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Abstract—There has been a sequence of recent pa-
pers devoted to understanding the relation between
the testability of properties of Boolean functions
and the invariance of the properties with respect
to transformations of the domain. Invariance with
respect to F2-linear transformations is arguably the
most common such symmetry for natural properties
of Boolean functions on the hypercube. Hence, it is an
important goal to find necessary and sufficient con-
ditions for testability of linear-invariant properties.
This is explicitly posed as an open problem in a recent
survey of Sudan [1]. We obtain the following results:

1) We show that every linear-invariant property
that can be characterized by forbidding induced
solutions to a (possibly infinite) set of linear
equations can be tested with one-sided error.

2) We show that every linear-invariant property
that can be tested with one-sided error can be
characterized by forbidding induced solutions
to a (possibly infinite) set of systems of linear
equations.

We conjecture that our result from item (1) can
be extended to cover systems of linear equations. We
further show that the validity of this conjecture would
have the following implications:

1) It would imply that every linear-invariant prop-
erty that is closed under restrictions to linear
subspaces is testable with one-sided error. Such
a result would unify several previous results on
testing Boolean functions, such as the testability
of low-degree polynomials and of Fourier dimen-
sionality.

2) It would imply that a linear-invariant property
P is testable with one-sided error if and only if P
is closed under restrictions to linear subspaces,
thus resolving Sudan’s problem.
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I. Introduction

Let P be a property of Boolean functions. A testing al-
gorithm for P is a randomized algorithm that can quickly
distinguish between the case that f satisfies P from the
case that f is far from satisfying P. The problem of
characterizing the properties of Boolean functions for
which such an efficient algorithm exists is considered
by many to be the most important open problem in
this area. Since a complete characterization seems to be
out of reach, several researchers have recently considered
the problem of characterizing the testable properties P
that belong to certain“natural”subfamilies of properties.
One such family that has been extensively studied is
the family of so called linear-invariant properties. Our
main result is two fold. We first show that every property
in a large family of linear-invariant properties is indeed
testable. Next, we conjecture that an even more general
family of properties can be tested and show that such
a result would give a characterization of the linear-
invariant properties that are testable with one-sided
error.

A. Background on property testing

We start with the formal definitions related to testing
Boolean functions. Let P be a property of Boolean
functions over the n-dimensional Boolean hypercube. In
other words, P is simply a subset of the set of functions
f : {0, 1}n → {0, 1}. Two functions f, g : {0, 1}n →
{0, 1} are ε-far if they differ on at least ε2n of the inputs.
We say that f is ε-far from satisfying a property P if it
ε-far from any function g satisfying P. A tester for the
property P is a randomized algorithm which can quickly
distinguish between the case that an input function f
satisfies P from the case that it is ε-far from satisfying
P. Here we assume that the input function f is given
to the tester as an oracle, that is, the tester can ask an
oracle for the value of the input functions f on a certain
x ∈ {0, 1}n. We say that P is easily testable (or simply
testable) if P has a tester which makes only a constant
number of queries to the oracle, where this constant can



depend on ε but should be independent1 of n. Finally,
we say that a testing algorithm has one-sided error if it
always accepts input functions satisfying P. (We always
demand that the tester rejects input functions which are
ε-far from satisfying P with probability at least, say,
2/3.)

The study of testing of Boolean functions began with
the work of Blum, Luby and Rubinfeld [2] on testing
linearity of Boolean functions. This work was further
extended by Rubinfeld and Sudan [3]. Around the same
time, Babai, Fortnow and Lund [4] also studied similar
problems as part of their work on MIP=NEXP. These
works are all related to the PCP Theorem, and an impor-
tant part of it involves tasks which are similar in nature
to testing properties of Boolean functions. The work
of Goldreich, Goldwasser and Ron [5] extended these
results to more combinatorial settings, and initiated the
study of similar problems in various areas. More recently,
numerous testing questions in the Boolean functions
settings have sparked great interest: testing dictators [6],
low-degree polynomials [7], [8], juntas [9], [10], concise
representations [11], halfspaces [12], codes [13], [14].
These are documented in several surveys [15], [16], [17],
[1], and we refer the reader to these surveys for more
background and references on property testing.

B. Invariance in testing Boolean functions

What features of a property make it testable? One
area in which this question is relatively well understood
is testing properties of dense graphs [18], [19]. In sharp
contrast, this question is far from being well understood
in the case of testing properties of Boolean functions. In
an attempt to remedy this, Sudan and several coauthors
[20], [21], [22], [23] have recently begun to investigate
the role of invariance in property testing. The idea
is that in order to be able to test if a combinatorial
structure satisfies a property using very few queries to its
representation, the property we are trying to test must
be closed under certain transformations. For example,
when testing properties of dense graphs, we are allowed
to ask if two vertices i and j are adjacent in the graph,
and the assumption is that the property we are testing is
invariant under renaming of the vertices. In other words,
if we think of the input as an

(
n
2

)
dimensional 0/1 vector

encoding the adjacency matrix of the input, then the
property should be closed under transformations (of the
edges) which result from permuting the vertices of the
graph.

