
A lower bound for dynamic approximate membership data structures

Shachar Lovett
Computer Science department

The Weizmann Institute of Science
Rehovot, Israel

Email: shachar.lovett@weizmann.ac.il

Ely Porat
Computer Science department

Bar-Ilan University
Ramat-Gan, Israel

Email: porately@cs.biu.ac.il

Abstract—An approximate membership data structure is
a randomized data structure for representing a set which
supports membership queries. It allows for a small false positive
error rate but has no false negative errors. Such data structures
were first introduced by Bloom in the 1970’s, and have since
had numerous applications, mainly in distributed systems,
database systems, and networks.

The algorithm of Bloom is quite effective: it can store a set S
of size n by using only ≈ 1.44n log2(1/ε) bits while having false
positive error ε. This is within a constant factor of the entropy
lower bound of n log2(1/ε) for storing such sets. Closing this
gap is an important open problem, as Bloom filters are widely
used is situations were storage is at a premium.

Bloom filters have another property: they are dynamic. That
is, they support the iterative insertions of up to n elements.
In fact, if one removes this requirement, there exist static
data structures which receive the entire set at once and can
almost achieve the entropy lower bound; they require only
n log2(1/ε)(1 + o(1)) bits.

Our main result is a new lower bound for the memory
requirements of any dynamic approximate membership data
structure. We show that for any constant ε > 0, any such data
structure which achieves false positive error rate of ε must
use at least C(ε) · n log2(1/ε) memory bits, where C(ε) > 1
depends only on ε. This shows that the entropy lower bound
cannot be achieved by dynamic data structures for any constant
error rate. In fact, our lower bound holds even in the setting
where the insertion and query algorithms may use shared
randomness, and where they are only required to perform well
on average.

Keywords-Dynamic data structures; Bloom filters; Lower
bounds;

I. INTRODUCTION

Suppose we want to build a data structure, that given a
set of elements S = {x1, . . . , xn} and an additional element
y, will be able to distinguish whether y ∈ S or not. The
approximate membership problem is to store a data structure
that supports membership queries in the following manner:
For a query on y ∈ S it is always reported that y ∈ S. For
a query on y /∈ S it is reported with probability at least
1− ε that y /∈ S, and with probability at most ε that y ∈ S.
That is, an approximate membership data structure has no

Research of the first author supported by the Israel Science Foundation
grant 1300/05 and by the ERC starting grant 239985. Research of the
second author supported by the Israel Science Foundation and the United
States-Israel Binational Science Foundation.

false negative errors, and allows false positive errors with
probability at most ε.

The approximate membership problem has attracted sig-
nificant interest in recent years, since it is a common building
block for various applications, mainly in distributed systems,
database systems and networks (see [BM03] for a survey).
Approximate membership data structures are often used
in practice when storage is at a premium, while a small
probability for false positive errors can be tolerated. The
false positive error rate which can be tolerated is often
relatively large, say, in the range 1%− 10%.

The study of approximate membership was initiated by
Bloom [Blo70] who described the Bloom filter data structure,
which provides a simple and elegant solution for the problem
which is near-optimal. Bloom showed that a space usage
of n log2(1/ε) log2 e bits suffices for a false positive error
probability of ε. This is quite close to the entropy lower
bound. Carter et. al [CFG+78] showed that n log2(1/ε) bits
are required when the universe set U is large |U| � n (see
also [DP08] for details). Thus Bloom filters have a space
usage within a factor log2 e ≈ 1.44 of the lower bound.
As Bloom filters are widely used in practice, mainly in
situations when storage is scarce, this factor of 1.44 is not
negligible. The main object of study of this paper is whether
this factor can be eliminated. I.e., we study whether there
exist data structures for approximate membership which
achieve the entropy lower bound.

An important feature of Bloom filters is that they are
dynamic. That is, the elements x1, . . . , xn can be inserted
one at a time, while maintaining the succinct representation
of the data structure. If, on the other hand, one limits itself
to static data structures, which are given the entire set
S = {x1, . . . , xn} at once, and are allowed to preprocess
it before creating the succinct data structure, then the en-
tropy lower bound can be nearly achieved. Dietzfelbinger
and Pagh [DP08] and Porat [Por09] gave data structures
for the static approximate membership problem using only
n log2(1/ε)(1 + o(1)) bits.

The main result of this paper is that dynamic data
structures for approximate membership cannot achieve the
entropy lower bound.

Theorem 1. Let |U| be a universe set. Consider any
randomized data structure which allows for the dynamic
insertion of up to n elements (where n � |U|), has false
positive error at most ε (where ε > 0 is a constant), and
which allows no false negative errors. Then for large enough
n, any such data structure must use at least C(ε)n log2(1/ε)
memory bits, where C(ε) > 1 is a constant depending only
on ε. In particular, for ε = 1/2 we get C(1/2) ≥ 1.1.

