution of cuckoo graphs
over [r]× [r] with ℓ edges, defined by h1 and h2 that are
the left-most log r bits of two truly random permutations
π1, π2 : U → U .

• With probability 1 − e−Ω(ϵ3n) over the choice of
(Gf1,f2 , Gπ1,π2)← D, it holds that Gπ1,π2 is a subgraph
of Gf1,f2 .

B. A Scheme based on k-wise δ-dependent Permutations

We eliminate the need for truly random permutations by
first reducing the problem of dealing with n elements to
several instances of the problem on nα elements, for some
α < 1. Then, for each such instance we apply the solution
that assumes truly random permutations, but using a k-wise
δ-dependent permutation, for k = nα and δ = 1/poly(n),
that can be shared among all instances. Although the following
discussion can be framed in terms of any small constant α < 1,
for concreteness we use α ≈ 1/10.

Specifically, we hash the elements into m = n9/10 bins of
size at most d = n1/10 + n3/40 each, using a permutation
π : U → U sampled from a collection Π of one-round Feistel
permutations, and prove that with overwhelming probability
there are no overflowing bins. The collection Π is defined
as follows. For simplicity we assume that u and m are
powers of 2, and refer the reader to the longer version of
this paper [2] for an extension to the more general case.
Let F be a collection of k′-wise independent functions f :
{0, 1}log(u/m) → {0, 1}logm, where k′ = O(n1/20), with a
short representation and constant evaluation time (see Section
II). Given an input x ∈ {0, 1}log u we denote by xL its left-
most logm bits, and by xR its right-most log(u/m) bits. For
every f ∈ F we define a permutation π = πf ∈ Π by
π(x) = (xL ⊕ f(xR), xR). Any element x is mapped to the
bin πL(x) = xL⊕f(xR), and is stored there using the identity
πR(x) = xR.

Then, in every bin we apply the scheme from Section
V-A that relies on truly random permutations, but using three
k-wise δ-dependent permutations that are shared among all
bins (recall that the latter scheme requires three permutations:
one for its first-level hashing, and two for its permutation-
based cuckoo hashing that stores the overflowing elements)9.
By setting k = n1/10 + n3/40 it holds that the distribution
inside every bin is δ-close in statistical distance to that
when using truly random permutations. Therefore, Lemma V.2
and Claim V.3 guarantee that these permutations provide the
required performance guarantees for each bin with probability
1− (2−ω(log n) + δ) = 1− 1/poly(n). Thus, applying a union
bound on all m bins yields the same performance guarantees as

9When dealing with a universe of size u ≤ n1+γ for a small constant
γ < 1, we can even store three truly random permutations, but this solution
does not extend to the more general case where u/m might be rather large.

in Section V-A with probability 1−1/poly(n), for an arbitrary
large polynomial. In the longer version of this paper [2] we
prove the following claim :

Claim V.4. Fix u and n ≤ u, let m = n9/10, and let
F be a collection of k′-wise independent functions f :
{0, 1}log(u/m) → {0, 1}logm for k′ = ⌊n1/20/e1/3⌋. For any
set S ⊂ {0, 1}log u of size n, with probability 1 − 2−ω(log n)

over the choice of f ∈ F , when using the function x 7→
xL ⊕ f(xR) for mapping the elements of S into m bins, no
bin contains more than n1/10 + n3/40 elements.

We note that a possible (but not essential) refinement is to
combine the queues of all m bins. Recall that each bin has
two queues: a queue for its de-amortized cuckoo hashing, and
a queue for its first-level bins. An analysis almost identical
to that of [1] (for the de-amortized cuckoo hashing) and of
Section IV (for the first-level bins) shows that we can in fact
combine all the queues of the de-amortized cuckoo hashing
schemes, and all the queues of the first-level bins.

VI. CONCLUDING REMARKS AND OPEN PROBLEMS

Implications of our constructions for the amortized setting.
We note that our constructions offer various advantages over
previous constructions even in the amortized setting, where
one is not interested in worst-case guarantees. In particular,
instantiating our dictionary with the classical cuckoo hashing
[44] (instead of its de-amortized variant [1]) already gives a
logarithmic upper bound with high probability for the update
time, together with a space consumption of (1 + ϵ)n memory
words for a sub-constant ϵ.