A natural notion of invariance that one can consider
when studying Boolean functions over the hypercube is

1Observe that since we aim for asymptotic results (that is, we
think of n → ∞), our property P can actually be described as
P =

⋃∞
i=1 Pn, where Pn is the collection of functions over the

n-dimensional Boolean hypercube which satisfy P.

linear-invariance, which is in some sense the analogue for
graph properties being closed under renaming of the ver-
tices (we further discuss this analogy in Subsection I-C).
Formally, a property of Boolean functions P is said to be
linear-invariant if for every function f : Fn2 → {0, 1} sat-
isfying P and for any linear transformation L : Fn2 → Fn2
the function f ◦ L satisfies P as well, where we define
(f ◦L)(x) = f(L(x)). Note that here we identify {0, 1}n
with Fn2 , and we will use this convention from now on
throughout the paper. For a thorough discussion of the
importance of linear-invariance, we refer the reader to
Sudan’s recent survey on the subject [1] and to the paper
of Kaufman and Sudan which initiated this line of work
[20].

C. The main result

Our main result in this paper (stated in Theorem 3
below) is that a natural family of linear-invariant proper-
ties of Boolean functions can all be tested with one-sided
error. The statement requires some preparation.

Definition 1 ((M,σ)-free): Given an m× k matrix M
over F2 and σ ∈ {0, 1}k, we say that a function f : Fn2 →
{0, 1} is (M,σ)-free if there is no x = (x1, . . . , xk) ∈
(Fn2 )k such that Mx = 0 and for all 1 ≤ i ≤ k we have
f(xi) = σi.

Let us give some intuition about the above definition.
Given a function f : Fn2 → {0, 1}, it is natural to consider
the set Sf = {x ∈ Fn2 : f(x) = 1}. Suppose for the rest
of this paragraph that in the above definition σ = 1k.
In this case f is (M,σ)-free if and only if Sf contains
no solution to the system of equations Mx = 0, that
is, if there is no v ∈ Skf satisfying Mv = 0. Note
that when considering graph properties, the notion of
(M, 1k)-freeness is analogous to the graph property of
being H-free2, where H is some fixed graph. Observe
that in both cases the property is monotone in the sense
that if f is (M, 1k)-free, then removing elements from
Sf results in a set that contains no solution to Mx = 0.
Similarly if G is H-free, then removing edges from G
results in an H-free graph.

Let us now go back to considering arbitrary σ ∈
{0, 1}k in Definition 1, where again the intuition comes
from graph properties. Observe that a natural variant
of the monotone graph property of being H-free is the
property of being induced H-free3. Note that being
induced H-free is no longer a monotone property since if
G is induced H-free then removing an edge can actually
create induced copies of H. Getting back to the property

2If H is a graph on h vertices, then we say that a graph G is
H-free if G contains no set of h vertices that contain a copy of H
(possibly with some other edges).

3If H is a graph on h vertices, then we say that a graph G is
induced H-free if G contains no set of h vertices that contain a
copy of H and no other edges.



of being (M,σ)-free, observe that we can think of this
as requiring Sf to contain no induced solution to the
system of equations Mx = 0. That is, the requirement
is that there should be no vector v satisfying Mv = 0,
where vi ∈ Sf if σi = 1 and vi ∈ Fn2 \ Sf if σi = 0.
So we can think of σ as encoding which elements of
a potential solution vector v should belong to Sf and
which should belong to its complement. For this reason
we will adopt the convention of calling (M,σ) a forbidden
induced system of equations.

Continuing with the graph analogy, once we have
the property of being induced H-free, for some fixed
graph H, it is natural to consider the property of being
induced H-free where H is a fixed finite set of graphs.
Several natural graph properties can be described as
being inducedH-free (e.g. being a line-graph), but it is of
course natural to further generalize this notion and allow
H to contain an infinite number of forbidden induced
graphs. One then gets a very rich family of properties
like being Perfect, k-colorable, Interval, Chordal etc.
This generalization naturally motivates the following
definition which will be key to our main results.

Definition 2 (F-free): Let F =
{(M1, σ1),(M2, σ2),. . . } be a (possibly infinite) set
of induced systems of linear equations. A function f is
said to be F-free if it is (M i, σi)-free4 for all i.