In fact, our lower bound holds even in the setting where
the insertion and query algorithms may use shared random-
ness, and where they are only required to perform well on
average.

Note that the requirement that the false negative error is
constant cannot be eliminated. In fact, for every ε = o(1)
there is a simple dynamic approximate membership data
structure which requires only n log2(1/ε)(1 + o(1)) bits:
pick a (good enough) hash function h : U → [n/ε], and
at each step maintain the set {h(x1), h(x2), . . . , h(xn)}.
The space requirements of this algorithm are log2

(
n/ε
n

)
=

n log2(1/ε) + O(n), which is n log2(1/ε)(1 + o(1)) for
any ε = o(1). The data structure we just described is not
efficient; efficient versions are achieved implicitly in the
work of Matias and Porat [MP07], and explicitly in works of
Pagh, Pagh and Rao [PPR05] (which is based on a work of
Rajeev and Rao [RR03]) and in a work of Arbitman, Naor
and Segev [ANS10].

A. Proof overview

The proof of the lower bound is conducted in two steps:
we first transform the problem to a graph-theoretic problem,
and then we prove results on this graph-theoretic problem.

The graph-theoretic problem: Assume there exists a
dynamic approximate membership data structure, which
allows insertion of up to n elements from a universe set
U, has false positive error of at most ε, and which requires
M memory bits. Consider first for simplicity a deterministic
data structure. We model such a data structure by a labeled
layered graph, which captures all possible insertions of up
to n elements.

The graph G has n+ 1 layers V0 ∪ V1 ∪ . . . ∪ Vn, where
each vertex in Vi corresponds to a possible state of the data
structure after insertions of i elements. In particular V0 =
{v0} and |V1|, . . . , |Vn| ≤ 2M . The edges connect vertices in
adjacent layers, and are labeled by elements x ∈ U. Given
a vertex v ∈ Vi and an element x ∈ U, there is an outgoing
edge v → u which is labeled with x, where u ∈ Vi+1

corresponds to the state reached after inserting x when the
state of the data structure was v. Thus, any sequence w =
x1, . . . , xi ∈ Ui defines a path from v0 ∈ V0 to some vertex
v(w) ∈ Vi.

For a vertex v define L(v) to be the set of all labels
in paths between v0 and v. For a sequence w ∈ Ui define
L(w) = L(v(w)) to be all labels in paths reaching v(w). We

prove that since G is based on an approximate membership
data structure with error ε, then for many vertices v ∈ Vn, if
we consider all labels in all paths reaching v, we only cover
approximately an ε-fraction of U. Formally, we show that if
w ∈ Un is chosen uniformly at random, then E[|L(w)|] ≤
ε|U|(1 + o(1)). We will then use this property to infer a
lower bound on the number of vertices 2M in the layers of G,
which will give a lower bound on the memory requirements
of the data structures.

In the case of randomized data structures, we prove such a
graph still exists for some fixing of the internal randomness
of the data structure, hence giving the same lower bounds
also for randomized data structures.

Lower bound on the layers sizes: Let G be the labeled
layered graph we constructed. Let 1 ≤ k ≤ n be some
intermediate layer. We will in fact prove the following lower
bound

max(|Vk|, |Vn|) ≥ (1/ε)C(ε)n.

Pick w = x1, . . . , xn ∈ Un uniformly at random, and
partition w to the first k elements w′ = x1, . . . , xk and the
last n− k elements w′′ = xk+1, . . . , xn. Consider inserting
the elements in w as a two-step process: first insert w′,
reaching an intermediate vertex v(w′) ∈ Vk, and then insert
w′′, reaching a final vertex v(w′w′′) ∈ Vn. We get that
with good probability we the following two events occur
simultaneously:

|L(w′w′′)| ≤ α|U| (1)

|L(w′)| ≥ β|U| (2)

where α ≈ ε and β ≈ 2−M/k.
We will prove the lower bound by a covering argument,

based on the above properties. We first sketch a simple
covering argument, which fails at giving a lower bound
better than the entropy lower bound. We then show a more
complex covering argument which give a non-trivial lower
bound on M .

Consider first a simple covering argument. Fix some
v′ = v(w′) and v′′ ∈ Vn. If w′′ is such that v′′ = v(w′w′′)
then we must have all elements in w′′ appear in L(w′w′′).
However, since |L(w′w′′)| . ε|U|, the number of possi-
bilities for w′′ is at most (ε|U|)n−k. Thus, since the total
number of w′′ ∈ Un−k is |U|n−k, there must be at least
(1/ε)n−k different vertices in Vn which can be reached
from v′. This yields the bound |Vn| ≥ (1/ε)n−k, which
is optimized by taking k = 0 and gives M ≥ n log2(1/ε).