On the practicality of our schemes. In this paper we
concentrated on showing that it is possible to obtain a succinct
representation with worst-case operations. The natural ques-
tion is how applicable these methods are. There are a number
of approaches that can be applied to reduce the overflow of
the first-level bins. First, we can use the two-choice paradigm
(or, more generally, d-choice) in the first-level bins instead of
the single function we currently employ. Another alternative
is to apply the generalized cuckoo hashing [18] inside the
first-level bins, limiting the number of moves to a small
constant, and storing the overflowing elements in de-amortized
cuckoo hashing as in our actual construction. Experiments we
performed indicate that these approaches result in (sometimes
quite dramatic) improvements. The experiments suggest that
for the latter variant, maintaining a small queue of at most
logarithmic size, enables us even to get rid of the second-
level cuckoo hashing: i.e., an element can reside in one of
two possible first-level bins, or in the queue.

Another natural tweak is using a single queue for all the
de-amortizations together. Finally, while the use of chopped
permutations introduces only a negligible overhead, the use of
an intermediate level seems redundant and we conjecture that
better analysis would indeed show that.

Clocked adversaries. The worst-case guarantees of our dic-
tionary are important if one wishes to protect against “clocked

adversaries”, as mentioned in Section I. This in itself can yield
a solution in the following sense: have an upper bound α
on the time each memory access takes, and then make sure
that all requests are answered in time exactly α times the
worst-case upper bound on the number of memory probes.
Such an approach, however, may be quite wasteful in terms
of computing resources, since we are not taking advantage of
the fact that some operations may be processed in time that
is below the worst-case guarantee. In addition, this approach
ignores the memory hierarchy, that can possibly be used to
our advantage.
Lower bounds for dynamic dictionaries. The worst-case
performance guarantees of our constructions are satisfied with
all but an arbitrary small polynomial probability over the
randomness of their initialization phase. There are several open
problems that arise in this context. One problem is to reduce
the failure probability to sub-polynomial. The main bottleneck
is the approximation to k-wise functions or permutations.
Another bottleneck is the lookup procedure of the queue
(if the universe is of polynomial size then we can in fact
maintain a small queue deterministically). Another problem
is to identify whether randomness is needed at all. That is,
whether it is possible to construct a deterministic dictionary
with similar guarantees. We conjecture that randomness is
necessary. Various non-constant lower bounds on the perfor-
mance of deterministic dynamic dictionaries are known for
several models of computation [14], [38], [49]. Although these
models capture a wide range of possible constructions, for the
most general cell probe model [52] it is still an open problem
whether a non-constant lower bound can be proved.
Extending the scheme to smaller values of ϵ. Recall that
in the de-amortized construction of perfect hashing inside the
first-level bins (Section IV), we suggested a specific scheme
that can handle ϵ = Ω((log logn/ logn)1/2). This restriction
on ϵ was dictated by the space consumption of the global
lookup tables together with the hash functions inside each
bin. The question is how small can ϵ be and how close to
the information theoretic bound can we be, that is for what
function f can we use B + f(n, u) bits. A possible approach
is to use the two-choice paradigm for reducing the number of
overflowing elements from the first level of our construction,
as already mentioned.
Constructions of k-wise almost independent permutations.
In the longer version of this paper [2] we present a construction
of k-wise δ-dependent permutations with a succinct repre-
sentation and a constant evaluation time. Two natural open
problems are to allow larger values of k (the main bottlenecks
are the restrictions k < u1/2 in [40] and k ≤ nα in [48]),
and a sub-polynomial δ (the main bottleneck is the failure
probability of Siegel’s construction [48]).
Supporting dynamic resizing. In this paper we assumed
that there is a pre-determined bound on the maximal number
of stored elements. It would be interesting to construct a
dynamic dictionary with constant worst-case operations and
full memory utilization at any point in time. That is, at any

point in time if there are ℓ stored elements then the dictionary
occupies (1 + o(1))ℓ memory words (even more challenging
requirement may be to use only (1 + o(1))B(u, ℓ) bits of
memory, where B(u, ℓ) is the information-theoretic bound for
representing a set of size ℓ taken from a universe of size
u). This requires designing a method for dynamic resizing
that essentially does not incur any noticeable time or space
overhead in the worst case. We note that in our construction it
is rather simple to dynamically resize the bins in the first-level
table, and this provides some flexibility.

ACKNOWLEDGMENTS

We thank Rasmus Pagh and Udi Wieder for many useful
remarks and suggestions.