Observe that this definition is an OR-AND type
restriction, that is, we require that f will not satisfy
any of the systems (M i, σi), where f satisfies (M i, σi)
if it satisfies all the equations of M i (in the sense of
Definition 1). We are now ready to state our main result.

Theorem 3 (Main Result): Let F =
{(M1, σ1), (M2, σ2), . . . } be a (possibly infinite)
set of induced equations (that is, all the matrices M i

are of rank one). Then the property of being F-free is
testable with one-sided error.

We stress that in the above theorem each M i contains
a single equation (rather than a system of equations as
in Definition 2).

Let us compare this result to some previous works.
One work that initiated some of the recent results on
testing Boolean functions was obtained by Green [24].
His result can be formulated as saying that for any rank
one matrix M , the property of being (M, 1k)-free can
be tested with one-sided error. Green conjectured that
the same result holds for any system of linear equations.
This conjecture was recently confirmed by Shapira [25]
and Král’, Serra and Vena [26]. In our language, the
results of [25], [26] can be stated as saying that for any
matrix M , the property of being (M, 1k)-free is testable
with one-sided error. The case of arbitrary σ was first
explicitly considered in [27] where it was shown that if M

4In the sense of Definition 1

is a rank one matrix, then (M,σ)-freeness is equivalent
to a finite set of properties, all of which were already
known to be testable. Austin (see [25]) conjectured that
the result of [25] for an arbitrary matrix M can be
extended to show testability of (M,σ)-freeness for every
vector σ. Shapira [25] further conjectured that his result
can be extended to the case when we forbid an infinite
set of systems of linear equations as in Definition 2. So
Theorem 3 partially resolves the above conjecture, since
it can handle an infinite number of induced equations
(but not an infinite number of forbidden systems of
equations).

Another way to think of Theorem 3 comes (yet
again) from the analogy with graph properties. Alon and
Shapira [18] have shown that for every set of graphs F ,
the property of being induced F-free is testable with
one-sided error. Since in many ways5, copies of a fixed
graph H in a graph G correspond to finding solutions
of a single equation in a set S ⊆ Fn2 , Theorem 3 can be
considered to be a Boolean functions analog of the result
of [18]. Just like the property of being H-free is similar
to being (M,σ)-free where M has rank 1, the hypergraph
property of being H-free is analogous to being (M,σ)-
free for an arbitrary M . Now, the result of [18] has been
later extended to hypergraphs by Austin and Tao [28]
and Rödl and Schacht [29], so it is natural to expect that
one could also handle an infinite number of forbidden
induced systems of equations in the functional case as
well. All the above motivates us to raise the following
conjecture.

Conjecture 4: For every (possibly infinite) set of sys-
tems of induced equations F , the property of being F-
free is testable with one-sided error.

As the reader can easily convince himself, a graph
property P is equivalent to being induced H-free if and
only if P is closed under vertex removal. Such properties
are usually called hereditary. This motivates us to define
the following analogous notion for properties of Boolean
functions.

Definition 5 (Subspace-Hereditary Properties): A
linear-invariant property P is said to be subspace-
hereditary if it is closed under restriction to subspaces.
That is, if f is in Pn and H is a m-dimensional
linear subspace of Fn2 , then f |H ∈ Pm also, where6

f |H : Fm2 → {0, 1} is the restriction of f to H.
When considering linear-invariant properties, one can

also obtain the following (slightly cleaner) view of the
properties of Definition 2. This equivalence is analogous
to the graph properties mentioned above. We stress

5This analogy is somewhat hard to formally state, at least in
this extended abstract

6Note that we are implicitly composing f |H with a linear trans-
formation so that it is now defined on Fm

2 . Here, we are using the
fact that F is linear-invariant.



that this equivalence is a further indication of the
“naturalness” of the notion of linear-invariance and its
resemblance to the closure of graph properties under
vertex renaming.

Proposition 6: A linear-invariant property P is
subspace-hereditary if and only if there is a (possibly
infinite) set of systems of induced equations F such
that P is equivalent to being F-free.

We mention that while the notions of graph prop-
erties being hereditary and functions being subspace-
hereditary are somewhat more natural than the equiv-
alent notions of being free of induced subgraphs and
equations respectively, it is actually easier to think about
these properties using the latter notion when proving
theorems about them. This was the case in [18], and it
will be the case in the present paper as well. Proposition
6 along with Conjecture 4 implies the following:

Corollary 7: If Conjecture 4 holds, then every linear-
invariant subspace-hereditary property is testable with
one-sided tester.
Observe that if Conjecture 4 holds, then Corollary 7
would give yet another surprising similarity between
linear-invariant properties of boolean functions and
graph properties, since it is known [18] that every hered-
itary graph property is testable. Actually, as we discuss
in the next subsection, if Conjecture 4 holds, then an
even stronger similarity would follow.