We now show how to obtain an improved covering
argument. Say a sequence w′′ ∈ Un−k is good for w′

if w′′ intersects L(w′) in roughly the expected number of
elements, that is if

|w′′ ∩ L(w′)| ≈ (n− k)L(w′)
|U|

. (3)

Assume w′′ is good for w′ such that v′′ = v(w′w′′). Let
β(w′) = L(w′)

|U| . The number of such w′′ is bounded by

≈
(

n− k
β(w′)(n− k)

)
· |L(w′)|β(w′)(n−k)·

|L(v′′) \ L(w′)|(1−β(w′))(n−k).

We show that events (1), (2) and (3) all occur simultaneously
with a relative large probability. We infer that for a large
fraction of w′, there must be many distinct v(w′w′′) where
w′′ is good for w′,

|{v(w′w′′) : w′′ is good for w′}|

≥
(

1− β(w′)
α− β(w′)

)(1−β(w′))(n−k)

.

Combining this with the simple bound, that the number of
w′ ∈ Uk which can reach some vertex in a path to v′′ ∈ Vn,
is bounded by |L(v′′)|k ≤ (α|U|)k ≈ (ε|U|)k, we deduce
the following inequality. Set c = k

n and η = M
n log2(1/ε)

. We
get

(1/ε)ηεc ≥
(

1− εη/c

ε− εη/c

)(1−εη/c)(1−c)

. (4)

This is a non-trivial inequality relating the different pa-
rameters ε, c and η. Note it should hold for any value of
0 < c < 1. In the final step we study inequality (4), and
prove that for every constant ε > 0 we can choose some
value for c such that we must have η > C(ε) > 1 for the
inequality to hold.

Paper organization: We formally define approximate
membership data structures in Section II. We prove Theo-
rem 1 in Section III.

II. PRELIMINARIES

Let U be a universe set. An approximate membership data
structure is a space-efficient randomized data structure that
represents a subset S ⊂ U of size |S| ≤ n and supports
queries whether x ∈ S for elements x ∈ U, with the
following guarantees:
• No false negatives: if x ∈ S, the query will always

return true.
• Few false positives: if x /∈ S, the query will return false

with probability at least 1−ε, and will return true with
probability at most ε (probabilities are over the internal
randomness of the data structure).

The main goal of this paper is to study the tradeoff between
the maximal set size n, the false positive error parameter ε
and the memory requirements of the data structure. We will
assume throughout the paper that the subset S is a small
fraction of the universe, i.e. that n� |U|.

We now define dynamic vs. static approximate member-
ship data structures.

Definition 1 (Dynamic approximate membership data struc-
ture). A dynamic approximate membership data structure is

composed of two algorithms: an insertion algorithm and a
query algorithm.
• The insertion algorithm I is a randomized algorithm,

which allows for the insertion of up to n elements
sequentially. The algorithm maintains a succinct repre-
sentation R of the set of elements inserted so far, and
for each new element x ∈ U updates R← I(R, x).

• The query algorithm Q receives as inputs the succinct
representation R of S and an element x ∈ U, and
outputs an estimate Q(R, x) ∈ {true, false} whether
x ∈ S.

The memory requirements of a dynamic approximate mem-
bership data structure is the maximal number of bits
required to represent R throughout the insertion phase.
We denote by MD(n, ε) the minimal memory required by
a dynamic approximate membership data structure which
stores up to n elements and has false positive errors with
probability at most ε.

Definition 2 (Static approximate membership data struc-
ture). A static approximate membership data structure is
composed of two algorithms: a preprocessing algorithm and
a query algorithm.
• The preprocessing algorithm P is a randomized al-

gorithm, which receives as input a subset S ⊂ U of
size at most n, and outputs a succinct representation
R = P(S) of S.

• The query algorithm Q receives as inputs the succinct
representation R of S and an element x ∈ U, and
outputs an estimate Q(R, x) ∈ {true, false} whether
x ∈ S.

The memory requirements of a static approximate member-
ship data structure is the number of bits required to represent
P (S). We denote by MS(n, ε) the minimal memory required
by a static Bloom filter which stores up to n elements and
has false positive error with probability at most ε.

For the convenience of the reader we recap the known
properties of the memory requirements of dynamic and static
approximate membership data structure. These include the
entropy lower bound of Carter et. al [CFG+78]; Bloom
filters [Blo70]; and efficient static data structures of Diet-
zfelbinger and Pagh [DP08] and of Porat [Por09].