REFERENCES

[1] Y. Arbitman, M. Naor, and G. Segev, “De-amortized cuckoo hashing:
Provable worst-case performance and experimental results,” in 36th
ICALP, 2009, pp. 107–118.

[2] ——, “Backyard cuckoo hashing: Constant worst-case operations with
a succinct representation,” arXiv report 0912.5424, 2010.

[3] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[4] A. Z. Broder and M. Mitzenmacher, “Using multiple hash functions to
improve IP lookups,” in INFOCOM, 2001, pp. 1454–1463.

[5] A. Brodnik and J. I. Munro, “Membership in constant time and almost-
minimum space,” SIAM J. Comput., vol. 28, no. 5, pp. 1627–1640, 1999.

[6] J. A. Cain, P. Sanders, and N. C. Wormald, “The random graph threshold
for k-orientiability and a fast algorithm for optimal multiple-choice
allocation,” in 18th SODA, 2007, pp. 469–476.

[7] L. Carter, R. W. Floyd, J. Gill, G. Markowsky, and M. N. Wegman,
“Exact and approximate membership testers,” in 10th STOC, 1978, pp.
59–65.

[8] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis, “Memory-
efficient algorithms for the verification of temporal properties,” Formal
Methods in System Design, vol. 1, no. 2/3, pp. 275–288, 1992.

[9] K. Dalal, L. Devroye, E. Malalla, and E. McLeis, “Two-way chaining
with reassignment,” SIAM J. Comput., vol. 35, no. 2, pp. 327–340, 2005.

[10] E. Demaine, “Lecture notes for the course “Advanced data structures”,”
Available at http://courses.csail.mit.edu/6.851/spring07/scribe/lec21.pdf,
2007.

[11] E. D. Demaine, F. Meyer auf der Heide, R. Pagh, and M. Pǎtraşcu,
“De dictionariis dynamicis pauco spatio utentibus (lat. On dynamic
dictionaries using little space),” in 7th LATIN, 2006, pp. 349–361.

[12] L. Devroye and E. Malalla, “On the k-orientability of random graphs,”
Discrete Mathematics, vol. 309, no. 6, pp. 1476–1490, 2009.

[13] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh,
and M. Rink, “Tight thresholds for cuckoo hashing via XORSAT,” in
37th ICALP, 2010, pp. 213–225.

[14] M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. Meyer auf der Heide,
H. Rohnert, and R. E. Tarjan, “Dynamic perfect hashing: Upper and
lower bounds,” SIAM J. Comput., vol. 23, no. 4, pp. 738–761, 1994.

[15] M. Dietzfelbinger and F. Meyer auf der Heide, “A new universal class
of hash functions and dynamic hashing in real time,” in 17th ICALP,
1990, pp. 6–19.

[16] M. Dietzfelbinger and R. Pagh, “Succinct data structures for retrieval
and approximate membership,” in 35th ICALP, 2008, pp. 385–396.

[17] M. Dietzfelbinger and M. Rink, “Applications of a splitting trick,” in
36th ICALP, 2009, pp. 354–365.

[18] M. Dietzfelbinger and C. Weidling, “Balanced allocation and dictiona-
ries with tightly packed constant size bins,” Theor. Comput. Sci., vol.
380, no. 1-2, pp. 47–68, 2007.

[19] M. Dietzfelbinger and P. Woelfel, “Almost random graphs with simple
hash functions,” in 35th STOC, 2003, pp. 629–638.

[20] D. Fernholz and V. Ramachandran, “The k-orientability thresholds for
Gn,p,” in 18th SODA, 2007, pp. 459–468.

[21] D. Fotakis, R. Pagh, P. Sanders, and P. G. Spirakis, “Space efficient
hash tables with worst case constant access time,” Theor. Comput. Sci.,
vol. 38, no. 2, pp. 229–248, 2005.

[22] N. Fountoulakis and K. Panagiotou, “Sharp load thresholds for cuckoo
hashing,” arXiv report 0910.5147, 2009.

[23] M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a sparse table
with O(1) worst case access time,” J. ACM, vol. 31, no. 3, pp. 538–544,
1984.

[24] A. Frieze and P. Melsted, “Maximum matchings in random bipartite
graphs and the space utilization of cuckoo hashtables,” arXiv report
0910.5535, 2009.