Many interesting properties of the hypercube that
have been studied for testability are linear-invariant.
Important examples include linearity [2], being a poly-
nomial of low degree [7], and low Fourier dimension-
ality and sparsity [30]. These properties have all been
shown to be testable. Moreover, they all turn out to be
subspace-hereditary. Thus, if our Conjecture 4 is true, as
we strongly believe, then we could explain the testability
of all these properties through a unified perspective.
Note that our main result already shows (yet again!)
that linearity is testable but from a completely different
viewpoint than used in previous analysis. Furthermore,
to show the testability of low degree polynomials (a.k.a.,
Reed-Muller codes), we would only need to resolve
Conjecture 4 for a finite 7 family of forbidden induced
systems of equations. Regarding the properties of Fourier
dimensionality and sparsity, they are currently only
known to have two-sided testers, while Corollary 7 will
potentially yield one-sided testers, resolving an issue
raised in [1].

D. The proposed characterization of testable linear-
invariant properties

We now turn to discuss our second result, which based
on Conjecture 4 gives a characterization of the linear-

7The characterization of polynomials of degree d using forbidden
induced equations is described in the full version.

invariant properties of Boolean functions that can be
tested with one-sided error using “natural” algorithms.
Let us start with formally defining the types of “natural”
testing algorithms we consider here.

Definition 8 (Oblivious Tester): An oblivious tester
for a property P = {Pn}n is a (possibly 2-sided error)
non-adaptive, probabilistic algorithm, which, given a
distance parameter ε, and oracle access to an input
function f : Fn2 → {0, 1}, performs the following steps:

1) Computes an integer d = d(ε). If d(ε) > n, let
H = Fn2 . Otherwise, let H ≤ Fn2 be a subspace of
dimension d(ε) chosen uniformly at random.

2) Queries f on all elements x ∈ H.
3) Accepts or rejects based only on the outcomes of

the received answers, the value of ε, and its internal
randomness.

We now discuss the motivation for considering the
above type of algorithms. The fact that the tester is
non-adaptive and queries a random linear subspace is
without loss of generality (details in the full version);
this is analogous to the fact [31], [32] that one can
assume a graph property tester makes its decision only
by inspecting a randomly chosen induced subgraph. The
only essential restriction we place on oblivious testers
is that their behavior cannot depend on the value of
n, the domain size of the input function. If we allow
the testing algorithm to make its decisions based on n,
then it can do very strange and unnatural things. For
example, we can now consider properties that depend
on the parity of n. As was shown in [33], the algorithm
can use the size of the input in order to compute the
optimal query complexity. All these abnormalities will
not allow us to give any meaningful characterization. As
observed in [18] by restricting the algorithm to make
its decisions while not considering the size of the input
we can still test any (natural) property while at the
same time avoid annoying technicalities. We finally note
that all the testing algorithms for testable properties of
Boolean functions in prior works were indeed oblivious,
and that furthermore many of them implicitly consider
only oblivious testers. In particular, these types of testers
were considered in [1].

As it turns out, oblivious testers can potentially8

test properties which are slightly more general than
subspace-hereditary properties. These are defined as
follows.

Definition 9 (Semi Subspace-Hereditary Property): A
property P = {Pn}n is semi subspace-hereditary if there
exists a subspace-hereditary property H such that

1) Any function f satisfying P also satisfies H.
2) There exists a function M : (0, 1) → N such that

if f : Fn2 → {0, 1} is ε-far from satisfying P and

8The potential relies on the validity of Conjecture 4.



n ≥ M(ε), then there exists a subspace V ⊆ Fn2
such that f |V does not satisfy H.

The intuition behind the above definition is that a
semi subspace-hereditary property can only deviate from
being “truly” subspace-hereditary on functions over a
finite domain, where the finiteness is controlled by the
function M in the definition. Our next theorem con-
nects the notion of oblivious testing and semi subspace-
hereditary properties. Assuming Conjecture 4, it essen-
tially characterizes the linear-invariant properties that
are testable with one-sided error, thus resolving Sudan’s
problem raised in [1].

Theorem 10: If Conjecture 4 holds, then a linear-
invariant property P is testable by a one-sided error
oblivious tester if and only if P is semi subspace-
hereditary.