Fact 2. For any constant ε > 0 we have
• MS(n, ε) = (1 + o(1)) · n log2(1/ε).
• (1− o(1)) · n log2(1/ε) ≤MD(n, ε)

≤ log2 e · n log2(1/ε) ≈ 1.44 · n log2(1/ε).

Our main result is an improved lower bound on MD(n, ε),

MD(n, ε) ≥ C(ε) · n log2(1/ε),

where C(ε) > 1 is a constant depending only on ε.

III. PROOF OF THE LOWER BOUND

We prove Theorem 1 in this section.

A. The graph-theoretic problem

Let (I,Q) be the insertion and query randomized al-
gorithms in an optimal dynamic approximate membership
data structure for sets of size n with false positive error of
ε, which uses M = MD(n, ε) memory bits. Let r denote
the internal randomness used by the algorithms. We denote
by Ir,Qr the algorithms given an explicit value r for the
internal randomness.

It will be convenient for us to model a dynamic approxi-
mate membership data structure by a labeled layered graph.
For any fixing of r, define a labeled layered graph Gr as
follows. The graph will have n+1 layers V0∪V1∪ . . .∪Vn.
Each vertex in Vi corresponds to a possible state of the data
structure after insertions of i elements. In particular, |V0| = 1
and |V1|, . . . , |Vn| ≤ 2M . The edges connect vertices in
adjacent layers, and are labeled by elements x ∈ U. Given
a vertex v ∈ Vi and an element x ∈ U, there is an outgoing
edge v → u which is labeled with x, where u = Ir(v, x).
Thus, the graph Gr describes all possible iterative insertions
of n elements (given the fixing r of the internal randomness),
and the collection of graphs {Gr} is a complete description
of the insertion algorithm.

For ease of notation, we extend the definition of Ir for
sequences of elements. Let w = x1, . . . , xi ∈ Ui be a
sequence of i elements, and let v ∈ Vj where i + j ≤ n.
We define Ir(v, w) ∈ Vi+j to be the vertex reached from v
after insertion of x1, . . . , xi, i.e.

Ir(v, w) = Ir(. . . Ir(Ir(v, x1), x2) . . . , xi).

We also shorthand Ir(w) = Ir(v0, w) where v0 ∈ V0 is the
initial state of the data structure.

For a sequence w = x1, . . . , xn ∈ Un, denote by Ar(w)
the set of all elements x ∈ U which are accepted by Qr
given the succinct representation v = Ir(w), i.e.

Ar(w) = {x ∈ U : Qr(Ir(w), x) = true}.

We can summarize the properties that (I,Q), being a dy-
namic approximate membership data structure, has no false
negative errors and has false positive errors with probability
at most ε by the following claim.

Claim 3. Let w = x1, . . . , xn ∈ Un. Then:
• For any setting of r, we have {x1, . . . , xn} ⊂ Ar(w).
• Let y /∈ {x1, . . . , xn}. Then Prr[y ∈ Ar(w)] ≤ ε.

Proof: The first claim follows from the assumption
that (I,Q) have no false negative errors. Thus, for any xi
(i = 1, . . . , n) since xi ∈ {x1, . . . , xn} we must have that
Prr[Qr(Ir(w), xi) = true] = 1. The second claim follows
from the assumption that (I,Q) have false positive errors
with probability at most ε. Thus, for a random choice of r,
Prr[Qr(Ir(w), y) = true] ≤ ε.

As a corollary we get that the size of Ar(w) must be
small for average r.

Claim 4. Let w = x1, . . . , xn ∈ Un. Then Er[|Ar(w)|] ≤
ε|U|+ n.

Proof: The proof follows immediately from Claim 3.
Let S = {x1, . . . , xn}. Then

Er[|Ar(w)|] =
∑
y∈U Prr[y ∈ Ar(w)]

≤ |S|+
∑
y∈U\S Prr[y ∈ Ar(w)] ≤ n+ ε|U|.

We now fix the randomness for the algorithms. Let w =
x1, . . . , xn ∈ Un be uniformly chosen. By Claim 4 we have
in particular that

ErEw∈Un [|Ar(w)|] ≤ ε|U|+ n.

Thus, there must exist some fixing r = r∗ such that

Ew∈Un [|Ar
∗
(w)|] ≤ ε|U|+ n.

From now on we fix the internal randomness to r∗, and for
ease of notation omit the superscript r∗ from G,A, I,Q.
Hence we have

Claim 5. Ew∈Un [|A(w)|] ≤ ε|U|+ n.

B. Properties of the graph

We will prove some properties of the layered graph we
obtained. These properties will later be used to prove the
lower bound.

Let 0 < δ � 1 be a small parameter to be determined
later. We first show that for a relatively large fraction of
w ∈ Un, the set A(w) is not much larger than the average
size of these sets.