[25] A. Frieze, P. Melsted, and M. Mitzenmacher, “An analysis of random-
walk cuckoo hashing,” in 13th APPROX-RANDOM, 2009, pp. 490–503.

[26] T. Hagerup, “Sorting and searching on the word RAM,” in 15th STACS,
1998, pp. 366–398.

[27] T. Hagerup, P. B. Miltersen, and R. Pagh, “Deterministic dictionaries,”
J. Algorithms, vol. 41, no. 1, pp. 69–85, 2001.

[28] E. Kaplan, M. Naor, and O. Reingold, “Derandomized constructions of
k-wise (almost) independent permutations,” Algorithmica, vol. 55, no. 1,
pp. 113–133, 2009.

[29] A. Kirsch and M. Mitzenmacher, “Using a queue to de-amortize cuckoo
hashing in hardware,” in 45th Allerton Conf., 2007, pp. 751–758.

[30] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More robust hashing:
Cuckoo hashing with a stash,” SIAM J. Comput., vol. 39, no. 4, pp.
1543–1561, 2009.

[31] D. E. Knuth, “Notes on “open” addressing,” Available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4899,
1963.

[32] ——, The Art of Computer Programming. Volume 3: Sorting and
Searching, Second Edition. Addison-Wesley, 1998.

[33] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in CRYPTO ’96, 1996, pp. 104–113.

[34] E. Lehman and R. Panigrahy, “3.5-way cuckoo hashing for the price of
2-and-a-bit,” in 17th ESA, 2009, pp. 671–681.

[35] R. J. Lipton and J. F. Naughton, “Clocked adversaries for hashing,”
Algorithmica, vol. 9, no. 3, pp. 239–252, 1993.

[36] S. Lovett and E. Porat, “A lower bound for dynamic Bloom filters,” in
51st FOCS, 2010, to appear.

[37] M. Luby and C. Rackoff, “How to construct pseudorandom permutations
from pseudorandom functions,” SIAM J. Comput., vol. 17, no. 2, pp.
373–386, 1988.

[38] K. Mehlhorn, S. Näher, and M. Rauch, “On the complexity of a game
related to the dictionary problem,” SIAM J. Comput., vol. 19, no. 5, pp.
902–906, 1990.

[39] P. B. Miltersen, “Cell probe complexity - a survey,” in 19th FSTTCS,
1999.

[40] M. Naor and O. Reingold, “On the construction of pseudorandom
permutations: Luby-Rackoff revisited,” J. Cryptology, vol. 12, no. 1,
pp. 29–66, 1999.

[41] A. Pagh and R. Pagh, “Uniform hashing in constant time and optimal
space,” SIAM J. Comput., vol. 38, no. 1, pp. 85–96, 2008.

[42] R. Pagh, “Hash and displace: Efficient evaluation of minimal perfect
hash functions,” in 6th WADS, 1999, pp. 49–54.

[43] ——, “Low redundancy in static dictionaries with constant query time,”
SIAM J. Comput., vol. 31, no. 2, pp. 353–363, 2001.

[44] R. Pagh and F. F. Rodler, “Cuckoo hashing,” J. Algorithms, vol. 51,
no. 2, pp. 122–144, 2004.

[45] R. Panigrahy, “Efficient hashing with lookups in two memory accesses,”
in 16th SODA, 2005, pp. 830–839.

[46] M. Pǎtraşcu, “Succincter,” in 49th FOCS, 2008, pp. 305–313.
[47] R. Raman and S. S. Rao, “Succinct dynamic dictionaries and trees,” in

30th ICALP, 2003, pp. 357–368.
[48] A. Siegel, “On universal classes of extremely random constant-time hash

functions,” SIAM J. Comput., vol. 33, no. 3, pp. 505–543, 2004.
[49] R. Sundar, “A lower bound for the dictionary problem under a hashing

model,” in 32nd FOCS, 1991, pp. 612–621.
[50] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on

AES, and countermeasures,” J. Cryptology, vol. 23, no. 1, pp. 37–71,
2010.

[51] P. Woelfel, “Maintaining external memory efficient hash tables,” in 10th
APPROX-RANDOM, 2006, pp. 508–519.

[52] A. C.-C. Yao, “Should tables be sorted?” J. ACM, vol. 28, no. 3, pp.
615–628, 1981.

[53] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck in the
data domain deduplication file system,” in 6th USENIX Conference on
File and Storage Technologies, 2008, pp. 269–282.