Getting back to the similarity to graph properties, we
note that [18] obtained a similar characterization for
the graph properties that are testable with one-sided
error. Let us close by mentioning two points. The first
is that most linear-invariant properties are known to be
testable with one-sided error, and hence the question of
characterizing these properties is well motivated. In fact,
for the subclass of linear-invariant properties which also
themselves form a linear subspace, [34] showed that the
optimal tester is always one-sided and non-adaptive. Our
second point is that it is natural to ask if there are linear-
invariant properties which are not efficiently testable. A
linear-invariant property with query complexity Ω(2n)
arises implicitly from the arguments of [5]; see Section
IV for a brief sketch. A second, more natural, example
comes from Reed-Muller codes. [35] shows that for any
1 � q(n) � n the linear-invariant property of being
a log2(q(n))-Reed-Muller code cannot be tested with
o(q(n)) queries. We also conjecture that the property
of two functions being isomorphic upto linear trans-
formations of the variables is not a testable property.
Lower bounds for isomorphism testing have been studied
both in the Boolean function model [9], [36] and in the
dense graph model [37], but our problem specifically does
not seem to have been examined in a property testing
setting.

E. Paper overview

The rest of the paper is organized as follows. In
Section II we discuss the regularity lemma of Green [24].
Just as the graph regularity lemma of Szemerédi [38]
guarantees that every graph can be partitioned into a
bounded number of pseudorandom graphs, Green’s reg-
ularity lemma guarantees a similar partition for Boolean
functions. This lemma, whose proof relies on Fourier
analysis over Fn2 , was used in [24] to show that properties
defined by forbidding a single (non-induced) equation
are testable. This basic approach falls short of being

able to handle an infinite number of forbidden non-
induced equations or even a single forbidden induced
equation. We thus need to develop a variant of Green’s
regularity lemma that is strong enough to allow such
applications. This new variant is described in Section II.
The overall approach is motivated by that taken by Alon
et al. [19] in their formulation of the functional graph
regularity lemma. However, the proof here is somewhat
more involved since we need to develop several tools
in order to make the approach work. One of them is
a certain Ramsey type result for Fn2 which is key to
our proof and that may be useful in other settings (see
Theorem 16). The approach of [19] only allows one to
handle a finite number of forbidden subgraphs, which
translates in our setting to being able to handle a finite
number of forbidden equations. So, one last technique
we employ is motivated by the ideas from [18] on how
to handle an infinite number of forbidden subgraphs.
This (somewhat complicated) technique is described in
Section III. We believe that these set of ideas will prove
to be instrumental in resolving Conjecture 4. Section
IV is devoted to some concluding remarks and open
problems.

Due to space limitations, many of the proofs are
omitted from this extended abstract. The reader may
consult the full version of this paper for more details.

II. Pseudorandom Partitions of the Hypercube

The support of a Boolean function f refers to the
subset of the domain on which f evaluates to 1. If H
is a subspace of Fn2 and given function f : H → {0, 1},
let ρ(f), the density of f , denote

∑
x∈H f(x)

|H| . Recall that
the Fourier coefficients of f , defined for each α ∈ H∗,
are:

f̂(α) = E
x∈H

[
f(x) · (−1)〈x,α〉

]
For a parameter ε ∈ (0, 1), we say f is ε-uniform if
maxα6=0 |f̂(α)| < ε. This definition captures the notion
of correlation with a linear function on H, and it will
serve as our definition of pseudorandomness.

Given a function f : Fn2 → {0, 1}, a subspace H ≤ Fn2
and an element g ∈ Fn2 , define the function f+gH : H →
{0, 1} to be f+gH (x) = f(x+g) for x ∈ H. The support of
f+gH represents the intersection of the support of f with
the coset g + H. The following lemma shows that if a
uniform function is restricted to a coset of a subspace of
low codimension, then the restriction does not become
too non-uniform and its density stays roughly the same.

Lemma 11: Let f : Fn2 → {0, 1} be an ε-uniform
function of density ρ, and let H ≤ Fn2 be a subspace
of codimension k. Then for any c ∈ Fn2 , the function
f+cH : H → {0, 1} is (2kε)-uniform and of density ρc
satisfying |ρc − ρ| < 2kε.



For a subspace H ≤ Fn2 , the H-based partition refers
to the partitioning of Fn2 into the cosets in Fn2/H.
If H ′ ≤ H, then the H ′-based partition is called a
refinement of the H-based partition. The order of the H-
based partition is defined to be [G : H], i.e., the index of
H as a subgroup or the dimension of the quotient space
Fn2/H. Using this notation, Green’s regularity lemma can
be stated as follows.

Lemma 12 (Green’s Regularity Lemma [24]): For ev-
ery m and ε > 0, there exists T = T12(m, ε) such that
the following is true. Given function f : Fn2 → {0, 1} with
n > T and H-based partition of Fn2 with order at most
m, there exists a refined H ′-based partition of order k,
with m ≤ k ≤ T , for which f+gH′ is not ε-uniform for at
most ε2n many g ∈ Fn2 .