Claim 6. Let w ∈ Un be chosen uniformly. Set α = ε(1 +
n
|U|)(1 + 6δ) = ε(1 + o(1)). Then

Pr
w∈Un

[|A(w)| ≤ α|U|] ≥ 3δ.

Proof: By Markov’s inequality,

Pr
w∈Un

[|A(w)| ≥ α|U|] ≤ E[|A(w)|]
α|U|

=
1

1 + 6δ
≤ 1− 3δ

for any δ < 1/6.
We now make an important definition. Let w =

x1, . . . , xi ∈ Ui and let v = I(w). We define L(w) to
be the set of labels on any path which reaches v. That is,

L(w) = {y ∈ U : ∃w′ = x′1, . . . , x
′
i ∈ Ui

such that I(w′) = I(w) and y ∈ {x′1, . . . , x′i}}.

We now prove two useful properties of the sets L(w).

Claim 7.
1) Let w = x1, . . . , xi ∈ Ui and w′ = xi+1, . . . , xj ∈

Ui−j for i < j. Let ww′ ∈ Uj be the concatenation
of w and w′. Then L(w) ⊆ L(ww′).

2) Let w = x1, . . . , xn ∈ Un. Then L(w) ⊆ A(w).

Proof: The first claim follows immediately from the
definition of L. If y ∈ L(w) then there exists w̃ =
x̃1, . . . , x̃i ∈ Ui such that I(w̃) = I(w) and y ∈
{x̃1, . . . , x̃i}. But then I(w̃w′) = I(ww′), hence also
y ∈ L(ww′).

The second claim follows since a dynamic approximate
membership data structure has no false negative errors. Let
y ∈ L(w), and let w̃ = x̃1, . . . , x̃n ∈ Un such that I(w̃) =
I(w) and y ∈ {x̃1, . . . , x̃n}. By Claim 3 we know that
{x̃1, . . . , x̃n} ⊂ A(w). Hence also y ∈ A(w).

Let 1 ≤ k ≤ n be a parameter to be fixed later. We show
that most sets L(w) for w ∈ Uk cannot be too small.

Claim 8. Let w = x1, . . . , xk ∈ Uk be chosen uniformly.
Then

Pr
w∈Uk

[|L(w)| ≤ β|U|] ≤ δ

where β = δ1/k2−M/k.

Proof: The proof is by a simple counting argument.
Let L = {L(w) : w ∈ Uk, |L(w)| ≤ β|U|} be the set
of all possible L(w) of size at most β|U|. The size of L
is at most 2M as distinct sets in L match distinct vertices
in Vk. For any set L̃ ∈ L, we can have L(w) = L̃ for
w = x1, . . . , xk ∈ Uk only if {x1, . . . , xk} ⊂ L̃. Thus, for
any fixed L̃, the number of such sequences is bounded by
(β|U|)k. Hence,

Pr
w∈Uk

[|L(w)| ≤ β|U|] ≤ (β|U|)k2M

|U|k
≤ δ.

Let w′ = x1, . . . , xk ∈ Uk and w′′ = xk+1, . . . , xn ∈
Un−k. We denote by C(w′, w′′) the number of elements in
w′′ which are in L(w′), i.e.

C(w′, w′′) = |{i : k + 1 ≤ i ≤ n, xi ∈ L(w′)}|.

The next claim shows that w.h.p we can assume that
C(w′, w′′) ≈ |L(w′)|

|U| (n− k).

Claim 9. Fix w′ = x1, . . . , xk ∈ Uk. Let w′′ =
xk+1, . . . , xn ∈ Un−k be distributed uniformly at random.
Then

Pr
w′′∈Un−k

[∣∣∣∣C(w′, w′′)− |L(w′)|
|U|

(n− k)
∣∣∣∣ ≥ γ(n− k)] ≤ δ

where γ =
√

3 ln(2/δ)/(n− k).

In order to prove Claim 9 we will apply the Chernoff-
Hoeffding bound which we recall below.

Lemma 10 (Chernoff-Hoeffding bound). Let X1, . . . , Xm ∈
{0, 1} be independent random variables such that E[Xi] =
p. Then for any γ > 0

Pr
[∣∣∣∣ 1
m

∑
Xi − p

∣∣∣∣ ≥ γ] ≤ 2e−
γ2

3 m.

Proof of Claim 9: Set m = n − k and define
Xi = 1xk+i∈L(w′) for i = 1, . . . , n− k. Then C(w′, w′′) =∑n−k
i=1 Xi, we have Ew′′ [X1] = . . . ,= Ew′′ [Xn−k] =

|L(w′)|
|U| and the Chernoff-Hoeffding bound gives

Prw′′∈Un−k

[∣∣∣C(w′, w′′)− |L(w′)|
|U| (n− k)

∣∣∣ ≥ γ(n− k)]
≤ 2e−

γ2

3 (n−k) ≤ δ.

We conclude Claims 6, 8 and 9 by the following claim,
showing that there is a relatively large subset W ⊂ Un for
which all three claims hold simultaneously.

Claim 11. Let W ⊂ Un be defined as follows. For w ∈ Un

write w = w′w′′ where w′ ∈ Uk and w′′ ∈ Un−k. An
element w ∈ Un is in W if all the following conditions
hold:

(i) |A(w′w′′)| ≤ α|U|.
(ii) |L(w′)| ≥ β|U|.

(iii)
∣∣∣C(w′, w′′)− |L(w′)|

|U| (n− k)
∣∣∣ ≤ γ(n− k).

Then |W | ≥ δ|U|n.

Proof: The proof is an immediate corollary of Claims 6,
8 and 9. For uniformly chosen w ∈ Un, condition (i) holds
with probability at least 3δ, and conditions (ii) and (iii)
each hold with probability at least 1−δ. Hence by the union
bound all three hold simultaneously with probability at least
δ. Hence |W | ≥ δ|U|n.

C. Inequalities on paths in the graph

We will prove a certain family on inequalities on the graph
which relate to paths in the graph. Define X to be the set

X = {(w′, A(w′w′′)) : w′w′′ ∈W}.

We will prove lower and upper bounds on |X| which will
imply lower bounds on the memory requirement M . We start
with a simple upper bound.

Claim 12. |X| ≤ (α|U|)k2M .

Proof: Any accepting set Ã ∈ {A(w) : w ∈ W} must
have size at most α|U| by condition (i) of Claim 11. Thus,
since all elements of w′ must be contained in Ã, the number
of w′ ∈ Uk such that (w′, Ã) ∈ X is at most |Ã|k ≤
(α|U|)k. The number of distinct sets Ã is bounded by the
number of vertices in Vn, which is at most 2M . Hence we
conclude that |X| ≤ (α|U|)k2M .

For w′ ∈ Uk define W (w′) ⊂ Un−k to be the set of
continuations of w′ to elements in W , i.e.

W (w′) = {w′′ ∈ Un−k : w′w′′ ∈W}.

The following is an immediate corollary of Claim 11.

Corollary 13. Ew′∈Uk [|W (w′)|] ≥ δ|U|n−k.

For w′ ∈ Uk define N(w′) to be the set of accepting sets

N(w′) = {A(w′w′′) : w′′ ∈W (w′)}.

Note that |X| =
∑
w′∈Uk |N(w′)|. We now turn to prove

lower bounds for the size of N(w′). These will then be used
to prove lower bounds on |X|.

Lemma 14. Fix w′ ∈ Uk, and assume that W (w′) =
δ′|U|n−k. Then

|N(w′)| ≥ δ′
(

1− β
α− β

)(1−β)(n−k)(1− γ
1−α)

.

Proof: Denote |L(w′)| = β′|U| where β′ ≥ β by
condition (ii). Let Ã ∈ N(w′) be some set. By condition (i)
we know that |Ã| ≤ α|U|. Observe that if A(w′w′′) = Ã
for w′′ = xk+1, . . . , xn ∈ W ′′, then we must have
xk+1, . . . , xn ∈ Ã. Moreover, by condition (iii) we must
have that the number of elements of w′′ which intersect
L(w′) must be ≈ β′(n−k). Let m denote a possible number
of elements of w′′ which occur in L(w′). The number of
sequences w′′ ∈ Un−k which contain exactly m elements
in L(w′) and n− k−m elements in Ã \L(w′) is given by(
n−k
m

)
|L(w′)|m(|Ã| − |L(w′)|)n−k−m

≤
(
n−k
m

)
(β′)m(α− β′)n−k−m|U|n−k.

Thus, the total number of w′′ ∈ W (w′) for which
A(w′w′′) = Ã is bounded by

|{w′′ ∈W (w′) : A(w′w′′) = Ã}| (5)

≤
(β′+γ)(n−k)∑

m=(β′−γ)(n−k)

(
n− k
m

)
(β′)m(α− β′)n−k−m|U|n−k.

On the other hand, we have that

|W (w′)| = δ′|U|n−k ≥ (6)

δ′
(β′+γ)(n−k)∑

m=(β′−γ)(n−k)

(
n− k
m

)
(β′)m(1− β′)n−k−m|U|n−k.