Our main tool in this work is a functional variant
of Green’s regularity lemma, in which the uniformity
parameter ε is not a constant but rather an arbitrary
function of the order of the partition. It is quite anal-
ogous to a similar lemma, first proved in [31], in the
graph property testing setting. The recent work [39]
shows a (very strong) functional regularity lemma in the
arithmetic setting but it applies over the integers and not
F2.

Lemma 13 (Functional regularity lemma): For
integer m and function E : Z+ → (0, 1), there
exists T = T13(m, E) such that the following is true.
Given function f : Fn2 → {0, 1} with n ≥ T , there exist
subspaces H ′ ≤ H ≤ Fn2 that satisfy:

• Order of H-based partition is k ≥ m, and order of
H ′-based partition is ` ≤ T .

• There are at most E(0) · 2n many g ∈ Fn2 such that
f+gH is not E(0)-uniform.

• For every g ∈ Fn2 , there are at most E(k)·2n−k many
h ∈ H such that f+g+hH′ is not E(k)-uniform.

• There are at most E(0) · 2n many g ∈ Fn2 for which
there are more than E(0) · 2n−k many h ∈ H such
that |ρ(f+gH )− ρ(f+g+hH′ )| > E(0).

We use Lemma 13 in two main ways. For one of
them, we use the lemma directly. For the other, we
use the following simple but extremely useful corollary
which allows us to say that there are many cosets in a
partitioning which, on the one hand, are all uniform, and
on the other hand, are arranged in an algebraically nice
structure.

Corollary 14: For every m and E : Z+ → (0, 1), there
exist T = T14(m, E) and δ = δ14(m, E) such that the
following is true. Given function f : Fn2 → {0, 1} with
n ≥ T , there exist subspaces H ′ ≤ H ≤ Fn2 and an
injective linear map I : Fn2/H → Fn2/H ′ such that:

• The H-based partition is of order k, where m ≤ k ≤
T . Additionally, |H ′| ≥ δ2n.

• For each u ∈ Fn2/H, I(u) + H ′ lies inside the coset

u+H. Note that I(0) = 0 since I is linear.

• For every nonzero u ∈ Fn2/H, the set f
+I(u)
H′ is E(k)-

uniform.
• There are at most E(0)2n many g ∈ Fn2 for which

|ρ(f+gH )− ρ(f
+I(u)
H′ )| > E(0) where u = g (mod H).

The next lemma is in a similar spirit to Corollary 14. It
also obtains a set of uniform cosets which are structured
algebraically, but in this case, all of them are contained
inside the same subspace. We need a different set of tools
to prove this lemma. Specifically, we use linear algebraic
variants of the classic theorems of Turán and Ramsey.
We note that the (classic) Turán and Ramsey Theorems
are key tools in many applications of the graph regularity
lemma, for example in the well known bound on the
Ramsey numbers of bounded degree graphs [40]. Hence,
the following variants of these classic results may be
useful in other applications of Greens’s regularity lemma.

Proposition 15 (Turán theorem for subspaces): For
positive integers n, if S is a subset of Fn2 with density
greater than 1 − 1

2d−1 , then there exists a subspace
H ≤ Fn2 of dimension d such that H − {0} is contained
in S. Moreover, there is a subset of Fn2 with density(
1− 1

2d−1

)
which does not contain H − {0} for any

subspace H ≤ Fn2 .
Theorem 16 (Ramsey theorem for subspaces): For ev-

ery positive integer d, there exists N = N16(d) such that
for any subset S ⊆ FN2 , there exists a subspace H ≤ FN2
of dimension d such that H − {0} is contained either in
S or in S̄.

Given these results, the lemma below follows fairly
readily.

Lemma 17: For every positive integer d and γ ∈ (0, 1),
there exists δ = δ17(d, γ) such that the following is true.
Given f : Fn2 → {0, 1}, there exists a subspace H ≤ Fn2
and a subspace K of dimension d in the quotient space
Fn2/H with the following properties:

• |H| ≥ δ2n.
• For every nonzero u ∈ K, f+uH is γ-uniform.
• Either ρ(f+uH ) ≥ 1

2 for every nonzero u ∈ K or
ρ(f+uH ) < 1

2 for every nonzero u ∈ K.