Thus, the number of distinct sets Ã ∈ N(w′) can be lower
bounded by

|N(w′)| ≥ |W (w′)|
max

Ã∈N(w′)
|{w′′ ∈ N(W ′) : A(w′w′′) = Ã}|

≥ δ′
∑(β′+γ)(n−k)
m=(β′−γ)(n−k)

(
n−k
m

)
(β′)m(1− β′)n−k−m∑(β′+γ)(n−k)

m=(β′−γ)(n−k)
(
n−k
m

)
(β′)m(α− β′)n−k−m

.

Since for any positive numbers a1, . . . , at, b1, . . . , bt > 0 we
have the bound

a1 + . . .+ at
b1 + . . .+ bt

≥ min
i

ai
bi
,

we deduce that

|N(w′)| ≥ δ′ min
(β′−γ)(n−k)≤m≤(β′+γ)(n−k)

(
1− β′

α− β′

)n−k−m
= δ′

(
1− β′

α− β′

)(1−β′−γ)(n−k)

. (7)

We will use the following technical claim.

Claim 15. Let 0 < α < 1 and define f : [0, α) → R by

f(x) =
(

1−x
α−x

)1−x
. Then f is monotone increasing.

Proof: Let g(x) = ln(f(x)) = (1−x)(ln(1−x)−ln(α−
x)). It is sufficient to prove g is monotone increasing. We
have

g′(x) = ln(α− x)− ln(1− x)− 1 +
1− x
α− x

= − ln
(

1− x
α− x

)
− 1 +

1− x
α− x

.

For any z > 0 we have ez > 1 + z. Thus for any y > 1 we
have ln(y) < y − 1. Set y = 1−x

α−x > 1. We have

g′(x) = − ln(y)− 1 + y > 0.

Hence g is monotone increasing, and so is f .
Applying Claim 15 we get that since β′ ≥ β we have(

1− β′

α− β′

)1−β′

≥
(

1− β
α− β

)1−β

hence

|N(w′)| ≥ δ′
(

1− β′

α− β′

)(1−β′)
(

1−β′−γ
1−β′

)
(n−k)

(8)

≥ δ′
(

1− β
α− β

)(1−β)(n−k)
(
1− γ

1−β′

)
(9)

≥ δ′
(

1− β
α− β

)(1−β)(n−k)(1− γ
1−α)

(10)

We obtain as a corollary a lower bound on |X|.

Claim 16. |X| ≥ δ|U|k
(

1−β
α−β

)(1−β)(n−k)(1− γ
1−α)

.

Proof: By Corollary 13 and Lemma 14 we have

|X| =
∑

w′∈Uk

|N(w′)|

≥
∑

w′∈Uk

|W (w′)|
|U|n−k

(
1− β
α− β

)(1−β)(n−k)(1− γ
1−α)

≥ δ|U|n−k
(

1− β
α− β

)(1−β)(n−k)(1− γ
1−α)

Combining Claims 12 and 16 we deduce the inequality

2Mαk ≥ δ
(

1− β
α− β

)(1−β)(n−k)(1− γ
1−α)

. (11)

We now fix parameters. Let k = cn where 0 < c < 1 is
a fixed parameter. Denote M = MD(n, ε) = η ·n log2(1/ε)
where a-priory we know that 1−o(1) ≤ η ≤ log2(e) ≈ 1.44.
We will prove a lower bound on η.

We think of n→∞ where the parameters ε, c, η are fixed,
and take δ = 1/n. This gives the following quantities for
α, β, γ:

α = ε(1 +
n

|U|
)(1 + 6δ) = ε(1 + o(1))

β = δ1/k2−M/k = εη/c(1 + o(1))

γ =
√

3 ln(2/δ)/(n− k) = o(1).

Substituting the parameters to inequality (11), and taking
n→∞, gives the following simplified form

(1/ε)ηεc ≥
(

1− εη/c

ε− εη/c

)(1−εη/c)(1−c)

. (12)

Note that for any given fixed value of ε, η, Equation 12
should hold for any value of 0 < c < 1. Thus we are now
left we a problem in analysis: for a given value of ε, what
is the minimal value of η such that Equation (12) holds.

D. Obtaining the lower bound from Inequality (12)

We start by noting that Equation (12) is monotone in η,
that is, if it holds for some η it holds for all η′ > η. This
can be verified since the LHS is increasing with η while the
RHS is decreasing, as can be seen by Claim 15. We thus
define

η∗(ε) = min{η : Equation (12) holds for ε, η

for all 0 < c < 1}.

We have the bound MD(n, ε) ≥ η∗(ε) · n log2(1/ε). It is
easy to verify that taking limits c → 0 or c → 1 gives the
bound η∗(ε) ≥ 1, which we already knew from the entropy
lower bound. Thus, in order to get non-trivial lower bounds,
we need to consider intermediate values of c.

We start by giving a non-trivial lower bound for the
common case of ε = 1/2.