III. Forbidding Infinitely Many Induced
Equations

To begin, let us fix some notation. Given a matrix M
over F2 of size m-by-k, a string σ ∈ {0, 1}k, and a func-
tion f : Fn2 → {0, 1}, if there exists x = (x1, . . . , xk) ∈
(Fn2 )k such that Mx = 0 and f(xi) = σi for all i ∈ [k],
we say that f induces (M,σ) at x and denote this by
(M,σ) 7→ f .

In this section, we prove our main result (Theorem
3) that properties characterized by infinitely many for-
bidden induced equations are testable. The following
theorem is the key to the argument.



Theorem 18: For every infinite family of equations
F = {(E1, σ1), (E2, σ2), . . . , (Ei, σi), . . . } with each Ei

being a row vector [1 1 · · · 1] of size ki and σi ∈ {0, 1}ki
a ki-tuple, there are functions NF (·), kF (·) and δF (·)
such that the following is true for any ε ∈ (0, 1). If a
function f : Fn2 → {0, 1} with n > NF (ε) is ε-far from
being F-free, then f induces δ · 2n(ki−1) many copies of
some (Ei, σi), where ki ≤ kF (ε) and δ ≥ δF (ε).

Theorem 3 follows, because the above Theorem 18
allows us to devise the following tester T for F-freeness.
T , given input f : Fn2 → {0, 1}, first checks if n ≤ NF (ε),
and in this case, it queries f on the entire domain and de-
cides accordingly. Otherwise, T repeats the following test
O(1/δF (ε)) many times: for every i such that ki ≤ kF (ε),
independently and uniformly at random choose elements
x1, . . . , xki−1 ∈ Fn2 , set xki = x1 + x2 + · · ·xki−1 and
reject immediately if f(xj) = σij for every j ∈ [ki]. T
accepts if it never rejects in any of the iterations. It’s
clear that the query complexity of T is constant and that
T always accepts if the input is F-free. It rejects inputs
ε-far from F-free because Theorem 18 guarantees that
there will be an equation of size at most kF (ε) for which
T will detect solutions to, with constant probability.

To start the proof (sketch) of Theorem 18, let us
relate pseudorandomness (uniformity) of a function to
the number of solutions to a single equation induced by
it. Similar and more general statements have been shown
previously, but we need only the following claim for what
follows.

Lemma 19 (Counting Lemma): For every η ∈ (0, 1)
and integer k > 2, there exist γ = γ19(η, k) and
δ = δ19(η, k) such that the following is true. Suppose E
is the row vector [1 1 · · · 1] of size k, σ ∈ {0, 1}k is a tuple,
H is a subspace of Fn2 , and f : Fn2 → {0, 1} is a function.
Furthermore, suppose there are k not necessarily distinct
elements u1, . . . , uk ∈ Fn2/H such that Mu = 0 where
u = (u1, . . . , uk), f+ui

H : H → {0, 1} is γ-uniform for all
i ∈ [k], and ρ(f+ui

H ) is at least η if σ(i) = 1 and at most
1 − η if σ(i) = 0 for all i ∈ [k]. Then, there are at least
δ|H|k−1 many k-tuples x = (x1, x2, . . . , xk), with each
xi ∈ ui +H, such that f induces (E, σ) at x.

In light of this lemma, our strategy to prove Theorem
18 will be to partition the domain into uniform cosets,
using Green’s regularity lemma (Lemma 12) in some
fashion, and then to use the above counting lemma to
count the number of induced solutions to some equation
in F . But one issue that immediately arises is that, be-
cause F is an infinite family of equations, we do not know
the size of the equation we would want the input function
to induce. Since Lemma 19 needs different uniformity
parameters to count equations of different lengths, it is
not a priori clear how to set the uniformity parameter
in applying the regularity lemma. (If F was finite, one
could set the uniformity parameter to correspond to the

size of the largest equation in F .)

To handle the infinite case, our basic approach will
be to classify the input function into one of a finite
set of classes. For each such class c, there will be an
associated number kc such that it is guaranteed that
any function classified as c must induce an equation in
F of size at most kc. If there is such a classification
scheme, then we know that any input function must
induce an equation of size at most maxc kc. How do we
perform this classification? We use the regularity lemma.
Consider the following idealized situation. Fix an integer
r. Suppose we could modify the input f : Fn2 → {0, 1}
at a small fraction of the domain to get a function
F : Fn2 → {0, 1} and then could apply Lemma 12 to
get a partition of order r so that the restrictions of F to
each coset was exactly 0-uniform. F is then a constant
function (either 0 or 1) on each of the 2r cosets, and so,
we can classify F by a Boolean function µ : Fr2 → {0, 1}
where µ(x) is the value of F on the coset corresponding
to x. Notice that there are only finitely many such µ’s.
Since F differs from f at only a small fraction of the
domain and since f is far from F-free, F must also
induce some equation in F . Then, for every such µ and
corresponding F , there is a smallest equation in F that
is induced by F . We can let ΨF (r) be the maximum over
all such µ of the size of the smallest equation in F that
is induced by the F corresponding to µ. We then might
hope that this function ΨF (·) can be used to tune the
uniformity parameter by using the functional variant of
the regularity lemma (Lemma 13).

There are a couple of caveats. First, we will not be able
to get the restrictions to every coset to look perfectly
uniform. Second, if F induces solutions to an equation,
it does not necessarily follow that f also does. To get
around the first problem, we use the fact that Lemma
19 is not very restrictive on the density conditions. We
think of the uniform cosets which have density neither
too close to 0 nor 1 as “wildcard” cosets at which both
the restriction of f and its complement behave pseudo-
randomly and have non-negligible density. Thus, the µ in
the above paragraph will map into {0, 1, ∗}r, where a ‘∗’
denotes a wildcard coset. For the second problem, note
that it is not really a problem if F-freeness is known
to be monotone. In this case, F inducing an equation
automatically means f also induces an equation, if we
obtained F by removing elements from the support of f .
For induced freeness properties, though, this is not the
case. Using ideas from [31] and the tools from Section
II, we structure the modifications from f to F in such a
way so as to force f to induce solutions of an equation if
F induces a solution to the same equation. The reader
is encouraged to look at the full version for details.



IV. Concluding Remarks and Open Problems

Obviously, the main open problem we would like to see
resolved is Conjecture 4. One appealing way to prove
the conjecture would be to proceed as we have but to
obtain a stronger notion of pseudorandomness in the reg-
ularity lemma. The notion of ε-uniformity obtained from
Green’s regularity lemma corresponds to the Gowers U2

norm, whereas in order to be able to prove Conjecture 4
in its full generality, we would presumably need a similar
regularity lemma with respect to the Gowers Uk norm
[41] for any fixed k. Such a higher order regularity lemma
has been very recently obtained by Green and Tao [39]
over the integers. However, it is not yet available over
F2, as the inverse conjectures for the Gowers norms over
F2 have not yet been completely clarified [42].

Let us mention some other observations and open
problems related to this work.

• As we have mentioned in Subsection I-D, it is not
too hard to construct linear-invariant properties
which are not testable. Actually, there are proper-
ties of this type that cannot be tested with o(2n)
queries9. One example can be obtained from a vari-
ant of an argument used in [5] as follows; it is shown
in [5] (see Proposition 4.1) that for every n there
exists a property of Boolean functions that contains
2

1
10 2

n

of the Boolean functions over Fn2 and cannot
be tested with less than 1

202n queries. This family
of functions is not necessarily linear invariant, so
we just “close” it under linear transformation, by
adding to the property all the linear-transformed
such functions. Since the number of these linear
transformation is bounded by 2n

2

(corresponding
to all possible n × n matrices over F2) we get that
the new property contains at most 2n

2

2
1
10 2

n ≤ 2
1
5 2

n

Boolean functions. One can verify that since this
new family contains a small fraction of all possible
functions the argument of [5] caries over, and the
new property cannot be tested with o(2n) queries.

• Our proof techniques actually show testability for a
class of properties slightly larger than that specified
in Theorem 3. We can use Lemma 2.7 from [27] to
show that whenever the linear system of equations
described by the matrix M is of complexity 1 (see
[43] or [27] for definition), then our Lemma 19
still holds while the rest of the proof machinery is
unaffected. For linear systems of larger complexity,
bounds on higher-order Gowers norms are needed
to control the terms in the counting lemma.

• The upper bound one obtains from the general
result given in Theorem 3 is huge. A natural open
problem would be to find a characterization of

9Note that any property can be tested with 2n by simply
querying f on all x ∈ Fn

2 .

these properties that can be tested with a number
of queries that depends polynomially on ε. This,
however, seems to be a very hard problem. Even
if the only forbidden equation is x+ y = z it is not
known if such an efficient test exists. This question
was raised by Green [24]; see [44] for current best
bounds.

• Our result here gives a (conjectured) characteriza-
tion of the linear-invariant properties of Boolean
functions that can be tested with one-sided error. It
is of course natural to try to extend our framework
to other families of properties, characterized by
other or more general invariances. For instance, can
we carry out a full characterization for testable
affine invariant properties of Boolean functions on
the hypercube?

• It would be valuable to understand formally why the
technology developed for handling graph properties
can be extended so naturally to linear-invariant
properties. This “coincidence” seems part of a larger
trend in mathematics where claims about subsets
find analogs in claims about vector subspaces. See
[45] for an interesting attempt to shed light on this
puzzle.
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