Claim 17. η∗(1/2) ≥ 1.1.

Proof: It is straightforward to verify that inequality (12)
is not satisfied for ε = 1/2, η = 1.1 and c = 0.7. We
empirically found that η∗(1/2) = 1.10213...

Claim 18. For any 0 < ε < 1 we have η∗(ε) > 1.

Proof: Let 0 < c < 1 be any fixed value. We will
show any such value gives a non-trivial lower bound on
η∗(ε). We know that η = log2(e) satisfies inequality (12)
for any value of 0 < c < 1, since a Bloom filter [Blo70]

gives a dynamic approximate membership data structure
using log2(e) ·n log2(1/ε) memory bits. Thus, we can limit
ourselves to considering 1 ≤ η ≤ log2(e) ≈ 1.44. Define

f : [0, ε)→ R by f(x) =
(

1−x
ε−x

)1−x
, and set τ = εlog2(e)/c.

We first note that By Claim 15 we have(
1− εη/c

ε− εη/c

)1−εη/c

= f(εη/c) ≥ f(τ).

Moreover, by another application of Claim 15 we have

f(τ) > f(0) = 1/ε.

Hence, we get that if η ≥ η∗(ε), then by inequality (12) we
must have that

(1/ε)η−c ≥ f(τ)1−c.

Define ρ such that f(τ) = (1/ε)ρ. We must have ρ > 1
since f(τ) > 1/ε. Hence we get that we must

η − c ≥ ρ(1− c)

hence
η ≥ ρ(1− c) + c > 1.

Thus we have the lower bound

η∗(ε) ≥ ρ(1− c) + c,

which is non-trivial for any 0 < c < 1.

E. Improved bounds via recursion

We note that one may use recursion of the argument
we presented so far, in order to derive an improved bound
on MD(n, ε). The main claim which can be improved is
Claim 8, which gives a bound on β in terms of a covering
argument on the first k layers of the graph. We could use
instead a recursive argument: first derive a lower bound on
MD(k, ε), and the use it to define β appropriately, i.e.

β = δ1/k2−MD(k,ε)/k.

This is a two-step recursive argument. A general r-step
recursive argument entails choosing constants 0 < cr <
. . . < c1 < 1 and performing the analysis for {ki = cin}.
It turns out that using a recursive argument improves the
bounds we get using the non-recursive approach, but only
slightly. We performed a computer search for ε = 1/2 for
a recursive sequence c1 > . . . > cr that will give the best
result. We obtained the bound η∗(1/2) ≥ 1.13, compared
with η∗(1/2) ≥ 1.1 which can be obtained by a non-
recursive argument.

ACKNOWLEDGEMENT

We thank the anonymous referees for valuable comments.

REFERENCES

[ANS10] Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard
cuckoo hashing: Constant worst-case operations with
a succinct representation. In FOCS ’10: Proceedings
of the 51st annual IEEE Symposium on Foundations of
Computer Science, 2010. To appear.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[BM03] A. Broder and M. Mitzenmacher. Network applications
of bloom filters: a survey. Internet Math., 1(4):485–
509, 2003.

[CFG+78] Larry Carter, Robert Floyd, John Gill, George
Markowsky, and Mark Wegman. Exact and approxi-
mate membership testers. In STOC ’78: Proceedings
of the tenth annual ACM symposium on Theory of
computing, pages 59–65, New York, NY, USA, 1978.
ACM.

[DP08] Martin Dietzfelbinger and Rasmus Pagh. Succinct data
structures for retrieval and approximate membership
(extended abstract). In ICALP ’08: Proceedings of the
35th international colloquium on Automata, Languages
and Programming, Part I, pages 385–396, Berlin, Hei-
delberg, 2008. Springer-Verlag.

[MP07] Yossi Matias and Ely Porat. Efficient pebbling for
list traversal synopses with application to program
rollback. Theor. Comput. Sci., 379(3):418–436, 2007.

[Por09] Ely Porat. An optimal bloom filter replacement based
on matrix solving. In CSR ’09: Proceedings of
the Fourth International Computer Science Symposium
in Russia on Computer Science - Theory and Ap-
plications, pages 263–273, Berlin, Heidelberg, 2009.
Springer-Verlag.

[PPR05] Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An op-
timal bloom filter replacement. In SODA ’05: Proceed-
ings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 823–829, Philadelphia,
PA, USA, 2005. Society for Industrial and Applied
Mathematics.

[RR03] Rajeev Raman and Satti Srinivasa Rao. Succinct
dynamic dictionaries and trees. In ICALP’03: Proceed-
ings of the 30th international conference on Automata,
languages and programming, pages 357–368, Berlin,
Heidelberg, 2003. Springer-Verlag.

